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This work introduces a nonlinear dynamics model of credit risk contagion in the credit risk transfer (CRT) market, which contains
time delay, the contagion rate of credit risk, and nonlinear resistance. The model depicts the dynamics behavior characteristics of
evolution of credit risk contagion through numerical simulation. Meanwhile, numerical simulations show that, in the CRTmarket,
the contagion rate of credit risk and the nonlinear resistance among CRT activities participants have some significant effects on the
dynamics behaviors of evolution of credit risk contagion. Specifically, on the one hand, we find that the status curve of credit risk
contagion that causes some significant changes with the increase in the contagion rate of credit risk, moreover, emerges a series of
Hopf bifurcation and chaotic phenomena in the process of credit risk contagion. On the other hand, Hopf bifurcation and chaotic
phenomena appear in advance with the increase in the nonlinear resistance coefficient and time-delay. In addition, there are a series
of periodic windows in the chaotic interval inside, including Hopf bifurcation, inverse bifurcation, and chaos.

1. Introduction

Over the past few years, with the significant development of
nonlinear science, economists have gradually started to use
nonlinear theory to study the complex phenomena of social
economic system [1–7]. Some far-sighted economists began
to apply the nonlinear science research results into eco-
nomics, which produced the nonlinear economics and the
chaos economics.The latest studies of nonlinear theory show
that whether interpersonal network, computer network, eco-
logical system, economic system, or disease spread, computer
virus spread, forest fire spread, risk spread, complex nonlin-
ear dynamics phenomena, and so forth, can be observed in
these social phenomena [8, 9].The aforementioned phenom-
ena present complex dynamical behavior, involving Hopf
bifurcation, inverse bifurcation, chaos, and fractals. Among
these behavior types, chaos and bifurcation are complex phe-
nomena that exist in the nonlinear financial system and are
important issues in economic and financial dynamics
research [10]. Credit risk transfer (CRT) market is a third-
party market that connects with the credit markets, the
securities market, and the insurance market, in which credit

risk contagion has some complex nonlinear characteristics
obviously.

At present, participants of the CRT market covered
mainly universal banks, commercial banks, securities dealers,
insurance companies, investment funds, and parts of nonfi-
nancial institutions. Among them exist close and complicated
network relations directly or indirectly, and that constituted
a nonlinear giant system. Because the interactions between
individuals that have complex nonlinear dynamic properties.
Moreover, credit risk contagion is dependent on CRT behav-
iors of participants of the CRT market and market infor-
mation dissemination of the relationship network. With the
rapid development of the CRT market, the quantity of parti-
cipants, and the depth and breadth of CRT trading all rapidly
increase. This will lead to the increase in the complexity
of the CRT market and make the distribution of informa-
tion and risk of terminal undertaker of credit risk change
more complicate. Meanwhile, the rapid development struc-
tured products will also increase the complexity. These will
make the financial institutions extremely easily cause the
superposition or clustering of credit risk in credit risk trans-
fer and cause credit risk contagion. However, credit risk
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contagion also has complex nonlinearity. It will increase the
difficulty of the prediction and control of credit risk in CRT
market and bring great challenges to credit risk management
departments.

Generally, some participants do not fully understand the
potential risk of CRT market or lack of corresponding risk
management ability into the CRT market, which will lead
to some new risks in the process of CRT behaviors.Moreover,
the systemic risk can increase in the CRT market. In the
imperfect competition market, CRT behaviors not only did
not spread risk, but also added to the system risk and
increased the likelihood of the credit risk contagion [11]. The
existing literature also showed that the rapid development of
the CRTmarket increased the possibility of credit risk conta-
gion across departments and trade. For example, credit risk
transfer in creating contagion between banking and insur-
ance systems and caused contagion, and the spread in sys-
temic riskmade everybodyworse off. At the same time, credit
risk transfer induced insurance companies to hold the same
assets as banks [12]. Banks’ motive of extensive using CDS
(Credit Default Swap) is that improve the diversification of
their credit risk. However, this might reduce banks’ stability.
The main reasons behind these negative impacts are firstly,
that banks are induced to increase their investment in an
illiquid, risky credit portfolio and secondly, that these CDS
create a possible channel of credit risk contagion [13].

