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is paper considers the M/M/𝑁𝑁 repairable queuing system. e customers’ arrival is a Poisson process. e servers are subject
to breakdown according to Poisson processes with different rates in idle time and busy time, respectively. e breakdown servers
are repaired by repairmen, and the repair time is an exponential distribution. Using probability generating function and transform
method, we obtain the steady-state probabilities of the system states, the steady-state availability of the servers, and the mean
queueing length of the model.

1. Introduction

In queuing researches, many researchers have studied the
queuing system with repairable servers. Most of the works
of the repairable queuing system deal with the single-server
models [1–9]. e works about multiserver repairable sys-
tems is not sufficient. Mitrany and Avi-Itzhak [10] analyzed
the model with 𝑁𝑁 units of servers and the same amount
of repairmen, they obtained the steady-state mean queuing
length of customers. Neuts and Lucantoni [11] studied the
model with 𝑁𝑁 units of repairable servers and 𝑐𝑐 (0 ≤ 𝑐𝑐 ≤
𝑁𝑁) repairmen by matrix analysis method and obtained the
steady-state properties of the model.

In recent years, many �exible policies have been intro-
duced to the repairable systems. Gray et al. [5] studied the
model with a single server which may take a vacation in idle
times and may breakdown in busy times; they obtained the
mean queue length. Altman and Yechiali [12] presented a
comprehensive analysis of the M/M/1 and M/G/1 queues,
as well as of the M/M/𝑐𝑐 queue with server vacations; they
obtained various closed-form results for the probability
generating function (PGF) of the number of the customers.
Zhang and Hou [6] analyzed an M/G/1 queue with working
vacations and vacation interruptions; they obtained the
queue length distribution and steady-state service status
probability. Yang et al. [7] analyzed anM/G/1 queuing system

with second optional service, server breakdowns, and general
startup times under (𝑁𝑁𝑁 𝑁𝑁𝑁-policy, they obtained the explicit
closed-form expression of the joint optimum threshold val-
ues of (𝑁𝑁𝑁 𝑁𝑁𝑁 at the minimum cost. Chang et al. [8] studied
the optimalmanagement problemof a �nite capacityM/H2/1
queuing system, where the unreliable server operates 𝐹𝐹-
policy, a cost model is developed to determine the optimal
capacity 𝐾𝐾, the optimal threshold 𝐹𝐹, the optimal setup rate,
and the optimal repair rate at aminimum cost.Wang [9] used
a quasi-birth-and-death (QBD)modeling approach to model
queuing-inventory systems with a single removable server,
performancemeasures are obtained by using both hybrid and
standard procedures; an optimal control policy is proposed
and veri�ed through numerical studies.

e most works of repairable queuing system assumed
that the server breakdown rate is constant, but the breakdown
rate of a server may be variable in a real system. It is well
known that many kinds of machine are easy to breakdown
at their busy times, and some equipments may be easy
to fail aer a long idle period. For example, the tires of
the truck prefer to breakdown when the truck is running
on the road. On the other hand, the storage battery in
an automobile may not work if the automobile is idle for
long period. For the actual demands of the above cases,
we study a multiserver repairable queuing system in this
paper, and assume that the unreliable servers have different
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breakdown rates in their busy times and idle times, respec-
tively.

e rest of this paper is organized as follows. Section
2 describes the model and gives the balance equations.
Section 3 presents the equations of PGF. e steady-state
availability of the system is derived in Section 4. e steady-
state probabilities of the system states and mean queuing
length are obtained in Section 5. Case analysis is given in
Section 6. Section 7 presents the conclusions.

2. Model Description

emodel characteristics are as follows.

(1) ere are 𝑁𝑁 units of identical servers in the system.
e servers are subject to breakdown according to
Poisson processes with different rates which are 𝜉𝜉1 in
idle times and 𝜉𝜉2 in busy times, respectively.

(2) Customers arrive according to a Poisson process with
rate 𝜆𝜆. e service discipline is �rst come �rst served
(FCFS). e service which is interrupted by a server
breakdown will become the �rst one of the queue
of customers. e service time distribution is an
exponential distribution with parameter 𝜇𝜇.

(3) ere are 𝑐𝑐 𝑐1 𝑐 𝑐𝑐 𝑐 𝑁𝑁𝑐 reliable repairmen to
maintain the unreliable servers. e repair disci-
pline is �rst come �rst repaired (FCF�). e repair
time distribution is an exponential distributions with
parameter 𝜂𝜂. A server is as good as a new one aer
repair.

�e de�ne

𝑋𝑋𝑐𝑋𝑋𝑐 𝑋 the number of available servers in the system
at the moment 𝑋𝑋 𝑐𝑡 𝑡 𝑋𝑋𝑐t𝑐 𝑡 𝑁𝑁𝑐,

𝑌𝑌𝑐𝑋𝑋𝑐 𝑋 the number of customers in the system at the
moment 𝑋𝑋 𝑐𝑡 𝑡 𝑌𝑌𝑐𝑋𝑋𝑐𝑐.

e stochastic process {𝑋𝑋𝑐𝑋𝑋𝑐𝑋 𝑌𝑌𝑐𝑋𝑋𝑐𝑋 𝑋𝑋 𝑋 𝑡𝑋 is a two-dimen-
sional Markov process which is called quasi-birth-and-death
(QBD) process [11] with state space {𝑐𝑖𝑖𝑋 𝑖𝑖𝑐𝑋 𝑡 𝑐 𝑖𝑖 𝑐 𝑁𝑁𝑋 𝑖𝑖 𝑋 𝑡𝑋.

Let 𝑃𝑃𝑖𝑖𝑋𝑖𝑖𝑐𝑋𝑋𝑐 denote the probability that the system is in a
state of 𝑐𝑖𝑖𝑋 𝑖𝑖𝑐 at the moment 𝑋𝑋, and 𝑃𝑃𝑖𝑖𝑋𝑖𝑖 denote the steady-state
probability of 𝑃𝑃𝑖𝑖𝑋𝑖𝑖𝑐𝑋𝑋𝑐, then we have

𝑃𝑃𝑖𝑖𝑋𝑖𝑖 = 
lim
𝑋𝑋𝑡𝑡

𝑃𝑃𝑖𝑖𝑋𝑖𝑖 𝑐𝑋𝑋𝑐 𝑋 𝑖𝑖 = 𝑡𝑋 1𝑋 2𝑋𝑖 𝑋𝑁𝑁𝑋 𝑖𝑖 = 𝑡𝑋 1𝑋 2𝑋𝑖 𝑋

𝑡𝑋 other.
(1)

Assuming that the system is positive recurrent, the balance
equations are as follows:

