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The aim of this paper is to propose modified centrality measures as a tool to identify critical nodes before a vulnerability analysis is
performed in an electrical power grid. Pair dependency centrality is weighted using the grid active power flow, and this becomes
the basis to define closeness and betweenness of its nodes, and hence to identify the most critical ones. To support the idea of
using modified centralities, four power grids are tested to be either exponential or scale-free. To evaluate the proposal, information
obtained via modified centrality measures is used to calculate global efficiency of the power grids.

1. Introduction

Today more than ever, electrical energy has become a key
commodity to any growing society. Efficient and reliable
supply of this energy is the main concern of the electrical
companies. However, the increasing demand, the incorpo-
ration of intermittent generation, the deregulation of the
power system services, andmore recently the climate impacts
are pushing the power system close to unstable operating
conditions. In this regard, control and measurement systems
as well as back up policies are being developed towards
ensuring an efficient and reliable service. Following the trend,
vulnerability analysis tools aim to an effective identification of
those nodes critical to the stability of power systems, which is
useful to define device placement and can draw guidelines for
the expansion of an electric network. Contingency and tran-
sient stability analysis techniques are also used for dynamic
security studies; however, as power systems grow and become
more complex [1, 2], the number of contingencies increases
significantly, with the consequent raise in computation time
[3]. This has motivated research towards the development of
new analysis techniques.

Some of the techniques proposed in recent years use
concepts from network theory to study several properties
of power grids. An index based on the connection pattern
to measure how close a power grid is to be a small world
network, and hence evaluating its vulnerability is proposed
in [4]; using that same connection pattern [5] shows which
small world characteristics are hold by power grids. The
authors in [6–8] propose global efficiency as a measure to
define vulnerable nodes in a power grid and to propose
improvements. Betweenness as a vulnerability index is used
in [9], where power grids are classified as scale-free. These
works show that very few important characteristics of power
grids can be spotted using concepts originally developed for
the complex networks framework, hencemore specific power
grid focused metrics must be developed in order to represent
key characteristics and complement or improve state of the
art techniques dedicated to power grid vulnerability analysis.
To overcome this deficiency, [10] proposes an index based on
the ratio of loads disconnected after a contingency to find
vulnerable nodes while [11] uses power transfer distribution
factors and transmission line limits to define newmetrics that
evaluate power grid vulnerability. Impedance of transmission
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Figure 1: A power system and its correspondent graph.

lines and a weighted Laplacian are employed as a base to
define betweenness in [12] and closeness in [13], respectively;
in these cases, centrality measures are redefined using differ-
ent “electrical distances.”

In this work, modified centrality measures are proposed
in the complex networks framework as an extension of
the results presented in [14, 15], taking into consideration
operative restrictions in the voltage and power flow limits.
The active power flow is selected in this analysis due to
represent most of its behavior in steady state. In this way,
proper information is used to detect critical nodes in a single
simulation run. It is important tomention that reactive power
flow information can also be considered in this modified
centrality measures; however, due to space limitation their
results were not included in this paper.

The outline of the paper is as follows: first the derivation
of the proposed modified centrality measures is presented,
then the calculation of these measures is applied to four
test power grids given, and the results are given a physical
interpretation. Finally, the proposed metrics are compared
with other definitions of the same centralities found in the
literature, in order to determine its strengths and weaknesses,
and the power grid vulnerability is evaluated using the
information obtained.

2. A Graph Representation of Power Grids

Graphs are useful as a tool to obtain a representation of the
interconnections between the components of a network. A
graph G consists of a set of vertices (also called sites, actors,
points, or nodes) representing the elements of the network,
a set of edges (also called bonds, ties, lines, or branches) that
describe the nature of network interconnections, and a set of
edge weights that specify their intensity.

As shown in Figure 1, a power grid can easily be rep-
resented by a graph considering its 𝑁 nodes as the graph
vertices, and its weighted interconnections as the impedances
of the 𝑙 transmission lines connecting them. Hereafter, graph
vertices are called nodes, and the corresponding weighted
interconnections are given by the absolute value of trans-
mission line impedance. Also, the graph representation of
a power grid is an undirected (interaction between two
adjacent nodes is reciprocal (two nodes are said to be adjacent
if there exists 𝑒

𝑖𝑗
)) and connected (there is a path between any

pair of nodes) graph of order (the number of nodes in G is
called the order ofG)𝑁 and size (the number of lines inG is
called the size ofG) 𝑙 as follows:

G = {N, 𝐸, 𝑍} , (1)

where the set N = {𝑖 | 𝑖 ∈ N𝑁} includes all nodes of the
power grid, the set 𝐸 = {𝑒

𝑖𝑗
| 𝑒
𝑖𝑗
∈ 𝐸
𝑙
⋂ 𝑖, 𝑗 ∈ N𝑁} describes

the transmission lines connecting them, and the set ofweights
𝑍 = {|𝑧

𝑖𝑗
| | |𝑧
𝑖𝑗
| ∈ 𝑍

𝑙
⋂ 𝑖, 𝑗 ∈ N𝑁} represents the electrical

distance linking each pair of nodes.