The theory and practice have recognized the serious con-
sequences of the credit default contagion by the US subprime
mortgage crisis in 2008. Moreover, a number of studies are
also aware of credit risk contagion in the CRT process [11–14].
At present, the study of credit risk contagion mainly focus on
the interbank market and credit market. However, the exist-
ing credit risk model have not yet discussed and involved
nonlinear dynamic problems of the risk contagion process.
However, nonlinear dynamic behaviors are obvious in credit
risk contagion due to the complex network relationships, the
continuous innovation of CRT tools, and the asymmetric
information in CRT market. Moreover, network relations of
CRTmarket exist time delay and nonlinear resistance.There-
fore, we try to put the nonlinear system theory into the study
of the credit risk contagion in CRT market and construct the
nonlinear dynamic model of credit risk contagion in CRT
market. Then, we conduct numerical simulation to analyze
the dynamic behaviors characteristics of evolution of credit
risk contagion in CRT market.

The remainder of this paper is organized as follows. In
Section 2, the model of credit risk contagion in CRT market
and dynamics behavior characteristics of evolution of credit
risk contagion are discussed through numerical simulation.
In Section 3, we discuss the bifurcation and chaotic behaviors
of credit risk contagion. Finally, we conclude the paper in
Section 4.

2. Dynamics Evolution of Credit Risk
Contagion Based on the Vector Field

With the development of network theory, a number of studies
have taken into account the spread and response characters

of events in a long-distance connection of network. Newman
andWatts [15],Moukarzel [16] have given the dynamicmodel
of constant speed transmission of the events in the network.
However, they have not taken into account time-delay and
various nonlinear factors. Yang [17] took into account the
nonlinear factor and time-delay of events in the long connec-
tion and constructed the reasonable dynamic model.

2.1. The Contagion Model of Credit Risk in the CRT Market.
We are enlightened by the works [17–19] and propose the
dynamic model of credit risk contagion in the CRT market.
On the one hand, we assume that the complex network con-
nections among CRT activities participants are Newman-
Watts length scale connections and long-distance connec-
tions. On the other hand, we take into account the time-
delay and nonlinear resistance of long-distances connection
between CRT activities participants. In fact, the model is also
a nonlinear time-delay differential equation. Therefore, the
dynamic model of credit risk contagion is described by the
following time-delay differential equation:

𝑑𝑁 (𝑡)

𝑑𝑡
= 𝜆𝑘
1
− 𝑁 (𝑡) + 𝜆𝑘

2
𝑁(𝑡 − 𝜏)

− 𝜇𝜉[𝜆𝑘
2
𝑁(𝑡 − 𝜏)]

2

𝑡 ≥ 0,

𝑁 (𝑡) = 𝑐 − 𝜏 ≤ 𝑡 ≤ 0,

(1)

where𝑁(𝑡) denotes the number of CRT activities participants
that are infected by credit risk in the CRT market, 𝜉 refers
to Newman-Watts length scale, 𝑘

1
is the number of instances

that the connection distance from the participant infected by
credit risk is a Newman-Watts length scale, 𝑘

2
is the number

of instances that the connection distance from the participant
infected by credit risk is a long-distance connection, 𝜆 is the
effective contagion rate of credit risk in the CRT market,
𝜇 is the nonlinear resistance coefficient of the relationship
network comprisingCRTmarket participants, 𝑐 ∈ R+ is a real
parameter, and 𝜏 is the time-delay of credit risk contagion in
the long-distance connection. Therefore, the mechanism of
the time-delay and the nonlinear resistance of credit risk con-
tagion in Newman-Watts length scale connection and long-
distance connection can be described by the time-delay dif-
ferential equation (1).