𝜆𝜆 𝜆 𝑐𝑐𝜂𝜂 𝑃𝑃𝑡𝑋𝑡 = 𝜉𝜉1𝑃𝑃1𝑋𝑡𝑋

𝜆𝜆 𝜆 𝑐𝑐𝜂𝜂 𝑃𝑃𝑡𝑋𝑖𝑖 = 𝜆𝜆𝑃𝑃𝑡𝑋𝑖𝑖𝑗1 𝜆 𝜉𝜉2𝑃𝑃1𝑋𝑖𝑖𝑋 𝑖𝑖 𝑗 𝑡𝑋

𝜆𝜆 𝜆 𝑐𝑐𝜂𝜂 𝜆 𝑖𝑖𝜉𝜉1 𝑃𝑃𝑖𝑖𝑋𝑡 = 𝑐𝑐𝜂𝜂𝑃𝑃𝑖𝑖𝑗1𝑋𝑡 𝜆 𝜇𝜇𝑃𝑃𝑖𝑖𝑋1 𝜆 𝑐𝑖𝑖 𝜆 1𝑐 𝜉𝜉1𝑃𝑃𝑖𝑖𝜆1𝑋𝑡𝑋

𝑡 < 𝑖𝑖 𝑐 𝑁𝑁 𝑗 𝑐𝑐𝑋 𝑖𝑖 = 𝑡𝑋

𝑃𝑃𝑖𝑖𝑋𝑖𝑖 𝜆𝜆 𝜆 𝑐𝑐𝜂𝜂 𝜆 𝑖𝑖𝜇𝜇 𝜆 𝑖𝑖 𝑗 𝑖𝑖 𝜉𝜉1 𝜆 𝑖𝑖𝜉𝜉2 = 𝜆𝜆𝑃𝑃𝑖𝑖𝑋𝑖𝑖𝑗1 𝜆 𝑐𝑐𝜂𝜂𝑃𝑃𝑖𝑖𝑗1𝑋𝑖𝑖

𝜆 𝑖𝑖 𝜆 1 𝜇𝜇𝑃𝑃𝑖𝑖𝑋𝑖𝑖𝜆1 𝜆 𝑖𝑖 𝜆 1 𝑗 𝑖𝑖 𝜉𝜉1 𝜆 𝑖𝑖𝜉𝜉2 𝑃𝑃𝑖𝑖𝜆1𝑋𝑖𝑖𝑋

𝑡 < 𝑖𝑖 𝑐 𝑁𝑁 𝑗 𝑐𝑐𝑋 𝑡 < 𝑖𝑖 < 𝑖𝑖𝑋

𝑃𝑃𝑖𝑖𝑋𝑖𝑖 𝜆𝜆 𝜆 𝑐𝑐𝜂𝜂 𝜆 𝑖𝑖𝜇𝜇 𝜆 𝑖𝑖𝜉𝜉2

= 𝜆𝜆𝑃𝑃𝑖𝑖𝑋𝑖𝑖𝑗1 𝜆 𝑐𝑐𝜂𝜂𝑃𝑃𝑖𝑖𝑗1𝑋𝑖𝑖 𝜆 𝑖𝑖𝜇𝜇𝑃𝑃𝑖𝑖𝑋𝑖𝑖𝜆1 𝜆 𝜉𝜉1 𝜆 𝑖𝑖𝜉𝜉2 𝑃𝑃𝑖𝑖𝜆1𝑋𝑖𝑖𝑋

𝑡 < 𝑖𝑖 𝑐 𝑁𝑁 𝑗 𝑐𝑐𝑋 𝑖𝑖 = 𝑖𝑖𝑋

𝑃𝑃𝑖𝑖𝑋𝑖𝑖 𝜆𝜆 𝜆 𝑐𝑐𝜂𝜂 𝜆 𝑖𝑖𝜇𝜇 𝜆 𝑖𝑖𝜉𝜉2

= 𝜆𝜆𝑃𝑃𝑖𝑖𝑋𝑖𝑖𝑗1 𝜆 𝑐𝑐𝜂𝜂𝑃𝑃𝑖𝑖𝑗1𝑋𝑖𝑖 𝜆 𝑖𝑖𝜇𝜇𝑃𝑃𝑖𝑖𝑋𝑖𝑖𝜆1 𝜆 𝑐𝑖𝑖 𝜆 1𝑐 𝜉𝜉2𝑃𝑃𝑖𝑖𝜆1𝑋𝑖𝑖𝑋

𝑡 < 𝑖𝑖 𝑐 𝑁𝑁 𝑗 𝑐𝑐𝑋 𝑖𝑖 𝑗 𝑖𝑖𝑋

𝑃𝑃𝑖𝑖𝑋𝑡 𝜆𝜆 𝜆 𝑐𝑁𝑁 𝑗 𝑖𝑖𝑐 𝜂𝜂 𝜆 𝑖𝑖𝜉𝜉1

= 𝑐𝑁𝑁 𝑗 𝑖𝑖 𝜆 1𝑐 𝜂𝜂𝑃𝑃𝑖𝑖𝑗1𝑋𝑡 𝜆 𝜇𝜇𝑃𝑃𝑖𝑖𝑋1 𝜆 𝑐𝑖𝑖 𝜆 1𝑐 𝜉𝜉1𝑃𝑃𝑖𝑖𝜆1𝑋𝑡𝑋

𝑁𝑁 𝑗 𝑐𝑐 < 𝑖𝑖 < 𝑁𝑁𝑋 𝑖𝑖 = 𝑡𝑋

𝑃𝑃𝑖𝑖𝑋𝑖𝑖 𝜆𝜆 𝜆 𝑐𝑁𝑁 𝑗 𝑖𝑖𝑐 𝜂𝜂 𝜆 𝑖𝑖𝜇𝜇 𝜆 𝑖𝑖 𝑗 𝑖𝑖 𝜉𝜉1 𝜆 𝑖𝑖𝜉𝜉2

= 𝑐𝑁𝑁 𝑗 𝑖𝑖 𝜆 1𝑐 𝜂𝜂𝑃𝑃𝑖𝑖𝑗1𝑋𝑖𝑖 𝜆 𝜆𝜆𝑃𝑃𝑖𝑖𝑋𝑖𝑖𝑗1 𝜆 𝑖𝑖 𝜆 1 𝜇𝜇𝑃𝑃𝑖𝑖𝑋𝑖𝑖𝜆1

𝜆 𝑖𝑖 𝜆 1 𝑗 𝑖𝑖 𝜉𝜉1 𝜆 𝑖𝑖𝜉𝜉2 𝑃𝑃𝑖𝑖𝜆1𝑋𝑖𝑖𝑋

𝑁𝑁 𝑗 𝑐𝑐 < 𝑖𝑖 < 𝑁𝑁𝑋 𝑡 < 𝑖𝑖 < 𝑖𝑖𝑋

𝑃𝑃𝑖𝑖𝑋𝑖𝑖 𝜆𝜆 𝜆 𝑐𝑁𝑁 𝑗 𝑖𝑖𝑐 𝜂𝜂 𝜆 𝑖𝑖𝜇𝜇 𝜆 𝑖𝑖𝜉𝜉2

= 𝜆𝜆𝑃𝑃𝑖𝑖𝑋𝑖𝑖𝑗1 𝜆 𝑐𝑁𝑁 𝑗 𝑖𝑖 𝜆 1𝑐 𝜂𝜂𝑃𝑃𝑖𝑖𝑗1𝑋𝑖𝑖 𝜆 𝑖𝑖𝜇𝜇𝑃𝑃𝑖𝑖𝑋𝑖𝑖𝜆1

𝜆 𝜉𝜉1 𝜆 𝑖𝑖𝜉𝜉2 𝑃𝑃𝑖𝑖𝜆1𝑋𝑖𝑖𝑋 𝑁𝑁 𝑗 𝑐𝑐 < 𝑖𝑖 < 𝑁𝑁𝑋 𝑖𝑖 = 𝑖𝑖𝑋

𝑃𝑃𝑖𝑖𝑋𝑖𝑖 𝜆𝜆 𝜆 𝑐𝑁𝑁 𝑗 𝑖𝑖𝑐 𝜂𝜂 𝜆 𝑖𝑖𝜇𝜇 𝜆 𝑖𝑖𝜉𝜉2

= 𝜆𝜆𝑃𝑃𝑖𝑖𝑋𝑖𝑖𝑗1 𝜆 𝑐𝑁𝑁 𝑗 𝑖𝑖 𝜆 1𝑐 𝜂𝜂𝑃𝑃𝑖𝑖𝑗1𝑋𝑖𝑖 𝜆 𝑖𝑖𝜇𝜇𝑃𝑃𝑖𝑖𝑋𝑖𝑖𝜆1

𝜆 𝑐𝑖𝑖 𝜆 1𝑐 𝜉𝜉2𝑃𝑃𝑖𝑖𝜆1𝑋𝑖𝑖𝑋 𝑁𝑁 𝑗 𝑐𝑐 < 𝑖𝑖 < 𝑁𝑁𝑋 𝑖𝑖 𝑗 𝑖𝑖𝑋

𝑃𝑃𝑁𝑁𝑋𝑡 𝜆𝜆 𝜆 𝑁𝑁𝜉𝜉1 = 𝜂𝜂𝑃𝑃𝑁𝑁𝑗1𝑋𝑡 𝜆 𝜇𝜇𝑃𝑃𝑁𝑁𝑋1𝑋 𝑖𝑖 = 𝑁𝑁𝑋 𝑖𝑖 = 𝑡𝑋

𝑃𝑃𝑁𝑁𝑋𝑖𝑖 𝜆𝜆 𝜆 𝑖𝑖𝜇𝜇 𝜆 𝑁𝑁 𝑗 𝑖𝑖 𝜉𝜉1 𝜆 𝑖𝑖𝜉𝜉2

= 𝜆𝜆𝑃𝑃𝑁𝑁𝑋𝑖𝑖𝑗1 𝜆 𝜂𝜂𝑃𝑃𝑁𝑁𝑗1𝑋𝑖𝑖 𝜆 𝑖𝑖 𝜆 1 𝜇𝜇𝑃𝑃𝑁𝑁𝑋𝑖𝑖𝜆1𝑋

𝑖𝑖 = 𝑁𝑁𝑋 𝑡 < 𝑖𝑖 < 𝑁𝑁𝑋

𝑃𝑃𝑁𝑁𝑋𝑖𝑖 𝜆𝜆 𝜆 𝑁𝑁𝜇𝜇 𝜆𝑁𝑁𝜉𝜉2 = 𝜆𝜆𝑃𝑃𝑁𝑁𝑋𝑖𝑖𝑗1 𝜆 𝜂𝜂𝑃𝑃𝑁𝑁𝑗1𝑋𝑖𝑖 𝜆 𝑁𝑁𝜇𝜇𝑃𝑃𝑁𝑁𝑋𝑖𝑖𝜆1𝑋

𝑖𝑖 = 𝑁𝑁𝑋 𝑖𝑖 𝑋 𝑁𝑁.
(2)
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Here, we give the derivation of the second equation of
(2). Since the process {𝑋𝑋𝑋𝑋𝑋𝑋𝑋 𝑋𝑋𝑋𝑋𝑋𝑋𝑋 𝑋𝑋 𝑋 𝑋𝑋 is a vector Markov
process of continuous time, wewrite the equations of the state
of 𝑋𝑋𝑋 𝑗𝑗𝑋 by considering the transitions occurring between the
moments 𝑋𝑋 and 𝑋𝑋 𝑡 𝑡𝑋𝑋 𝑋𝑡𝑋𝑋 𝑡 𝑋𝑋 as follows:

𝑃𝑃𝑋𝑋𝑗𝑗 𝑋𝑋𝑋 𝑡 𝑡𝑋𝑋𝑋 = 𝑃𝑃𝑋𝑋𝑗𝑗𝑗𝑗 𝑋𝑋𝑋𝑋 𝜆𝜆𝑡𝑋𝑋 𝑡 𝑃𝑃𝑗𝑋𝑗𝑗 𝑋𝑋𝑋𝑋 𝜉𝜉2𝑡𝑋𝑋

𝑡 𝑃𝑃𝑋𝑋𝑗𝑗 𝑋𝑋𝑋𝑋 𝑗 𝑗 𝜆𝜆 𝑡 𝜆𝜆𝜆𝜆 𝑡𝑋𝑋 𝑡 𝑜𝑜 𝑋𝑡𝑋𝑋𝑋 𝑋
(3)

then we have

𝑃𝑃𝑋𝑋𝑗𝑗 𝑋𝑋𝑋 𝑡 𝑡𝑋𝑋𝑋 𝑗 𝑃𝑃𝑋𝑋𝑗𝑗 𝑋𝑋𝑋𝑋
= 𝑃𝑃𝑋𝑋𝑗𝑗𝑗𝑗 𝑋𝑋𝑋𝑋 𝜆𝜆𝑡𝑋𝑋 𝑡 𝑃𝑃𝑗𝑋𝑗𝑗 𝑋𝑋𝑋𝑋 𝜉𝜉2𝑡𝑋𝑋

𝑗 𝑃𝑃𝑋𝑋𝑗𝑗 𝑋𝑋𝑋𝑋 𝜆𝜆 𝑡 𝜆𝜆𝜆𝜆 𝑡𝑋𝑋 𝑡 𝑜𝑜 𝑋𝑡𝑋𝑋𝑋 𝑋
(4)

𝑃𝑃𝑋𝑋𝑗𝑗 𝑋𝑋𝑋 𝑡 𝑡𝑋𝑋𝑋 𝑗 𝑃𝑃𝑋𝑋𝑗𝑗 𝑋𝑋𝑋𝑋
𝑡𝑋𝑋

= 𝑃𝑃𝑋𝑋𝑗𝑗𝑗𝑗 𝑋𝑋𝑋𝑋 𝜆𝜆 𝑡 𝑃𝑃𝑗𝑋𝑗𝑗 𝑋𝑋𝑋𝑋 𝜉𝜉2

𝑗 𝑃𝑃𝑋𝑋𝑗𝑗 𝑋𝑋𝑋𝑋 𝜆𝜆 𝑡 𝜆𝜆𝜆𝜆 𝑡
𝑜𝑜 𝑋𝑡𝑋𝑋𝑋
𝑡𝑋𝑋

.

(5)

Letting 𝑡𝑋𝑋 𝑡 𝑋 in (5), we have

𝑃𝑃𝑋𝑋𝑗𝑗𝑋𝑋𝑋𝑋
′ = 𝑃𝑃𝑋𝑋𝑗𝑗𝑗𝑗 𝑋𝑋𝑋𝑋 𝜆𝜆 𝑡 𝑃𝑃𝑗𝑋𝑗𝑗 𝑋𝑋𝑋𝑋 𝜉𝜉2 𝑗 𝑃𝑃𝑋𝑋𝑗𝑗 𝑋𝑋𝑋𝑋 𝜆𝜆 𝑡 𝜆𝜆𝜆𝜆 . (6)

If the system is positive recurrent, we have the formulas
lim𝑋𝑋𝑡𝑡𝑃𝑃𝑋𝑋𝑗𝑗𝑋𝑋𝑋𝑋

′ = 𝑋 [13]. Letting 𝑋𝑋 𝑡 𝑋 in (6), we obtain
the second equation of (2).e derivations of other formulas
in (2) are similar.

3. Equations of Probability
Generating Functions

e ���s of the number of customers are de�ned as follows:

𝐺𝐺𝑖𝑖 𝑋𝑧𝑧𝑋 ≡
𝑡

𝑗𝑗=𝑋
𝑧𝑧𝑗𝑗𝑃𝑃𝑖𝑖𝑋𝑗𝑗𝑋 𝐺𝐺 𝑋𝑧𝑧𝑋 ≡

𝑁𝑁

𝑖𝑖=𝑋
𝐺𝐺𝑖𝑖 𝑋𝑧𝑧𝑋 𝑋

𝑋 ≤ 𝑖𝑖 ≤ 𝑁𝑁𝑋 |𝑧𝑧| ≤ 𝑗.

(7)

en

𝐺𝐺𝑖𝑖 𝑋𝑗𝑋 =
𝑡

𝑗𝑗=𝑋
𝑃𝑃𝑖𝑖𝑋𝑗𝑗 𝑋𝑖𝑖 = 𝑋𝑋 𝑗𝑋 2𝑋𝑖 𝑋𝑁𝑁𝑋 𝑋 (8)

where𝐺𝐺𝑖𝑖𝑋𝑗𝑋 is the steady-state probability that the number of
the available servers of the system is 𝑖𝑖. Hence,

𝑁𝑁

𝑖𝑖=𝑋
𝐺𝐺𝑖𝑖 𝑋𝑗𝑋 = 𝑗. (9)

Multiplying the two sides of every equation of (2) by 𝑧𝑧𝑗𝑗𝑡𝑗,
and summing over 𝑗𝑗 𝑋𝑗𝑗 = 𝑋𝑋 𝑗𝑋 2𝑋𝑖𝑋 for every 𝑖𝑖, we obtain

𝑧𝑧 𝜆𝜆 𝑗 𝜆𝜆𝑧𝑧 𝑡 𝜆𝜆𝜆𝜆𝐺𝐺𝑋 𝑋𝑧𝑧𝑋 𝑗 𝑧𝑧𝜉𝜉2𝐺𝐺𝑗 𝑋𝑧𝑧𝑋 = 𝑧𝑧 𝜉𝜉𝑗 𝑗 𝜉𝜉2 𝑃𝑃𝑗𝑋𝑋𝑋

𝑗 𝜆𝜆𝜆𝜆𝑧𝑧𝐺𝐺𝑖𝑖𝑗𝑗 𝑋𝑧𝑧𝑋 𝑡 𝑧𝑧 𝑖𝑖𝑖𝑖 𝑡 𝑖𝑖𝜉𝜉2 𝑡 𝜆𝜆 𝑡 𝜆𝜆𝜆𝜆 𝑗 𝜆𝜆𝑧𝑧
2 𝑗 𝑖𝑖𝑖𝑖𝐺𝐺𝑖𝑖 𝑋𝑧𝑧𝑋

𝑗 𝑋𝑖𝑖 𝑡 𝑗𝑋 𝑧𝑧𝜉𝜉2𝐺𝐺𝑖𝑖𝑡𝑗 𝑋𝑧𝑧𝑋

=
𝑖𝑖𝑗𝑗

𝑚𝑚=𝑋

𝜉𝜉2 𝑗 𝜉𝜉𝑗 𝑋𝑖𝑖 𝑗 𝑚𝑚𝑋𝑃𝑃𝑖𝑖𝑋𝑚𝑚𝑧𝑧
𝑚𝑚𝑡𝑗

𝑡
𝑖𝑖

𝑚𝑚=𝑋

𝜉𝜉𝑗 𝑗 𝜉𝜉2 𝑋𝑖𝑖 𝑡 𝑗 𝑗 𝑚𝑚𝑋𝑃𝑃𝑖𝑖𝑡𝑗𝑋𝑚𝑚𝑧𝑧
𝑚𝑚𝑡𝑗

𝑡 𝑋𝑧𝑧 𝑗 𝑗𝑋
𝑖𝑖𝑗𝑗

𝑚𝑚=𝑋

𝑖𝑖 𝑋𝑖𝑖 𝑗 𝑚𝑚𝑋𝑃𝑃𝑖𝑖𝑋𝑚𝑚𝑧𝑧
𝑚𝑚𝑋 𝑋 < 𝑖𝑖 ≤ 𝑁𝑁 𝑗 𝜆𝜆𝑋

𝑗 𝑋𝑁𝑁 𝑗 𝑖𝑖 𝑡 𝑗𝑋 𝜆𝜆𝑧𝑧𝐺𝐺𝑖𝑖𝑗𝑗 𝑋𝑧𝑧𝑋

𝑡 𝑧𝑧 𝑖𝑖𝑖𝑖 𝑡 𝑖𝑖𝜉𝜉2 𝑡 𝜆𝜆 𝑡 𝑋𝑁𝑁 𝑗 𝑖𝑖𝑋 𝜆𝜆 𝑗 𝜆𝜆𝑧𝑧2 𝑗 𝑖𝑖𝑖𝑖𝐺𝐺𝑖𝑖 𝑋𝑧𝑧𝑋

𝑗 𝑋𝑖𝑖 𝑡 𝑗𝑋 𝑧𝑧𝜉𝜉2𝐺𝐺𝑖𝑖𝑡𝑗 𝑋𝑧𝑧𝑋

=
𝑖𝑖𝑗𝑗

𝑚𝑚=𝑋

𝜉𝜉2 𝑗 𝜉𝜉𝑗 𝑋𝑖𝑖 𝑗 𝑚𝑚𝑋𝑃𝑃𝑖𝑖𝑋𝑚𝑚𝑧𝑧
𝑚𝑚𝑡𝑗

𝑡
𝑖𝑖

𝑚𝑚=𝑋

𝜉𝜉𝑗 𝑗 𝜉𝜉2 𝑋𝑖𝑖 𝑡 𝑗 𝑗 𝑚𝑚𝑋𝑃𝑃𝑖𝑖𝑡𝑗𝑋𝑚𝑚𝑧𝑧
𝑚𝑚𝑡𝑗

𝑡 𝑋𝑧𝑧 𝑗 𝑗𝑋
𝑖𝑖𝑗𝑗

𝑚𝑚=𝑋

𝑖𝑖 𝑋𝑖𝑖 𝑗 𝑚𝑚𝑋𝑃𝑃𝑖𝑖𝑋𝑚𝑚𝑧𝑧
𝑚𝑚𝑋 𝑁𝑁 𝑗 𝜆𝜆 < 𝑖𝑖 < 𝑁𝑁𝑋

𝑗 𝜆𝜆𝑧𝑧𝐺𝐺𝑁𝑁𝑗𝑗 𝑋𝑧𝑧𝑋 𝑡 𝑧𝑧 𝑁𝑁𝑖𝑖 𝑡 𝑁𝑁𝜉𝜉2 𝑡 𝜆𝜆 𝑗 𝜆𝜆𝑧𝑧
2 𝑗 𝑁𝑁𝑖𝑖𝐺𝐺𝑁𝑁 𝑋𝑧𝑧𝑋

=
𝑁𝑁𝑗𝑗

𝑚𝑚=𝑋

𝜉𝜉2 𝑗 𝜉𝜉𝑗 𝑋𝑁𝑁 𝑗 𝑚𝑚𝑋𝑃𝑃𝑁𝑁𝑋𝑚𝑚𝑧𝑧
𝑚𝑚𝑡𝑗

𝑡 𝑋𝑧𝑧 𝑗 𝑗𝑋
𝑁𝑁𝑗𝑗

𝑚𝑚=𝑋

𝑖𝑖 𝑋𝑁𝑁 𝑗 𝑚𝑚𝑋𝑃𝑃𝑁𝑁𝑋𝑚𝑚𝑧𝑧
𝑚𝑚.

(10)

We give some explanations of (10), the �rst equation of
(2) multiplied by 𝑧𝑧, we get

𝜆𝜆 𝑡 𝜆𝜆𝜆𝜆 𝑃𝑃𝑋𝑋𝑋𝑧𝑧 = 𝜉𝜉𝑗𝑃𝑃𝑗𝑋𝑋𝑧𝑧. (11)

e second equation of (2) multiplied by 𝑧𝑧𝑗𝑗𝑡𝑗, we get

𝜆𝜆 𝑡 𝜆𝜆𝜆𝜆 𝑃𝑃𝑋𝑋𝑗𝑗𝑧𝑧
𝑗𝑗𝑡𝑗 = 𝜆𝜆𝑃𝑃𝑋𝑋𝑗𝑗𝑗𝑗𝑧𝑧

𝑗𝑗𝑡𝑗 𝑡 𝜉𝜉2𝑃𝑃𝑗𝑋𝑗𝑗𝑧𝑧
𝑗𝑗𝑡𝑗𝑋 𝑗𝑗 𝑡 𝑋. (12)

Summing (11) and (12) over 𝑗𝑗 and using (7), we obtain
the �rst equation of (10). e other equations of (10) are
obtained in the same way.



4 Discrete Dynamics in Nature and Society

In order to simplify (10), we de�ned the following
notations:

𝑓𝑓𝑖𝑖 (𝑧𝑧) ≡ 𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖2 𝑖 𝜆𝜆 𝑖 𝜆𝜆𝜆𝜆 𝑧𝑧 𝑧 𝜆𝜆𝑧𝑧
2 𝑧 𝑖𝑖𝑖𝑖𝑖

𝑖𝑖 𝑖 𝑖𝑖 𝑖𝑖 2𝑖𝑖 𝑖𝑖𝑖 𝑧 𝜆𝜆𝑖

𝑓𝑓𝑖𝑖 (𝑧𝑧) ≡ 𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖2 𝑖 𝜆𝜆 𝑖 (𝑖𝑖 𝑧 𝑖𝑖) 𝜆𝜆 𝑧𝑧 𝑧 𝜆𝜆𝑧𝑧2 𝑧 𝑖𝑖𝑖𝑖𝑖

𝑖𝑖 𝑖 𝑖𝑖 𝑧 𝜆𝜆 𝑖 𝑖𝑖 𝑖𝑖 𝑧 𝜆𝜆 𝑖 2𝑖𝑖 𝑖𝑖𝑖𝑖
(13)

𝐴𝐴 (𝑧𝑧) ≡





𝑓𝑓𝑖 (𝑧𝑧) 𝑧𝑖𝑖2𝑧𝑧
𝑧𝜆𝜆𝜆𝜆𝑧𝑧 𝑓𝑓𝑖 (𝑧𝑧) 𝑧2𝑖𝑖2𝑧𝑧

⋱ ⋱ ⋱
⋱ ⋱ ⋱

𝑧𝜆𝜆𝜆𝜆𝑧𝑧 𝑓𝑓𝑖𝑖𝑧𝜆𝜆𝑖𝑖 (𝑧𝑧) 𝑧 (𝑖𝑖 𝑧 𝜆𝜆 𝑖 2) 𝑖𝑖2𝑧𝑧
(𝜆𝜆 𝑧 𝑖) 𝜆𝜆𝑧𝑧 𝑓𝑓𝑖𝑖𝑧𝜆𝜆𝑖2 (𝑧𝑧) 𝑧 (𝑖𝑖 𝑧 𝜆𝜆 𝑖 𝑁) 𝑖𝑖2𝑧𝑧

⋱ ⋱ ⋱
⋱ ⋱ ⋱

𝑧2𝜆𝜆𝑧𝑧 𝑓𝑓𝑖𝑖𝑧𝑖 (𝑧𝑧) 𝑧𝑖𝑖𝑖𝑖2𝑧𝑧
𝑧𝜆𝜆𝑧𝑧 𝑓𝑓𝑖𝑖 (𝑧𝑧)





𝑖 (14)

𝑏𝑏𝑖 (𝑧𝑧) ≡ 𝑧𝑧 𝑖𝑖𝑖 𝑧 𝑖𝑖2 𝑃𝑃𝑖𝑖𝑖𝑖

𝑏𝑏𝑖𝑖 (𝑧𝑧) ≡
𝑖𝑖𝑧𝑖

𝑚𝑚𝑖𝑖

𝑖𝑖2 𝑧 𝑖𝑖𝑖 (𝑖𝑖 𝑧 𝑚𝑚)𝑃𝑃𝑖𝑖𝑖𝑚𝑚𝑧𝑧
𝑚𝑚𝑖𝑖

𝑖
𝑖𝑖

𝑚𝑚𝑖𝑖

𝑖𝑖𝑖 𝑧 𝑖𝑖2 (𝑖𝑖 𝑖 𝑖 𝑧 𝑚𝑚)𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑧𝑧
𝑚𝑚𝑖𝑖

𝑖 (𝑧𝑧 𝑧 𝑖)
𝑖𝑖𝑧𝑖

𝑚𝑚𝑖𝑖

𝑖𝑖 (𝑖𝑖 𝑧 𝑚𝑚)𝑃𝑃𝑖𝑖𝑖𝑚𝑚𝑧𝑧
𝑚𝑚𝑖 𝑖 < 𝑖𝑖 < 𝑖𝑖𝑖

𝑏𝑏𝑖𝑖 (𝑧𝑧) ≡
𝑖𝑖𝑧𝑖

𝑚𝑚𝑖𝑖

𝑖𝑖2 𝑧 𝑖𝑖𝑖 (𝑖𝑖 𝑧 𝑚𝑚)𝑃𝑃𝑖𝑖𝑖𝑚𝑚𝑧𝑧
𝑚𝑚𝑖𝑖

𝑖 (𝑧𝑧 𝑧 𝑖)
𝑖𝑖𝑧𝑖

𝑚𝑚𝑖𝑖

𝑖𝑖 (𝑖𝑖 𝑧 𝑚𝑚)𝑃𝑃𝑖𝑖𝑖𝑚𝑚𝑧𝑧
𝑚𝑚𝑖

𝑏𝑏 (𝑧𝑧) ≡ 



𝑏𝑏𝑖 (𝑧𝑧)
𝑏𝑏𝑖 (𝑧𝑧)
⋮

𝑏𝑏𝑖𝑖 (𝑧𝑧)





𝑖 𝑔𝑔 (𝑧𝑧) ≡ 



𝐺𝐺𝑖 (𝑧𝑧)
𝐺𝐺𝑖 (𝑧𝑧)
⋮

𝐺𝐺𝑖𝑖 (𝑧𝑧)





.