According to the general definition, we can derive the bal-
ance position and stable point of credit risk contagion when
the left side of equation (1) is equal to zero. In fact, this kind
of nonlinear dynamics system can be denoted by equation (1),
where balance positionsmay become unstable, periodic solu-
tion and the system vibration may emerge, and the pheno-
menon of Hopf bifurcation and chaos may occur, along with
the change in various parameters [20]. Torelli [21], Liu and
Spijker [22] have given a numerical Eulermethod for the solu-
tion of delay differential equation as equation (1). We still use
the method in this paper. Now, let the stepsize ℎ is such that
ℎ = 𝜏/𝑚 and 𝜃 ∈ [0, 1], where 𝜏 is a time-delay, and 𝑚

is a positive integer. Therefore, according to the one-point
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collocation rule for delay differential equation (1), we can get

𝑁
𝑛+1

= 𝑁
𝑛
+ 𝜆𝑘
1
ℎ − ℎ [(1 − 𝜃)𝑁

𝑛
+ 𝜃𝑁
𝑛+1

]

+ 𝜆𝑘
2
ℎ [(1 − 𝜃)𝑁

𝑛−𝑚
+ 𝜃𝑁
𝑛−𝑚+1

]

− 𝜇𝜉𝜆
2
𝑘
2

2
ℎ[(1 − 𝜃)𝑁

𝑛−𝑚
+ 𝜃𝑁
𝑛−𝑚+1

]
2

,

(2)

where𝑁
𝑛
denotes the approximate value of𝑁(𝑡) at the point

𝑡
𝑛
. Let = (𝑚 − 𝛿)ℎ + ℎ/2(0 ≤ 𝛿 < 1), then Ω

ℎ
= {𝑡
𝑛
= 𝑛ℎ, 𝑛 ∈

𝑍}. Thus, we can get 𝑡
𝑛
+ 𝜃ℎ ∈ [𝑡

𝑛
, 𝑡
𝑛+1

] and 𝑡
𝑛
+ 𝜃ℎ − 𝜏 ∈

[𝑡
𝑛−𝑚

, 𝑡
𝑛−𝑚+1

]. We apply the 𝜃-collocation method to define
the approximate value of 𝑁(𝑡) at the point 𝑡

𝑛
+ 𝜃ℎ and 𝑡

𝑛
+

𝜃ℎ − 𝜏 as follows:

𝑁(𝑡
𝑛
+ 𝜃ℎ) ≈ 𝜃 [𝑁 (𝑡

𝑛
) + 𝑁 (𝑡

𝑛+1
)] ,

𝑁 (𝑡
𝑛
+ 𝜃ℎ − 𝜏) ≈ 𝜃 [𝑁 (𝑡

𝑛−𝑚
) + 𝑁 (𝑡

𝑛−𝑚+1
)] .

(3)

We apply the midpoint collocation method (one-point
collocation with 𝜃 = 1/2) to equation (1), and can get

𝑁
𝑛+1

= 𝑁
𝑛
+ 𝜆𝑘
1
ℎ − ℎ [

𝑁
𝑛
+ 𝑁
𝑛+1

2
]

+ 𝜆𝑘
2
ℎ [

𝑁
𝑛−𝑚

+ 𝑁
𝑛−𝑚+1

2
]

− 𝜇𝜉𝜆
2
𝑘
2

2
ℎ[

𝑁
𝑛−𝑚

+ 𝑁
𝑛−𝑚+1

2
]

2

.

(4)

Namely,

𝑁(𝑡
𝑛+1

) = 𝑁 (𝑡
𝑛
) + 𝜆𝑘

1
ℎ − ℎ [

𝑁 (𝑡
𝑛
) + 𝑁 (𝑡

𝑛+1
)

2
]

+ 𝜆𝑘
2
ℎ [

𝑁 (𝑡
𝑛−𝑚

) + 𝑁 (𝑡
𝑛−𝑚+1

)

2
]

− 𝜇𝜉𝜆
2
𝑘
2

2
ℎ[

𝑁 (𝑡
𝑛−𝑚

) + 𝑁 (𝑡
𝑛−𝑚+1

)

2
]

2

.

(5)

Put equation (3) into equation (5), we can get

𝑁(𝑡
𝑛+1

) ≈ 𝑁 (𝑡
𝑛
) + 𝜆𝑘

1
ℎ − ℎ𝑁(𝑡

𝑛
+
ℎ

2
)

+ 𝜆𝑘
2
ℎ𝑁(𝑡

𝑛
+
ℎ

2
− 𝜏)

− 𝜇𝜉𝜆
2
𝑘
2

2
ℎ[𝑁(𝑡

𝑛
+
ℎ

2
− 𝜏)]

2

.