(15)

Using the above notations, (10) is rewritten as follows:

𝐴𝐴 (𝑧𝑧) 𝑔𝑔 (𝑧𝑧) 𝑖 𝑏𝑏 (𝑧𝑧) . (16)

Using Cramer’s rule we obtain

|𝐴𝐴 (𝑧𝑧)| 𝐺𝐺𝑖𝑖 (𝑧𝑧) 𝑖 𝐴𝐴𝑖𝑖 (𝑧𝑧) 𝑖 𝑖𝑖 𝑖 𝑖𝑖 𝑖𝑖 2𝑖𝑖 𝑖𝑖𝑖𝑖 (17)

where |𝐴𝐴(𝑧𝑧)| denotes the determinant of 𝐴𝐴(𝑧𝑧), and 𝐴𝐴𝑖𝑖(𝑧𝑧) is a
matrix obtained by replacing the (𝑖𝑖𝑖𝑖)th columnof𝐴𝐴(𝑧𝑧)with
𝑏𝑏(𝑧𝑧). In (17), the functions of 𝑧𝑧 are continuous and bounded
in the interval [𝑖𝑖 𝑖], so the equations in (17) are valid in the
interval [𝑖𝑖 𝑖] no matter |𝐴𝐴(𝑧𝑧)| 𝑖 𝑖 or not.

4. Steady-State Availability

In this section, we discuss the steady-state availabilities
𝐺𝐺𝑖𝑖(𝑖) (𝑖𝑖 𝑖 𝑖𝑖 𝑖𝑖 2𝑖𝑖 𝑖𝑖𝑖).

Letting 𝑧𝑧 𝑖 𝑖 in (10) we obtain

𝜆𝜆𝜆𝜆𝐺𝐺𝑖 (𝑖) 𝑧 𝑖𝑖2𝐺𝐺𝑖 (𝑖) 𝑖 𝑖𝑖𝑖 𝑧 𝑖𝑖2 𝑃𝑃𝑖𝑖𝑖𝑖

𝜆𝜆𝜆𝜆𝐺𝐺𝑖𝑖𝑧𝑖 (𝑖) 𝑧 𝑖𝑖𝑖𝑖2𝐺𝐺𝑖𝑖 (𝑖) 𝑧 𝜆𝜆𝜆𝜆𝐺𝐺𝑖𝑖 (𝑖) 𝑧 (𝑖𝑖 𝑖 𝑖) 𝑖𝑖2𝐺𝐺𝑖𝑖𝑖𝑖 (𝑖)

𝑖 𝑖𝑖𝑖 𝑧 𝑖𝑖2
𝑖𝑖

𝑚𝑚𝑖𝑖

𝑚𝑚𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑧𝑚𝑚 𝑧 𝑖𝑖𝑖 𝑧 𝑖𝑖2
𝑖𝑖𝑖𝑖

𝑚𝑚𝑖𝑖

𝑚𝑚𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑧𝑚𝑚𝑖

𝑖 < 𝑖𝑖 𝑖 𝑖𝑖 𝑧 𝜆𝜆𝑖

[𝑖𝑖 𝑧 (𝑖𝑖 𝑧 𝑖)] 𝜆𝜆𝐺𝐺𝑖𝑖𝑧𝑖 (𝑖) 𝑧 𝑖𝑖𝑖𝑖2𝐺𝐺𝑖𝑖 (𝑖)

𝑧 (𝑖𝑖 𝑧 𝑖𝑖) 𝜆𝜆𝐺𝐺𝑖𝑖 (𝑖) 𝑧 (𝑖𝑖 𝑖 𝑖) 𝑖𝑖2𝐺𝐺𝑖𝑖𝑖𝑖 (𝑖)

𝑖 𝑖𝑖𝑖 𝑧 𝑖𝑖2
𝑖𝑖

𝑚𝑚𝑖𝑖

𝑚𝑚𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑧𝑚𝑚 𝑧 𝑖𝑖𝑖 𝑧 𝑖𝑖2
𝑖𝑖𝑖𝑖

𝑚𝑚𝑖𝑖

𝑚𝑚𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑧𝑚𝑚𝑖

𝑖𝑖 𝑧 𝜆𝜆 < 𝑖𝑖 < 𝑖𝑖𝑖

𝜆𝜆𝐺𝐺𝑖𝑖𝑧𝑖 (𝑖) 𝑧 𝑖𝑖𝑖𝑖2𝐺𝐺𝑖𝑖 (𝑖) 𝑖 𝑖𝑖𝑖 𝑧 𝑖𝑖2
𝑖𝑖

𝑚𝑚𝑖𝑖

𝑚𝑚𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑧𝑚𝑚.

(18)

e (𝑖𝑖𝑖𝑖) equations of (18) are simpli�ed to𝑖𝑖 independent
equations, joined with (9), we have

𝜆𝜆𝜆𝜆𝐺𝐺𝑖𝑖 (𝑖) 𝑧 (𝑖𝑖 𝑖 𝑖) 𝑖𝑖2𝐺𝐺𝑖𝑖𝑖𝑖 (𝑖)

𝑖 𝑖𝑖𝑖 𝑧 𝑖𝑖2
𝑖𝑖𝑖𝑖

𝑚𝑚𝑖𝑖

𝑚𝑚𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑧𝑚𝑚𝑖 𝑖 𝑖 𝑖𝑖 𝑖 𝑖𝑖 𝑧 𝜆𝜆𝑖
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(𝑁𝑁 𝑁 𝑁𝑁) 𝜂𝜂𝜂𝜂𝑁𝑁 (1) 𝑁 (𝑁𝑁 𝑖 1) 𝜉𝜉2𝜂𝜂𝑁𝑁𝑖1 (1)

= 𝜉𝜉1 𝑁 𝜉𝜉2
𝑁𝑁𝑖1

𝑚𝑚=1

𝑚𝑚𝑚𝑚𝑁𝑁𝑖1𝑖𝑁𝑁𝑖1𝑁𝑚𝑚𝑖 𝑁𝑁 𝑁 𝑁𝑁 𝑁 𝑁𝑁 𝑁 𝑁𝑁 𝑁 1𝑖

𝑁𝑁

𝑁𝑁=𝑖
𝜂𝜂𝑁𝑁 (1) = 1.

(19)

Using (2), 𝑚𝑚𝑁𝑁𝑖𝑖𝑖 (𝑖 𝑁 𝑖𝑖 𝑁 𝑁𝑁 𝑁 1𝑖 1 𝑁 𝑁𝑁 𝑁 𝑁𝑁) are reduced to
𝑚𝑚𝑁𝑁𝑖𝑖 (1 𝑁 𝑁𝑁 𝑁 𝑁𝑁) which will be solved in Section 5. Given
𝑚𝑚𝑁𝑁𝑖𝑖 (1 𝑁 𝑁𝑁 𝑁 𝑁𝑁), we obtain 𝜂𝜂𝑁𝑁(1) (𝑁𝑁 = 𝑖𝑖 1𝑖 2𝑖𝑖 𝑖𝑁𝑁) by
solving (19), then the steady-state availability of the system
is as follows:

𝐴𝐴 = 1 𝑁 𝜂𝜂𝑖 (1) . (20)

5. Steady-StateProbabilities of theSystemStates
andMean Queuing Length

5.1. e Roots of |𝐴𝐴(𝐴𝐴)| in the Interval (𝑖𝑖 1). In order to get
the steady-state probabilities 𝑚𝑚𝑁𝑁𝑖𝑖 (1 𝑁 𝑁𝑁 𝑁 𝑁𝑁), we need all𝑁𝑁
independent linear equations. Further, for getting the linear
equations of 𝑚𝑚𝑁𝑁𝑖𝑖 (1 𝑁 𝑁𝑁 𝑁 𝑁𝑁) we need the roots of |𝐴𝐴(𝐴𝐴)| in
the interval (𝑖𝑖 1), so we discuss the roots of |𝐴𝐴(𝐴𝐴)| as follows.

�e de�ne the following notations:

𝑄𝑄𝑖 (𝐴𝐴) ≡ 1𝑖 𝑄𝑄1 (𝐴𝐴) ≡ 𝑓𝑓𝑁𝑁 (𝐴𝐴) 𝑖 (21)

(𝐴𝐴) ≡ 
𝑓𝑓𝑁𝑁𝑁1 (𝐴𝐴) 𝑁𝑁𝑁𝜉𝜉2𝐴𝐴
𝑁𝜂𝜂𝐴𝐴 𝑓𝑓𝑁𝑁 (𝐴𝐴)

𝑖

⋮ ⋮

𝑄𝑄𝑁𝑁 (𝐴𝐴) ≡





𝑓𝑓1 (𝐴𝐴) 𝑁2𝜉𝜉2𝐴𝐴
𝑁𝑁𝑁𝜂𝜂𝐴𝐴 𝑓𝑓2 (𝐴𝐴) 𝑁3𝜉𝜉2𝐴𝐴

⋱ ⋱ ⋱
𝑁𝑁𝑁𝜂𝜂𝐴𝐴 𝑓𝑓𝑁𝑁𝑁𝑁𝑁𝑖1 (𝐴𝐴) 𝑁 (𝑁𝑁 𝑁 𝑁𝑁 𝑖 2) 𝜉𝜉2𝐴𝐴

(𝑁𝑁 𝑁 1) 𝜂𝜂𝐴𝐴 𝑓𝑓𝑁𝑁𝑁𝑁𝑁𝑖2 (𝐴𝐴) 𝑁 (𝑁𝑁 𝑁 𝑁𝑁 𝑖 3) 𝜉𝜉2𝐴𝐴
⋱ ⋱ ⋱

𝑁2𝜂𝜂𝐴𝐴 𝑓𝑓𝑁𝑁𝑁1 (𝐴𝐴) 𝑁𝑁𝑁𝜉𝜉2𝐴𝐴
𝑁𝜂𝜂𝐴𝐴 𝑓𝑓𝑁𝑁 (𝐴𝐴)





𝑖

(22)

𝑄𝑄𝑁𝑁𝑖1 (𝐴𝐴) ≡ |𝐴𝐴 (𝐴𝐴)| 𝑖 (𝑖 𝑁 𝐴𝐴 𝑁 𝑧) 𝑖 (23)

where𝑄𝑄𝑁𝑁(𝐴𝐴) (𝑁𝑁 = 1𝑖 2𝑖𝑖 𝑖𝑁𝑁) is formed by the last 𝑁𝑁 rows and
last 𝑁𝑁 columns of |𝐴𝐴(𝐴𝐴)|. According to (14) we have

𝑄𝑄𝑘𝑘𝑖1 (𝐴𝐴) = 𝑓𝑓𝑁𝑁𝑁𝑘𝑘 (𝐴𝐴)𝑄𝑄𝑘𝑘 (𝐴𝐴) 𝑁 (𝑁𝑁 𝑁 𝑘𝑘 𝑖 1) 𝜉𝜉2𝑘𝑘𝜂𝜂𝐴𝐴
2𝑄𝑄𝑘𝑘𝑁1 (𝐴𝐴) 𝑖

1 𝑁 𝑘𝑘 𝑁 𝑁𝑁 𝑁 1𝑖

𝑄𝑄𝑘𝑘𝑖1 (𝐴𝐴) = 𝑓𝑓𝑁𝑁𝑁𝑘𝑘 (𝐴𝐴)𝑄𝑄𝑘𝑘 (𝐴𝐴) 𝑁 (𝑁𝑁 𝑁 𝑘𝑘 𝑖 1) 𝜉𝜉2𝑁𝑁𝜂𝜂𝐴𝐴
2𝑄𝑄𝑘𝑘𝑁1 (𝐴𝐴) 𝑖

𝑁𝑁 𝑁 𝑘𝑘 𝑁 𝑁𝑁.
(24)

e properties of 𝑄𝑄𝑁𝑁(𝐴𝐴) (𝑁𝑁 = 1𝑖 2𝑖𝑖 𝑖𝑁𝑁) and the necessary
proofs are as follows.

(a) 𝑄𝑄𝑖(𝐴𝐴) has no roots.

(b) 𝑄𝑄𝑘𝑘(𝐴𝐴) and 𝑄𝑄𝑘𝑘𝑖1(𝐴𝐴) have no common roots in the
interval (𝑖𝑖𝑧) (𝑘𝑘 = 1𝑖 2𝑖𝑖 𝑖𝑁𝑁).

Proof. Suppose that (b) is not true and 𝐴𝐴𝑖 (> 𝑖) is a common
roots of 𝑄𝑄𝑘𝑘(𝐴𝐴) and 𝑄𝑄𝑘𝑘𝑖1(𝐴𝐴), then 𝑄𝑄𝑘𝑘𝑁1(𝐴𝐴𝑖) = 𝑖 due to (24).
Similarly, 𝑄𝑄𝑘𝑘𝑁2(𝐴𝐴𝑖) = 𝑖, so we get 𝑄𝑄𝑖(𝐴𝐴𝑖) = 𝑖 which con-
tradicts the statement (a).

(c) If 𝐴𝐴𝑖 is a positive root of 𝑄𝑄𝑘𝑘(𝐴𝐴) (𝑘𝑘 = 1𝑖 2𝑖𝑖 𝑖𝑁𝑁),
then𝑄𝑄𝑘𝑘𝑁1(𝐴𝐴𝑖) and𝑄𝑄𝑘𝑘𝑖1(𝐴𝐴𝑖) are opposite in sign.is
property readily follows from (24).

(d) 𝑄𝑄𝑘𝑘(1) > 𝑖, 𝑘𝑘 = 𝑖𝑖 1𝑖 2𝑖𝑖 𝑖𝑁𝑁.

Proof. Substituting 𝐴𝐴 = 1 into 𝑄𝑄𝑘𝑘(𝐴𝐴), we get 𝑄𝑄𝑘𝑘(1) = (𝑁𝑁 𝑁
𝑘𝑘 𝑖 1)(𝑁𝑁 𝑁 𝑘𝑘 𝑖 2)𝑘 (𝑁𝑁 𝑁 1)𝑁𝑁𝜉𝜉𝑘𝑘2 > 𝑖, 𝑘𝑘 = 1𝑖 2𝑖𝑖 𝑖𝑁𝑁, and
𝑄𝑄𝑖(1) = 1.

(e) 𝑄𝑄𝑁𝑁𝑖1(1) = |𝐴𝐴(1)| = 𝑖, and𝑄𝑄𝑁𝑁𝑖1(𝑖) = |𝐴𝐴(𝑖)| = 𝑖.

Proof. e �rst row of |𝐴𝐴(𝐴𝐴)| has a common factor 𝐴𝐴, so
𝑄𝑄𝑁𝑁𝑖1(𝑖) = |𝐴𝐴(𝑖)| = 𝑖. e sum of every column of |𝐴𝐴(𝐴𝐴)|
has a common factor (𝐴𝐴 𝑁 1). Replacing every element of the
last row of |𝐴𝐴(𝐴𝐴)| with the sum of the corresponding column
and extracting the common factor (𝐴𝐴𝑁 1), |𝐴𝐴(𝐴𝐴)| is written as
follows:
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|𝐴𝐴 (𝑧𝑧)| = 𝑧𝑧 (𝑧𝑧 𝑧 𝑧) ×





𝜆𝜆 𝜆 𝜆𝜆𝜆𝜆 𝑧 𝜆𝜆𝑧𝑧 𝑧𝜆𝜆2 0 ⋯ 0 0
𝑧𝜆𝜆𝜆𝜆𝑧𝑧 𝑐𝑐𝑧 (𝑧𝑧) 𝑧2𝜆𝜆2𝑧𝑧 ⋯ 0 0
0 𝑧𝜆𝜆𝜆𝜆 𝑐𝑐2 (𝑧𝑧) ⋯ 0 0

⋮
0 0 0 ⋯ 𝑐𝑐𝑁𝑁𝑧𝑧 (𝑧𝑧) 𝑧𝑁𝑁𝜆𝜆2𝑧𝑧
𝑧𝜆𝜆𝑧𝑧 𝑧𝜆𝜆𝑧𝑧 𝜆 𝜆𝜆 𝑧𝜆𝜆𝑧𝑧 𝜆 2𝜆𝜆 ⋯ 𝑧𝜆𝜆𝑧𝑧 𝜆 (𝑁𝑁 𝑧 𝑧) 𝜆𝜆 𝑧𝜆𝜆𝑧𝑧 𝜆 𝑁𝑁𝜆𝜆





. (25)

If we de�ne

𝐷𝐷(𝑧𝑧) ≡





𝜆𝜆 𝜆 𝜆𝜆𝜆𝜆 𝑧 𝜆𝜆𝑧𝑧 𝑧𝜆𝜆2 0 ⋯ 0 0
𝑧𝜆𝜆𝜆𝜆𝑧𝑧 𝑐𝑐𝑧 (𝑧𝑧) 𝑧2𝜆𝜆2𝑧𝑧 ⋯ 0 0
0 𝑧𝜆𝜆𝜆𝜆 𝑐𝑐2 (𝑧𝑧) ⋯ 0 0

⋮
0 0 0 ⋯ 𝑐𝑐𝑁𝑁𝑧𝑧 (𝑧𝑧) 𝑧𝑁𝑁𝜆𝜆2𝑧𝑧
𝑧𝜆𝜆𝑧𝑧 𝑧𝜆𝜆𝑧𝑧 𝜆 𝜆𝜆 𝑧𝜆𝜆𝑧𝑧 𝜆 2𝜆𝜆 ⋯ 𝑧𝜆𝜆𝑧𝑧 𝜆 (𝑁𝑁 𝑧 𝑧) 𝜆𝜆 𝑧𝜆𝜆𝑧𝑧 𝜆 𝑁𝑁𝜆𝜆





, (26)

then

|𝐴𝐴 (𝑧𝑧)| = 𝑧𝑧 (𝑧𝑧 𝑧 𝑧)𝐷𝐷 (𝑧𝑧) . (27)

(f) Sign[𝑄𝑄𝑘𝑘(0)] = (𝑧𝑧)
𝑘𝑘 (𝑘𝑘 = 0, 𝑧, 2,𝑘 ,𝑁𝑁).

Proof. From the de�nitions of 𝑐𝑐𝑖𝑖(𝑧𝑧) (𝑖𝑖 = 0, 𝑧, 2,𝑘 ,𝑁𝑁), we
got 𝑐𝑐0(0) = 0 and 𝑐𝑐𝑘𝑘(0) < 0 (𝑘𝑘 = 𝑧, 2,𝑘 ,𝑁𝑁), so we get this
property from (24).

(g) Sign[𝑄𝑄𝑘𝑘(𝜆∞)] = (𝑧𝑧)𝑘𝑘 (𝑘𝑘 = 0, 𝑧, 2,𝑘 ,𝑁𝑁 𝜆 𝑧).

Proof. It is since the highest power term of 𝑄𝑄𝑘𝑘(𝑧𝑧) is
(𝑧𝜆𝜆𝑧𝑧2)𝑘𝑘 (𝑘𝑘 = 0, 𝑧, 2,𝑘 ,𝑁𝑁 𝜆 𝑧) and the sign of 𝑄𝑄𝑘𝑘(𝜆∞) is
determined by its highest power term.

eorem 1. If 𝐷𝐷(𝑧) 𝐷 0, the polynomial |𝐴𝐴(𝑧𝑧)| has exactly
(𝑁𝑁 𝑧 𝑧) distinct roots in the interval (0, 𝑧).

Proof. Since 𝑄𝑄𝑧(𝑧𝑧) = 𝑐𝑐𝑁𝑁(𝑧𝑧) = [𝑁𝑁(𝜆𝜆 𝜆 𝜆𝜆2) 𝜆 𝜆𝜆]𝑧𝑧 𝑧 𝜆𝜆𝑧𝑧2 𝑧
𝑁𝑁𝜆𝜆,𝑄𝑄𝑧(𝑧𝑧) is a 2-power polynomial of 𝑧𝑧. Further, we �nd that
𝑄𝑄𝑧(𝑧) = 𝜆𝜆2 𝐷 0 and𝑄𝑄𝑧(0) = 𝑧𝜆𝜆 < 0, so𝑄𝑄𝑧(𝑧𝑧)has two distinct
roots which are denoted by 𝑧𝑧𝑧,𝑧 (0 < 𝑧𝑧𝑧,𝑧 < 𝑧) and 𝑧𝑧𝑧,2 (𝐷 𝑧).

With the fact that 𝑧𝑧𝑧,𝑧 and 𝑧𝑧𝑧,2 are roots of 𝑄𝑄𝑧(𝑧𝑧), and
𝑄𝑄0(𝑧𝑧) = 𝑧 𝐷 0, according to the property (c) or (24), we get
𝑄𝑄2(𝑧𝑧𝑧,𝑧) < 0 and𝑄𝑄2(𝑧𝑧𝑧,2) < 0.

𝑄𝑄2(𝑧𝑧) is a 4-power polynomial of 𝑧𝑧. From the properties
(c), (d), (f), and (g), we �nd that 𝑄𝑄2(𝑧𝑧) has one and only
one root in each interval of (0, 𝑧𝑧𝑧,𝑧), (𝑧𝑧𝑧,𝑧, 𝑧), (𝑧, 𝑧𝑧𝑧,2), and
(𝑧𝑧𝑧,2, 𝜆∞).

So on, we �nd that 𝑄𝑄𝑁𝑁(𝑧𝑧) is a 2𝑁𝑁-power polynomial of
𝑧𝑧, it has𝑁𝑁 distinct roots in the interval (0, 𝑧) and𝑁𝑁 distinct
roots in the interval (𝑧,∞).We denote the 2𝑁𝑁 roots of𝑄𝑄𝑁𝑁(𝑧𝑧)
by 𝑧𝑧𝑁𝑁,𝑖𝑖 (𝑖𝑖 = 𝑧, 2,𝑘 , 2𝑁𝑁) orderly.

From the properties (c), (d), (e), and (f), we �nd
that |𝐴𝐴(𝑧𝑧)| has one and only one root in each interval
(𝑧𝑧𝑁𝑁,𝑖𝑖, 𝑧𝑧𝑁𝑁,𝑖𝑖𝜆𝑧) (𝑖𝑖 = 𝑧, 2,𝑘 ,𝑁𝑁 𝑧 𝑧,𝑁𝑁 𝜆 𝑧,𝑘 , 2𝑁𝑁 𝑧 𝑧), all of
them are 2(𝑁𝑁 𝑧 𝑧) distinct roots of |𝐴𝐴(𝑧𝑧)|.