(6)

We put ℎ = 𝜏/𝑚 into equation (6), we can get

𝑁(𝑡
𝑛+1

) ≈ 𝑁 (𝑡
𝑛
) +

𝜆𝑘
1
𝜏

𝑚
−

𝜏

𝑚
𝑁(𝑡
𝑛
+

𝜏

2𝑚
)

+
𝜆𝑘
2
𝜏

𝑚
𝑁(𝑡
𝑛
+
(1 − 2𝑚) 𝜏

2𝑚
)

−
𝜇𝜉𝜆
2
𝑘
2

2
𝜏

𝑚
[𝑁(𝑡

𝑛
+
(1 − 2𝑚) 𝜏

2𝑚
)]

2

.

(7)

To understand the effect of nonlinear factors on credit
risk contagion further, we have to use equation (7) to conduct
numerical simulations under the given parameters𝜇, 𝜉, 𝑘

1
, 𝑘
2
,

𝜆, and 𝜏 and the initial condition𝑁(𝑡) = 𝑐 (−𝜏 ≤ 𝑡 ≤ 0).

2.2. SimulationAnalysis of theDynamics Behavior of Evolution
of Credit Risk Contagion in the CRT Market. We try to
describe the dynamics behavior characteristics of evolution
of credit risk contagion and its influencing factors by the
nonlinear time-delayed differential equation in this paper.
According to the solving process of equation (1), we know
that parameters 𝜇, 𝜉, 𝑘

1
, 𝑘
2
, and 𝜆 and the initial condition

𝑁(𝑡) = 𝑐 (−𝜏 ≤ 𝑡 ≤ 0) will affect the stability of the solution
of time-delayed differential equations and the trajectory of
the process of credit risk contagion. In order to describe
the dynamic behaviors and its influencing factors of the
process of credit risk contagion in CRT market, we take
parameters 𝜆 and 𝜇 as the bifurcation parameter. Then, we
conduct numerical simulations to the dynamics system (1)
and analyze the dynamics behavior of credit risk contagion
in CRT market. Let 𝜏 = 1, ℎ = 0.01, 𝑚 = 100, 𝛿 = 0.5,
𝜉 = 3, 𝑘

1
= 10, 𝑘

2
= 25, and the initial condition 𝑁(𝑡) =

2(𝑡 ∈ (−𝜏, 0)). Figure 1 depicts the effect of the effective con-
tagion rate 𝜆 of credit risk on the trajectory curve of credit
risk contagion in the CRT market. We find that the status
of credit risk contagion changes gradually from “hyperbolic
attenuation” (a piece of the hyperbolic) to “logarithm Gauss
attenuation,” and the influence strength and range of credit
risk contagion emerge nonlinear velocity increasing with the
increase in the effective contagion rate 𝜆 of credit risk in CRT
market. However, the influence strength and range attenuate
rapidly after a period of time and emerge the fat-tail charac-
teristic. This shows that the effect of the default behaviors of
CRT activities participants on other participants weakened
gradually after a period of time and the default intensity
and default state depend on the company oneself andmacroe-
conomic factors. Figure 2 shows that oscillation amplitude
and frequency increase gradually with the increase in the
effective contagion rate 𝜆 of credit risk in CRT market.
However, the oscillation will weaken after a period of time.
Figure 3 shows that the stable state of credit risk contagion
will trend to unstable and emerge periodic solution andHopf
bifurcation with the increase in the effective contagion rate
𝜆 of credit risk in CRT market. Namely, the contagion
amplitude and range of credit risk will emerge periodic oscil-
lation with the increase in the effective rate of credit risk
contagion in CRT market. Moreover, the limit cycle radius
of the attractive domain increases gradually, and the shape of
the limit cycle becomes increasingly irregular, such that the
bifurcation and chaos phenomena occur with the increase
in the effective contagion rate 𝜆 of credit risk contagion. In
Figure 4, we find that the process of credit risk contagion
present different “logarithmGauss attenuation” feature under
the influence of the nonlinear resistance of the relationship
network comprising CRT activities participants. In Figure 5,
we find that the oscillation of the process of credit risk con-
tagion is not affected with the increase in the nonlinear resis-
tance coefficient 𝜇. However, the number of CRT activities
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Figure 1: The trajectory curve of credit risk contagion where 𝜇 =