Since |𝐴𝐴(𝑧)| = 0 and𝐷𝐷(𝑧) = (|𝐴𝐴(𝑧𝑧)|)′𝑧𝑧=𝑧 𝐷 0, it has a real
number 𝜀𝜀 (𝐷0) satis�es 𝑧 𝜆 𝜀𝜀 < 𝑧𝑧𝑁𝑁,𝑁𝑁𝜆𝑧 and |𝐴𝐴(𝑧 𝜆 𝜀𝜀)| 𝐷 0. On
the other hand, from (c) and (d) we get

Sign 𝑄𝑄𝑁𝑁𝜆𝑧 𝑧𝑧𝑁𝑁,𝑖𝑖 = (𝑧𝑧)
𝑁𝑁𝜆𝑖𝑖, 𝑖𝑖 = 𝑁𝑁 𝜆 𝑧,𝑁𝑁 𝜆 2,𝑘 , 2𝑁𝑁,

(28)

then Sign[𝑄𝑄𝑁𝑁𝜆𝑧(𝑧𝑧𝑁𝑁,𝑁𝑁𝜆𝑧)] = (𝑧𝑧)𝑁𝑁𝜆𝑁𝑁𝜆𝑧 or |𝐴𝐴(𝑧𝑧𝑁𝑁,𝑁𝑁𝜆𝑧)| =
𝑄𝑄𝑁𝑁𝜆𝑧(𝑧𝑧𝑁𝑁,𝑁𝑁𝜆𝑧) < 0, so |𝐴𝐴(𝑧𝑧)| has at least one root in the
interval (𝑧, 𝑧𝑧𝑁𝑁,𝑁𝑁𝜆𝑧).

From (28), we get Sign[|𝐴𝐴(𝑧𝑧𝑁𝑁,2𝑁𝑁)|] =
Sign[𝑄𝑄𝑁𝑁𝜆𝑧(𝑧𝑧𝑁𝑁,2𝑁𝑁)] = (𝑧𝑧)𝑁𝑁𝜆2𝑁𝑁 = (𝑧𝑧)3𝑁𝑁 = (𝑧𝑧)𝑁𝑁.
From the property (g), we get Sign[|𝐴𝐴(𝜆∞)|] =
Sign[𝑄𝑄𝑁𝑁𝜆𝑧(𝜆∞)] = (𝑧𝑧)𝑁𝑁𝜆𝑧. So we know that |𝐴𝐴(𝑧𝑧)|
has at least one root in the interval (𝑧𝑧𝑁𝑁,2𝑁𝑁,∞).

From the properties (e) and (f), we know that 0 and 1 are
roots of |𝐴𝐴(𝑧𝑧)|.

In conclusion, |𝐴𝐴(𝑧𝑧)| is a 2(𝑁𝑁 𝜆 𝑧)-power polynomial of
𝑧𝑧, it has 2(𝑁𝑁𝜆𝑧) distinct roots at most. Now wemake certain
all roots of |𝐴𝐴(𝑧𝑧)| and �nd that it has𝑁𝑁 𝑧 𝑧 distinct roots in
the interval (0, 𝑧).

From the proof, we �nd that the (𝑁𝑁 𝑧 𝑧) distinct roots in
the interval (0, 𝑧) of |𝐴𝐴(𝑧𝑧)| are also the roots of𝐷𝐷(𝑧𝑧).

5.2. Steady-State Probabilities. Assuming that the system
parameters meet 𝐷𝐷(𝑧) 𝐷 0. Letting 𝑧𝑧𝑘𝑘 (𝑘𝑘 = 𝑧, 2,𝑘 ,𝑁𝑁 𝑧 𝑧)
denote the roots of |𝐴𝐴(𝑧𝑧)| in the interval (0, 𝑧). Substituting 𝑧𝑧𝑧
in (17), we obtain a set of linear equations about the steady-
state probabilities of𝑃𝑃𝑖𝑖,0 (𝑖𝑖 = 𝑧, 2,𝑘 ,𝑁𝑁), but these equations
are similar to each other. However, the equations belong to
different 𝑧𝑧𝑘𝑘 (𝑘𝑘 = 𝑧, 2,𝑘 ,𝑁𝑁 𝑧 𝑧) are independent mutually,
so we obtain (𝑁𝑁 𝑧 𝑧) independent equations by the (𝑁𝑁 𝑧 𝑧)
different roots of 𝑧𝑧𝑘𝑘, respectively.

In the following, we discuss about the 𝑁𝑁th-independent
linear equation of 𝑃𝑃𝑖𝑖,0 (𝑖𝑖 = 𝑧, 2,𝑘 ,𝑁𝑁). Similar to (27),
|𝐴𝐴𝑖𝑖(𝑧𝑧)| is written as follows:

𝐴𝐴𝑖𝑖 (𝑧𝑧) = 𝑧𝑧 (𝑧𝑧 𝑧 𝑧)𝐷𝐷𝑖𝑖 (𝑧𝑧) , 𝑖𝑖 = 0, 𝑧, 2,𝑘 ,𝑁𝑁, (29)
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where

𝐷𝐷𝑖𝑖 (𝑧𝑧)

=





𝑐𝑐𝑐𝑐 𝑐 𝑐𝑐 (1 − 𝑧𝑧) −𝜉𝜉2 ⋯ 𝜉𝜉1 − 𝜉𝜉2 𝑃𝑃1,0 ⋯ 0
−𝑐𝑐𝑐𝑐𝑧𝑧 𝑐𝑐1 (𝑧𝑧) ⋯ 𝑏𝑏1(𝑧𝑧) ⋯ 0
0 −𝑐𝑐𝑐𝑐𝑧𝑧 ⋯ 𝑏𝑏2(𝑧𝑧) ⋯ 0

⋮ ⋮
0 0 ⋯ 𝑏𝑏𝑁𝑁−1 (𝑧𝑧) ⋯ −𝑁𝑁𝜉𝜉2𝑧𝑧

−𝑐𝑐𝑧𝑧 −𝑐𝑐𝑧𝑧 𝑐 𝜆𝜆 ⋯
𝑁𝑁

𝑖𝑖=1

𝑖𝑖

𝑚𝑚=1

𝑚𝑚𝜆𝜆𝑚𝑚𝑖𝑖,𝑖𝑖−𝑚𝑚𝑧𝑧
𝑖𝑖−𝑚𝑚

(𝑖𝑖𝑐1)th column

⋯ −𝑐𝑐𝑧𝑧 𝑐 𝑁𝑁𝜆𝜆





.

(30)

Substituting (27) and (29) into (17), we obtain

𝐷𝐷(𝑧𝑧)𝐺𝐺𝑖𝑖 (𝑧𝑧) = 𝐷𝐷𝑖𝑖 (𝑧𝑧) , 𝑖𝑖 = 0, 1, 2,𝑖 ,𝑁𝑁. (31)

Substituting 𝑧𝑧 = 1 in (31), we obtain

𝐷𝐷(1)𝐺𝐺𝑖𝑖 (1) = 𝐷𝐷𝑖𝑖 (1) , 𝑖𝑖 = 0, 1, 2,𝑖 ,𝑁𝑁. (32)

From (19), we know that 𝐺𝐺𝑖𝑖(1) (𝑖𝑖 = 0, 1, 2,𝑖 ,𝑁𝑁) can be
expressed by𝑃𝑃𝑖𝑖,0 (𝑖𝑖 = 1, 2,𝑖 ,𝑁𝑁), so (32) are linear equations
of 𝑃𝑃𝑖𝑖,0 (𝑖𝑖 = 1, 2,𝑖 ,𝑁𝑁), but they are similar to each other.
However, every equation of (32) is independent with the
(𝑁𝑁 − 1) linear equations obtained by the roots of |𝐴𝐴𝑖𝑖(𝑧𝑧)| in
the interval (0, 1). en all independent linear equations of
𝑃𝑃𝑖𝑖,0 (𝑖𝑖 = 1, 2,𝑖 ,𝑁𝑁) are as follows:

𝐴𝐴0 𝑧𝑧𝑘𝑘 = 0, 𝑘𝑘 = 1, 2,𝑖 ,𝑁𝑁 − 1,

𝐷𝐷 (1)𝐺𝐺0 (1) = 𝐷𝐷0 (1) .
(33)

Further, from (29), (33) is equivalent to the follows:

𝐷𝐷0 𝑧𝑧𝑘𝑘 = 0, 𝑘𝑘 = 1, 2,𝑖 , 𝑁𝑁 − 1,

𝐷𝐷 (1)𝐺𝐺0 (1) = 𝐷𝐷0 (1) .
(34)

e steady-state probabilities of 𝑃𝑃𝑖𝑖,0 (𝑖𝑖 = 0, 1, 2,𝑖 ,𝑁𝑁)
are obtained by solving (34). Using 𝑃𝑃𝑖𝑖,0 (𝑖𝑖 = 0, 1, 2,𝑖 ,𝑁𝑁)
and (2), we obtain the other steady-state probabilities of
𝑃𝑃𝑖𝑖,𝑖𝑖 (𝑖𝑖 = 0, 1, 2,𝑖 ,𝑁𝑁, 𝑖𝑖 = 1, 2,𝑖).

5.3. Mean Queuing Length. Aer getting the probabilities
𝑃𝑃𝑖𝑖,𝑖𝑖 (0 ≤ 𝑖𝑖 ≤ 𝑖𝑖 − 1, 1 ≤ 𝑖𝑖 ≤ 𝑁𝑁) in (19) we obtain
𝐺𝐺𝑖𝑖(1) (𝑖𝑖 = 0, 1, 2,𝑖 ,𝑁𝑁) by solving (19) and obtain the
steady-state availability (𝐴𝐴) of the model by (20).

From (31), we obtain

𝐺𝐺𝑖𝑖 (𝑧𝑧) =
𝐷𝐷𝑖𝑖 (𝑧𝑧)
𝐷𝐷 (𝑧𝑧)

, 𝐷𝐷 (𝑧𝑧) ≠ 0, |𝑧𝑧| ≤ 1, 𝑖𝑖 = 0, 1, 2,𝑖 ,𝑁𝑁.

(35)

e PGF of 𝐺𝐺(𝑧𝑧) is obtained by (7). Using the property of
PGF [13] we obtain the steady-state mean queuing length is
as follows:

𝐿𝐿 =
𝑑𝑑𝐺𝐺 (𝑧𝑧)
𝑑𝑑𝑧𝑧


𝑧𝑧=1

. (36)

6. Case Analysis

We analyze the case of 𝑁𝑁 = 2 and 𝑐𝑐 = 1 in this section.
According to the above discussion, the determinant |𝐴𝐴(𝑧𝑧)| (or
𝐷𝐷(𝑧𝑧)) of this case has only one root 𝑧𝑧1 in the interval (0, 1).
e notations of this case are as follows:

𝑐𝑐0 (𝑧𝑧) = 𝑐𝑐 𝑐 𝑐𝑐 𝑧𝑧 − 𝑐𝑐𝑧𝑧
2,

𝑐𝑐1 (𝑧𝑧) = 𝜆𝜆 𝑐 𝜉𝜉2 𝑐 𝑐𝑐 𝑐 𝑐𝑐 𝑧𝑧 − 𝑐𝑐𝑧𝑧
2 − 𝜆𝜆,

𝑐𝑐2 (𝑧𝑧) = 2𝜆𝜆 𝑐 2𝜉𝜉2 𝑐 𝑐𝑐 𝑧𝑧 − 𝑐𝑐𝑧𝑧
2 − 2𝜆𝜆,

𝑏𝑏0 (𝑧𝑧) = 𝜉𝜉1 − 𝜉𝜉2 𝑃𝑃1,0𝑧𝑧,

𝑏𝑏1 (𝑧𝑧) = 𝜆𝜆 𝑐 𝜉𝜉2 − 𝜉𝜉1 𝑃𝑃1,0𝑧𝑧

𝑐
2

𝑚𝑚=1

𝑚𝑚 𝜉𝜉1 − 𝜉𝜉2 𝑃𝑃2,2−𝑚𝑚𝑧𝑧
3−𝑚𝑚 − 𝜆𝜆𝑃𝑃1,0

= 𝜆𝜆𝑃𝑃1,0 (𝑧𝑧 − 1) 𝑐 𝑧𝑧 𝜉𝜉1 − 𝜉𝜉2 𝑃𝑃2,1𝑧𝑧 𝑐 2𝑃𝑃2,0 − 𝑃𝑃1,0 ,

𝑏𝑏2 (𝑧𝑧) =
2

𝑚𝑚=1

𝑚𝑚 𝜆𝜆 𝑐 𝜉𝜉2 − 𝜉𝜉1 𝑃𝑃2,2−𝑚𝑚𝑧𝑧
3−𝑚𝑚

−
2

𝑚𝑚=1

𝑚𝑚𝜆𝜆𝑃𝑃2,2−𝑚𝑚𝑧𝑧
2−𝑚𝑚,

𝐴𝐴 (𝑧𝑧) = 



𝑐𝑐0 (𝑧𝑧) −𝜉𝜉2𝑧𝑧 0
−𝑐𝑐𝑧𝑧 𝑐𝑐1 (𝑧𝑧) −2𝜉𝜉2𝑧𝑧
0 −𝑐𝑐𝑧𝑧 𝑐𝑐2 (𝑧𝑧)




,

|𝐴𝐴 (𝑧𝑧)|

= 𝑧𝑧 (𝑧𝑧 − 1)

× 



𝑐𝑐 𝑐 𝑐𝑐 − 𝑐𝑐𝑧𝑧 −𝜉𝜉2 0
−𝑐𝑐𝑧𝑧 𝜆𝜆 𝑐 𝜉𝜉2 𝑐 𝑐𝑐 𝑐 𝑐𝑐 𝑧𝑧 − 𝑐𝑐𝑧𝑧

2 − 𝜆𝜆 −2𝜉𝜉2𝑧𝑧
−𝑐𝑐𝑧𝑧 −𝑐𝑐𝑧𝑧 𝑐 𝜆𝜆 −𝑐𝑐𝑧𝑧 𝑐 2𝜆𝜆




,

𝐷𝐷 (𝑧𝑧)

= 



𝑐𝑐 𝑐 𝑐𝑐 − 𝑐𝑐𝑧𝑧 −𝜉𝜉2 0
−𝑐𝑐𝑧𝑧 𝜆𝜆 𝑐 𝜉𝜉2 𝑐 𝑐𝑐 𝑐 𝑐𝑐 𝑧𝑧 − 𝑐𝑐𝑧𝑧

2 − 𝜆𝜆 −2𝜉𝜉2𝑧𝑧
−𝑐𝑐𝑧𝑧 −𝑐𝑐𝑧𝑧 𝑐 𝜆𝜆 −𝑐𝑐𝑧𝑧 𝑐 2𝜆𝜆





= − 𝑐𝑐 𝑐 𝑐𝑐 − 𝑧𝑧𝑐𝑐 𝑧𝑧𝑐𝑐 − 2𝜆𝜆 −𝜆𝜆 𝑐 𝑧𝑧 𝑐𝑐 𝑐 𝑐𝑐 − 𝑧𝑧𝑐𝑐 𝑐 𝜆𝜆

𝑐 𝑧𝑧𝜉𝜉2 𝑧𝑧𝑐𝑐 −2𝑐𝑐 − 3𝑐𝑐 𝑐 3𝑧𝑧𝑐𝑐

𝑐2 𝑐𝑐 − 2𝑧𝑧𝑐𝑐 𝑐 2𝑐𝑐 𝜆𝜆 − 2𝑧𝑧𝑐𝑐𝜉𝜉2 ,
(37)
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then

𝐷𝐷(1) = 



𝜂𝜂 𝜂𝜂𝜂2 0
𝜂𝜂𝜂 𝜂𝜂 𝜂 𝜂𝜂2 𝜂2𝜂𝜂2
𝜂𝜆𝜆 𝜂𝜆𝜆 𝜂 𝜆𝜆 𝜂𝜆𝜆 𝜂 2𝜆𝜆





= 2𝜆𝜆 𝜂𝜂2𝜂𝜂 𝜂 𝜂𝜂
2 𝜂 𝜆𝜆 2𝜂𝜂22 𝜂 2𝜂𝜂2𝜂𝜂 𝜂 𝜂𝜂

2 ,

(38)

and𝐷𝐷(1) 𝐷 0 is equivalent to

2𝜆𝜆 𝜂𝜂2𝜂𝜂 𝜂 𝜂𝜂
2 𝜂 𝜆𝜆 2𝜂𝜂22 𝜂 2𝜂𝜂2𝜂𝜂 𝜂 𝜂𝜂

2 𝐷 0, (39)

or

𝜆𝜆
𝜆𝜆
<

2𝜂𝜂2𝜂𝜂 𝜂 2𝜂𝜂
2

2𝜂𝜂22 𝜂 2𝜂𝜂2𝜂𝜂 𝜂 𝜂𝜂2
=

2𝜂𝜂𝜂 𝜂𝜂2 𝜂 𝜂𝜂
1 𝜂 𝜂𝜂2𝜂 𝜂𝜂2 𝜂 𝜂𝜂

2 . (40)

e le of (40) is the mean service quantities that all
customers need per unit time. e right of (40) is the mean
service quantities that the two servers provide per unit time.
So (40) is the necessary and sufficient condition of recurrence
of the system.

Equations (19) in this case are as follows:

𝜂𝜂𝜂𝜂0 (1) 𝜂 𝜂𝜂2𝜂𝜂1 (1) = 𝜂𝜂1 𝜂 𝜂𝜂2 𝑃𝑃1,0,

𝜂𝜂𝜂𝜂1 (1) 𝜂 2𝜂𝜂2𝜂𝜂2 (1) =
2

𝑚𝑚=1

𝑚𝑚 𝜂𝜂1 𝜂 𝜂𝜂2 𝑃𝑃2,2𝜂𝑚𝑚,

2

𝑖𝑖=0
𝜂𝜂𝑖𝑖 (1) = 1.

(41)

Equations (2) in this case are as follows:

𝜆𝜆 𝜂 𝜂𝜂 𝑃𝑃0,0 = 𝜂𝜂1𝑃𝑃1,0, 𝑖𝑖 = 0, 𝑖𝑖 = 0,

𝜆𝜆 𝜂 𝜂𝜂 𝑃𝑃0,𝑖𝑖 = 𝜆𝜆𝑃𝑃0,𝑖𝑖𝜂1 𝜂 𝜂𝜂2𝑃𝑃1,𝑖𝑖, 𝑖𝑖 = 0, 𝑖𝑖 𝐷 0,

𝜆𝜆 𝜂 𝜂𝜂 𝜂 𝜂𝜂1 𝑃𝑃1,0 = 𝜂𝜂𝑃𝑃0,0 𝜂 𝜆𝜆𝑃𝑃1,1 𝜂 2𝜂𝜂1𝑃𝑃2,0,

𝑖𝑖 = 1, 𝑖𝑖 = 0,

𝜆𝜆 𝜂 𝜂𝜂 𝜂 𝜂𝜂2 𝜂 𝜆𝜆 𝑃𝑃1,1

= 𝜆𝜆𝑃𝑃1,0 𝜂 𝜂𝜂𝑃𝑃0,1 𝜂 𝜆𝜆𝑃𝑃1,2 𝜂 𝜂𝜂1 𝜂 𝜂𝜂2 𝑃𝑃2,1, 𝑖𝑖 = 1, 𝑖𝑖 = 1,

𝜆𝜆 𝜂 𝜂𝜂 𝜂 𝜂𝜂2 𝜂 𝜆𝜆 𝑃𝑃1,𝑖𝑖

= 𝜆𝜆𝑃𝑃1,𝑖𝑖𝜂1 𝜂 𝜂𝜂𝑃𝑃0,𝑖𝑖 𝜂 𝜆𝜆𝑃𝑃1,𝑖𝑖𝜂1 𝜂 2𝜂𝜂2𝑃𝑃2,𝑖𝑖, 𝑖𝑖 = 1, 𝑖𝑖 𝐷 1,

𝜆𝜆 𝜂 2𝜂𝜂1 𝑃𝑃2,0 = 𝜂𝜂𝑃𝑃1,0 𝜂 𝜆𝜆𝑃𝑃2,1, 𝑖𝑖 = 2, 𝑖𝑖 = 0,

𝜆𝜆 𝜂 𝜂𝜂1 𝜂 𝜂𝜂2 𝜂 𝜆𝜆 𝑃𝑃2,1 = 𝜆𝜆𝑃𝑃2,0 𝜂 𝜂𝜂𝑃𝑃1,1 𝜂 2𝜆𝜆𝑃𝑃2,2,

𝑖𝑖 = 2, 𝑖𝑖 = 1,

𝜆𝜆 𝜂 2𝜆𝜆 𝜂 2𝜂𝜂2 𝑃𝑃2,𝑖𝑖 = 𝜆𝜆𝑃𝑃2,𝑖𝑖𝜂1 𝜂 𝜂𝜂𝑃𝑃1,𝑖𝑖 𝜂 2𝜆𝜆𝑃𝑃2,𝑖𝑖𝜂1,

𝑖𝑖 = 2, 𝑖𝑖 𝑖 2.
(42)

Using (42), we obtain

𝑃𝑃2,1 =
2𝜂𝜂1 𝜂 𝜆𝜆 𝑃𝑃2,0 𝜂 𝜂𝜂𝑃𝑃1,0

𝜆𝜆
. (43)

Using (41) and (43),𝜂𝜂0(1),𝜂𝜂1(1), and𝜂𝜂2(1) are expressed in
an algebraic expressions of 𝑃𝑃1,0 and 𝑃𝑃2,0.