0.03.
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Figure 2: The step response of the process of credit risk contagion
where 𝜇 = 0.03.

participants 𝑁(𝑡) gradually reduces with the increase in the
nonlinear resistance coefficient𝜇. In Figure 6, we find that the
effect of the nonlinear resistance coefficient 𝜇 on the attract
factor of balance position of credit risk contagion, and the
number of CRT activities participants 𝑁(𝑡) is very sensitive.
Namely, the attractive factor of credit risk contagion and
the number of CRT activities participants𝑁(𝑡) will decrease
rapidly with the increase in nonlinear resistance coefficient 𝜇.
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Figure 3: The phase diagram of the process of credit risk contagion
where 𝜇 = 0.03.
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Figure 4: The state trajectory curve of the process of credit risk
contagion where 𝜆 = 0.1.

3. Bifurcation and Chaotic Analysis of Credit
Risk Contagion Based on Logistic Mapping

3.1. The Model Analysis of Credit Risk Contagion Based on
LogisticMapping. Themodel (1) of credit risk contagion used
the form of vector field to discuss credit risk contagion in
credit risk transfer. However, the previous figures are not
intuitive and are difficult to interpret.Thus, analyzing the pro-
perties of the dynamic system of credit risk contagion, such
as the difference of the trajectory curve of period doubling,
may be challenging. However, given the intuition, legibility,
and geometrical features of the logistic mapping, we often
discretize the nonlinear problem of the continuous vector
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Figure 5: The step response of the process of credit risk contagion
where 𝜆 = 0.1.

field to the logistic mapping by using a numerical approxi-
mationmethod to analyze the periodic bifurcation and chaos
of nonlinear dynamics system. A number of studies use the
Euler [23–25] to analyze bifurcation, periodic solution, and
chaotic phenomena of nonlinear time-delayed system. We
also adopt the Eulermethod and take step length ℎ.Therefore,
equation (1) can be transformed into the form following form:

𝑁(𝑡 − 𝜏 + ℎ) − 𝑁 (𝑡 − 𝜏)

= ℎ {𝜆𝑘
1
− 𝑁 (𝑡) + 𝜆𝑘

2
𝑁(𝑡 − 𝜏)

−𝜇𝜉[𝜆𝑘
2
𝑁(𝑡 − 𝜏)]

2

} .

(8)

Let ℎ = 𝜏,𝑁(𝑡) = 𝑁
𝑛+1

, and𝑁(𝑡−𝜏) = 𝑁
𝑛
.Thus, equation

(8) can be transformed into the form following form:

𝑁
𝑛+1

=
𝜆𝑘
1
𝜏

1 + 𝜏
+
1 + 𝜆𝑘

2
𝜏

1 + 𝜏
𝑁
𝑛
−
𝜇𝜉𝜏𝜆
2
𝑘
2

2

1 + 𝜏
(𝑁
𝑛
)
2

. (9)

Therefore, there exists the logistic mapping 𝑓 as follow:

𝑓 : 𝑁
𝑛
→ 𝑁

𝑛+1
. (10)

According to the definition of the fixed point of the logis-
tic mapping, we know that the fixed point of the logistic map-
ping 𝑓 should meet𝑁

𝑛+1
= 𝑁
𝑛
= 𝑁
∗. Therefore, we can get

the analytic equation of the fixed point of the logisticmapping
as follow:

𝜇𝜉𝜏𝜆
2
𝑘
2

2

1 + 𝜏
(𝑁
∗
)
2

−
𝜆𝑘
2
𝜏 − 𝜏

1 + 𝜏
𝑁
∗
−
𝜆𝑘
1
𝜏

1 + 𝜏
= 0. (11)

Therefore, we can get the fixed point of the logistic map-
ping 𝑓 by equation (11) as follow:

𝑁
∗

1
=
(𝜆𝑘
2
𝜏 − 𝜏) + √(𝜆𝑘

2
𝜏 − 𝜏)

2

+ 4𝜇𝜉𝑘
1
𝜏2𝜆3𝑘2

2

2𝜇𝜉𝜏𝜆2𝑘2
2

,

𝑁
∗

2
=
(𝜆𝑘
2
𝜏 − 𝜏) − √(𝜆𝑘

2
𝜏 − 𝜏)

2

+ 4𝜇𝜉𝑘
1
𝜏2𝜆3𝑘2

2

2𝜇𝜉𝜏𝜆2𝑘2
2

.