If (40) is satis�ed, we obtain 𝑧𝑧1 by solving

𝐷𝐷(𝑧𝑧) = 0. (44)

Equations (34) in this case are as follows:

𝐷𝐷0 𝑧𝑧1 = 0,

𝐷𝐷 (1)𝜂𝜂0 (1) = 𝐷𝐷0 (1) .
(45)

Solving (45), we obtain 𝑃𝑃1,0 and 𝑃𝑃2,0.
Using (42), we obtain 𝑃𝑃𝑖𝑖,𝑖𝑖 (𝑖𝑖 = 0, 1, 2, 𝑖𝑖 = 1, 2,𝑗).
Using (20) and (41), we obtain the steady-state availability

𝐴𝐴.
For the mean queuing lengths, we have

𝐷𝐷0 (𝑧𝑧) =




𝜂𝜂1 𝜂 𝜂𝜂2 𝑃𝑃1,0 𝜂𝜂𝜂2 0

𝑏𝑏1(𝑧𝑧) 𝜆𝜆 𝜂 𝜂𝜂2 𝜂 𝜆𝜆 𝜂 𝜂𝜂 𝑧𝑧 𝜂 𝜆𝜆𝑧𝑧
2 𝜂 𝜆𝜆 𝜂2𝜂𝜂2

𝜆𝜆 𝑃𝑃2,1𝑧𝑧 𝜂 2𝑃𝑃2,0 𝜂 𝑃𝑃1,0 𝜂𝜆𝜆𝑧𝑧 𝜂 𝜆𝜆 𝜆𝜆𝑧𝑧 𝜂 2𝜆𝜆





,

𝐷𝐷1 (𝑧𝑧) =




𝜆𝜆 𝜂 𝜂𝜂 𝜂 𝜆𝜆𝑧𝑧 𝜂𝜂1 𝜂 𝜂𝜂2 𝑃𝑃1,0 0
𝜂𝜂𝜂𝑧𝑧 𝑏𝑏1(𝑧𝑧) 𝜂2𝜂𝜂2
𝜂𝜆𝜆𝑧𝑧 𝜆𝜆 𝑃𝑃2,1𝑧𝑧 𝜂 2𝑃𝑃2,0 𝜂 𝑃𝑃1,0 𝜆𝜆𝑧𝑧 𝜂 2𝜆𝜆





,

𝐷𝐷2 (𝑧𝑧) =




𝜆𝜆 𝜂 𝜂𝜂 𝜂 𝜆𝜆𝑧𝑧 𝜂𝜂𝜂2 𝜂𝜂1 𝜂 𝜂𝜂2 𝑃𝑃1,0
𝜂𝜂𝜂𝑧𝑧 𝜆𝜆 𝜂 𝜂𝜂2 𝜂 𝜆𝜆 𝜂 𝜂𝜂 𝑧𝑧 𝜂 𝜆𝜆𝑧𝑧

2 𝜂 𝜆𝜆 𝑏𝑏1 (𝑧𝑧)
𝜂𝜆𝜆𝑧𝑧 𝜂𝜆𝜆𝑧𝑧 𝜂 𝜆𝜆 𝜆𝜆 𝑃𝑃2,1𝑧𝑧 𝜂 2𝑃𝑃2,0 𝜂 𝑃𝑃1,0





,

(46)

𝜂𝜂 (𝑧𝑧) =
𝐷𝐷0 (𝑧𝑧) 𝜂 𝐷𝐷1 (𝑧𝑧) 𝜂 𝐷𝐷2 (𝑧𝑧)

𝐷𝐷 (𝑧𝑧)
. (47) Using (36), we obtain the mean queuing lengths 𝐿𝐿 is as

follows:
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T 1: e availability 𝐴𝐴 and mean queuing length 𝐿𝐿 (𝑁𝑁 𝑁 𝑁, 𝑐𝑐 𝑁 𝑐, and 𝜆𝜆 𝑁 𝑐).

𝜇𝜇 𝜉𝜉𝑐 𝑁 0, 𝜉𝜉𝑁 𝑁 0.5, and 𝜂𝜂 𝑁 𝑐.𝑁 𝜉𝜉𝑐 𝑁 0.3, 𝜉𝜉𝑁 𝑁 0.5, and 𝜂𝜂 𝑁 𝑐 𝜉𝜉𝑐 𝑁 0.5, 𝜉𝜉𝑁 𝑁 0.5, and 𝜂𝜂 𝑁 𝑐
L A L A L A

1.1 3.0797 0.8951 4.6956 0.8209 4.8505 0.8
1.2 2.3810 0.9058 3.5018 0.8266 3.6549 0.8
1.3 1.9425 0.9147 2.8136 0.8315 2.9650 0.8
1.4 1.6411 0.9224 2.3641 0.8354 2.5138 0.8
1.5 1.4207 0.9290 2.0464 0.8383 2.1947 0.8
1.6 1.2524 0.9348 1.8095 0.8429 1.9563 0.8
1.7 1.1195 0.9399 1.6256 0.8458 1.7710 0.8
1.8 1.0119 0.9443 1.4784 0.8484 1.6225 0.8

𝜇𝜇 𝜉𝜉𝑐 𝑁 0.5, 𝜉𝜉𝑁 𝑁 0.5, and 𝜂𝜂 𝑁 0.𝜂 𝜉𝜉𝑐 𝑁 0.5, 𝜉𝜉𝑁 𝑁 𝑐, and 𝜂𝜂 𝑁 𝑐.5 𝜉𝜉𝑐 𝑁 𝑐, 𝜉𝜉𝑁 𝑁 0.𝜂, and 𝜂𝜂 𝑁 𝑐.5
L A L A L A

1.1 9.4410 0.7423 9.9094 0.7412 5.0503 0.7734
1.2 6.1455 0.7423 5.7928 0.7509 3.7017 0.7700
1.3 4.6345 0.7423 4.1374 0.7608 2.9584 0.7671
1.4 3.7636 0.7423 3.2405 0.7687 2.4853 0.7646
1.5 3.1952 0.7423 2.6761 0.7756 2.1565 0.7623
1.6 2.7937 0.7423 2.2873 0.7817 1.9140 0.7603
1.7 2.4944 0.7423 2.0025 0.7872 1.7273 0.7585
1.8 2.2389 0.7423 1.7846 0.7920 1.5788 0.7569

𝐿𝐿 𝑁
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑


𝑑𝑑𝑁𝑐

𝑁
𝑐

𝜆𝜆𝜂𝜂𝑁 − 𝑁𝜇𝜇𝜂𝜂𝑁 + 𝑁𝜉𝜉𝑁 𝜂𝜂𝜆𝜆 − 𝜂𝜂𝜇𝜇 + 𝜆𝜆𝜉𝜉𝑁
𝑁

× − 𝜂𝜂 −𝑁𝜂𝜂𝜆𝜆 + 𝑁𝜆𝜆𝑁 + 𝑁𝜂𝜂𝜇𝜇 − 5𝜆𝜆𝜇𝜇 + 𝑁𝜇𝜇𝑁

+𝜉𝜉𝑁 −4𝜂𝜂𝜆𝜆 + 3𝜆𝜆
𝑁 + 𝑁𝜂𝜂𝜇𝜇 − 4𝜆𝜆𝜇𝜇 − 4𝜆𝜆𝜉𝜉𝑁

× 𝜇𝜇 𝜂𝜂𝑁 + 𝑁𝜉𝜉𝑐𝜂𝜂 + 𝑁𝜉𝜉𝑐𝜉𝜉𝑁 𝑃𝑃𝑐,0

+𝜇𝜇 𝜂𝜂𝑁 + 𝜂𝜂𝜉𝜉𝑁 + 𝜂𝜂𝜉𝜉𝑐 + 𝑁𝜉𝜉𝑐𝜉𝜉𝑁 𝑁𝑃𝑃𝑁,0 + 𝑃𝑃𝑁,𝑐

+ 𝜇𝜇 −𝜂𝜂𝑁𝜆𝜆 + 𝑁𝜇𝜇𝜂𝜂𝑁 − 𝑁𝜉𝜉𝑁 𝜂𝜂𝜆𝜆 − 𝜂𝜂𝜇𝜇 + 𝜆𝜆𝜉𝜉𝑁

×  𝜂𝜂𝑁 − 𝑁𝜂𝜂𝜆𝜆 + 𝑁𝜂𝜂𝜇𝜇 − 𝑁𝜆𝜆𝜉𝜉𝑁 + 𝑁𝜉𝜉𝑐𝜂𝜂

−𝜆𝜆𝜉𝜉𝑐 + 𝑁𝜇𝜇𝜉𝜉𝑐 + 𝑁𝜉𝜉𝑐𝜉𝜉𝑁 𝑃𝑃𝑐,0

+ 𝜂𝜂𝑁 + 𝜂𝜂𝜉𝜉𝑁 + 𝜂𝜂𝜉𝜉𝑐 + 𝑁𝜉𝜉𝑐𝜉𝜉𝑁 𝑃𝑃𝑁,𝑐

+ 𝜂𝜂𝑁 − 𝑁𝜂𝜂𝜆𝜆 + 𝜂𝜂𝜇𝜇 + 𝜂𝜂𝜉𝜉𝑁 − 𝑁𝜆𝜆𝜉𝜉𝑁 + 𝜂𝜂𝜉𝜉𝑐

−𝜆𝜆𝜉𝜉𝑐 + 𝑁𝜉𝜉𝑐𝜉𝜉𝑁 𝑁𝑃𝑃𝑁,0 + 𝑃𝑃𝑁,𝑐  .

(48)

Numerical Example. Letting 𝑁𝑁 𝑁 𝑁, 𝑐𝑐 𝑁 𝑐, 𝜆𝜆 𝑁 𝑐, 𝜉𝜉𝑐 𝑁 0.5,
𝜉𝜉𝑁 𝑁 𝑐, 𝜂𝜂 𝑁 𝑐, and 𝜇𝜇 𝑁 𝑁, we have

𝜆𝜆
𝜇𝜇
𝑁
𝑐
𝑁
<
4
5
𝑁

𝑁𝜂𝜂𝜂 𝜉𝜉𝑁 + 𝜂𝜂
𝑐 + 𝜉𝜉𝑁𝜂 𝜉𝜉𝑁 + 𝜂𝜂

𝑁 . (49)

e roots of𝐷𝐷𝑑𝑑𝑑𝑑 𝑁 0 are as follows:

𝑑𝑑𝑐 𝑁 0.349𝑐𝑁3, 𝑑𝑑𝑁 𝑁 𝑐.𝜂45𝑐3,

𝑑𝑑3 𝑁 4.46𝜂96, 𝑑𝑑4 𝑁 𝜂.33679, (50)

and only 𝑑𝑑𝑐 in the interval 𝑑0, 𝑐𝑑.
Solving (45), we obtain

𝑃𝑃𝑐,0 𝑁 0.𝑐5𝑐375, 𝑃𝑃𝑁,0 𝑁 0.𝑁97974. (51)

Using (42) we obtain

𝑃𝑃0,0 𝑁 0.037𝜂44, 𝑃𝑃𝑁,𝑐 𝑁 0.𝑐46599. (52)

Solving (41), we obtain

𝑑𝑑0 𝑑𝑐𝑑 𝑁 0.𝑁𝜂0333, 𝑑𝑑𝑐 𝑑𝑐𝑑 𝑁 0.3560𝑁,

𝑑𝑑𝑁 𝑑𝑐𝑑 𝑁 0.363647.
(53)

Finally, the availability and mean queuing lengths of this
example are as follows:

𝐴𝐴 𝑁 0.7𝑐9667, 𝐿𝐿 𝑁 6.04039. (54)

e other numerical results are shown in Table 1. All the
system parameters in Table 1 satisfy (40).

�e �nd that the mean queuing length (𝐿𝐿) decreases with
the increasing of the parameter 𝜇𝜇 in Table 1, it is because
of the greater service rate the less customers in the system.
Furthermore, we �nd that the availability (𝐴𝐴) increases with
the increasing of the parameter 𝜇𝜇, where 𝜉𝜉𝑐 < 𝜉𝜉𝑁 (the cases:
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𝜉𝜉1 = 0, 𝜉𝜉2 = 0.5; 𝜉𝜉1 = 0.3, 𝜉𝜉2 = 0.5; 𝜉𝜉1 = 0.5, 𝜉𝜉2 = 1); on
the contrary, the availability decreases with the increasing of
the parameter 𝜇𝜇, where 𝜉𝜉1 > 𝜉𝜉2 (the case: 𝜉𝜉1 = 1, 𝜉𝜉2 = 0.8);
otherwise, the availability is constant, where 𝜉𝜉1 = 𝜉𝜉2 (the case:
𝜉𝜉1 = 0.5, 𝜉𝜉2 = 0.5).

7. Conclusions

In Section 5.1, the inequality 𝐷𝐷𝐷1) > 0 of eorem 1
is the necessary and sufficient condition for the system to
be positive recurrent, and a probability explanation of this
condition is given by (40).

We �nd that the idle time breakdown rate 𝜉𝜉1 does not
appear in (40). is is because the busy time breakdown rate
𝜉𝜉2 is at work when the number of the customers is greater
than or equal to the number of the available servers, and
the criteria of positive recurrence depends on the busy time
breakdown rate.

A case analysis is given to illustrate the analysis of this
paper, and the numerical results indicate that the variation
of breakdown rates has a signi�cant e�ect on the steady-state
availability and steady-state queue length of the system.
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