(12)

Obviously, 𝑁∗
2

< 0 is unrealistic. Therefore, the fixed
point 𝑁

∗

1
is sole fixed point of the logistic mapping 𝑓.

According to the definition of the logistic mapping and the
Lyapunov movement stability, we know that the movement
stability of the fixed point depends on the characteristic root
of the derived operator of the logistic mapping, which is
Floquet multiplier [26, 27]. Therefore, the Floquet multiplier
will determine the stability of the fixed point𝑁∗

1
. Namely,

𝐷𝑔
𝑁∗ = 1 −

√(𝜆𝑘
2
𝜏 − 𝜏)

2

+ 4𝜇𝜉𝑘
1
𝜏2𝜆3𝑘2

2

1 + 𝜏
.

(13)

According to the nonlinear system theory [27, 28], if
|𝐷𝑔|
𝑁
∗ > 1, then the fixed point𝑁∗ will become unstable; if

|𝐷𝑔|
𝑁
∗ < 1, then the fixed point𝑁∗ is asymptotically stable;

if |𝐷𝑔|
𝑁
∗ = 1, then the fixed point𝑁∗ is criticality stable. So,

for the fixed point 𝑁∗ of the mapping 𝑓, the fixed point
𝑁
∗ is asymptotically stable when 𝜇 < (4(1 + 𝜏)

2
− (𝜆𝑘

1
𝜏 −

𝜏)
2
)/4𝜉𝑘
1
𝑘
2

2
𝜏
2
𝜆
3, is criticality stability when 𝜇 = (4(1 + 𝜏)

2
−

(𝜆𝑘
1
𝜏−𝜏)
2
)/4𝜉𝑘
1
𝑘
2

2
𝜏
2
𝜆
3, or is unstable when 𝜇 > (4(1+𝜏)

2
−

(𝜆𝑘
1
𝜏 − 𝜏)

2
)/4𝜉𝑘
1
𝑘
2

2
𝜏
2
𝜆
3.

According to the nonlinear dynamic related theory [26–
28], if there exists a series of period-doubling bifurcation
phenomena, then a series of period-doubling bifurcation
leads to chaos. In recent years, much works used topological
horseshoes embeddedmethod to study chaos rigorously [28–
34]. By this method, one can not only prove the existence
of chaos, but also reveal the mechanism of chaotic phenom-
ena by showing the structure of chaotic attractors [31–34].
Beyond that, some works used the Lyapunov exponents [35]
and set oriented numerical methods [36, 37] to prove the
existence of chaos. Li andYorke [38] gave a definition of chaos
that the existence of a point of period 3 implies the existence
of chaos. Therefore, according to this definition, we use
numerical simulation to discuss the fixed point and its
stability, bifurcation, and chaos of the mapping from the
intuitive.

3.2. Numerical Simulation Analysis. Let 𝜉 = 3, 𝜏 = 1, 𝑘
1
= 10,

𝑘
2
= 25, and the initial condition 𝑁(𝑡) = 2 (𝑡 ∈ (−𝜏, 0)).

We use equation (8) to conduct numerical simulations. The
Figure 3 reflects theHopf bifurcation process and its variation
characteristics of credit risk contagion with parameter 𝜆 and
𝜇. Figures 7(a) and 7(b) reflect theHopf bifurcation and chaos
characteristics of credit risk contagionwith the increase in the
effective contagion rate 𝜆 of credit risk. Figure 7(a) reflects
that the process of credit risk contagion exists the only stable
constant state when parameter 𝜆 is kept at a proper level.
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Figure 6: The phase diagram of the process of credit risk contagion where 𝜆 = 0.1.
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Figure 7: (a)The bifurcation diagram of the process of credit risk contagion with 𝜆when 𝜇 = 0.01; (b) the bifurcation diagram of the process
of credit risk contagion with 𝜆 when 𝜇 = 0.015; (c) the bifurcation diagram of the process of credit risk contagion with 𝜆 when 𝜇 = 0.01,
𝜏 = 1.5; (d) the bifurcation diagram of the process of credit risk contagion with 𝜇 when 𝜆 = 0.1.
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Figure 8: (a)The bifurcation diagram in the chaos area when 𝜇 = 0.01; (b) the bifurcation diagram in the chaos area when 𝜇 = 0.015; (c) the
bifurcation diagram in the chaos area when 𝜆 = 0.1.

Moreover, the process of credit risk contagion emerge differ-
ent types of period bifurcation and periodic oscillation with
the increase in the effective contagion rate 𝜆 of credit risk in
CRTmarket. According to the definition of Li-Yorke [29], the
process of credit risk contagion can occur chaos phenomenon
when the effective contagion rate 𝜆 reaches to a proper value.
Figure 7(b) reflects a series of similar characteristics with
Figure 7(a). However, we also find that the Hopf bifurcation
and chaotic phenomena of credit risk contagion emerge
in advance with the increase in the nonlinear resistance
coefficient 𝜇. In Figure 7(c), we find that the Hopf bifurcation
and chaotic phenomena of credit risk contagion emerge in
advance with the increase in time-delay 𝜏. In Figure 7(d), we
find that the process of credit risk contagion exists the only
stable constant state when parameter 𝜆 is kept at a proper
level. Moreover, the process of credit risk contagion emerges
different types of period bifurcation and periodic oscillation
with the increase in the nonlinear resistance coefficient 𝜇
among CRT activities participants. According to the defini-
tion of Li-Yorke [29], the process of credit risk contagion
can occur chaos phenomenon when the nonlinear resistance
coefficient 𝜇 reaches to a proper value.

According to numerical simulation and comparative
analysis, we find that the process of credit risk contagion can

emerge three states, including the stable constant state, Hopf
bifurcation, and chaos with the increase in parameter 𝜆 and
𝜇. However, these cannot more directly depict the nonlinear
dynamic behavior characteristics after occurring chaotic
phenomena. Therefore, we further discuss the effect of these
parameters on the chaotic state and the period window of
the process of credit risk contagion. In Figures 8(a) and 8(b),
we find that Hopf bifurcation, pour bifurcation, and chaos
mixed emerge in chaotic interval internal period window.
Moreover, Hopf bifurcation, pour bifurcation, and chaos
phenomena emerge in advance in chaos interval inside with
the increase in nonlinear resistance coefficient 𝜇. Figure 8(c)
shows that chaos states are significant in the process of credit
risk contagion with the increase in nonlinear resistance coef-
ficient𝜇. However,Hopf bifurcation andpour bifurcation fea-
tures become relatively obscure comparing to the Figures 8(a)
and 8(b).

4. Conclusion

In this paper, we constructed a nonlinear dynamic model of
credit risk contagion based on literatures [17–19]. Moreover,
the dynamical properties of the nonlinear dynamics system
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of credit risk contagion were investigated. We found that the
effective rate of credit risk contagion and nonlinear resistance
between CRT market participants have significant effect on
dynamics behavior of credit risk contagion. Moreover, we
found a series of complex Hopf bifurcation, inverse bifurca-
tion, and chaos phenomena in the nonlinear dynamics system
of credit risk contagion through a numerical simulation. At
the same time, there are a series of period window in chaos
interval inside, and that emerge intertwined state including
Hopf bifurcation, pour bifurcation, and chaos. The study of
dynamics behavior of evolution of credit risk contagion can
help us to understand the effect of the interaction between the
internal nonlinear factors and external disturbance of credit
risk contagion, which has important theoretical and practical
value.

There is still much work that is worth further research.
For example, in the real world, a variety of noises usually
influence the process of credit risk contagion and its dynam-
ics behaviors, such as Gaussian noise, random noises, and so
forth. For the kind of credit risk contagion with both time-
delay and noises, we leave it for the future work.
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