3. Modified Centrality Measures

Centralitymeasures can generally be defined as functions that
assign a real value to each node in a network in order to
identify its participation in a certain process. In this section,
modified centrality measures are proposed based on the
original ones defined in the complex networks framework,
then its adaptation to power systems is presented.

For the graph representation used in this work only active
power flow between nodes and a steady-state operation are
considered. It is important to notice that (as proposed in [14])
the type of node, that is, generation, transmission, or load,
cannot be distinguished from one another.
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3.1. Power Flow Formulation. Let vector S denote the injec-
tion of power into an electric grid, defined as a function of
voltage and current in each node as follows:

S = VdiagI
∗
, (2)

where Vdiag = diag(𝑉
𝑖
) and 𝑆

𝑖
, 𝐼
𝑖
, 𝑉
𝑖
∈ C𝑁 are the power,

current, and voltage at node 𝑖, respectively. Then, the vector
of injected currents is

I = YV, (3)

where Y is the admittance matrix of the power grid [16] and
each element is defined as 𝑌

𝑖𝑗
= 1/𝑍

𝑖𝑗
. Substituting current

from (3) in (2), one has

S = Vdiag (Y
∗V∗) . (4)

Expanding (4), a nonlinear complex algebraic expression is
obtained for each node as follows:

𝑆
𝑖
= 𝑉
𝑖

𝑁

∑

𝑗=1

𝑉
𝑗
𝑒
−𝜃𝑖𝑗𝑌
𝑖𝑗
. (5)

Expanding and rearranging (5) taking into account that
𝑒
−𝑗𝜃𝑖𝑗 = cos 𝜃

𝑖𝑗
+𝑗sin 𝜃

𝑖𝑗
, 𝑆
𝑖
= 𝑃
𝑖
+𝑗𝑄
𝑖
, and 𝑌

𝑖𝑗
= 𝐺
𝑖𝑗
+𝑗𝐵
𝑖𝑗
lead

to (6) that represent active and reactive powers in each node,
respectively, as a function of their voltages and phase angles
and the connectivity between them as follows:

𝑃
𝑖
= 𝑉
𝑖

𝑁

∑

𝑗=1

𝑉
𝑗
(𝐺
𝑖𝑗
cos 𝜃
𝑖𝑗
+ 𝐵
𝑖𝑗
sin 𝜃
𝑖𝑗
) ,

𝑄
𝑖
= 𝑉
𝑖

𝑁

∑

𝑗=1

𝑉
𝑗
(𝐺
𝑖𝑗
sin 𝜃
𝑖𝑗
− 𝐵
𝑖𝑗
cos 𝜃
𝑖𝑗
) .

(6)

Since only active power flow is considered in this work, the
steady-state power transfer in any transmission line is given
by

𝑃
𝑖𝑗
= 𝑉
𝑖
𝑉
𝑗
(𝐺
𝑖𝑗
cos 𝜃
𝑖𝑗
+ 𝐵
𝑖𝑗
sin 𝜃
𝑖𝑗
) + 𝑉
2

𝑖
𝐺
𝑖𝑗
,

Subject to: 1.05 𝑝.𝑢. ≥ 𝑉
𝑖
, 𝑉
𝑖
≥ 1.05 𝑝.𝑢.,

𝑃
𝑖𝑗
≤ 𝑃
𝑖𝑗max.

(7)

Figure 2 shows the transmission model line used. Also, if the
active power is transmitted from 𝑖 to 𝑗 and 𝑟

𝑖𝑗
̸= 0, then |𝑃

𝑖𝑗
| >

|𝑃
𝑗𝑖
|.

3.2. Pair Dependency. Pair dependency was first introduced
by Freeman in [15] to find a set of nodes whose position in
the network allows them to “facilitate, inhibit, or distort” the
exchange of information. Following this idea, the derivation
of a modified pair dependency centrality is presented in this
section.

A recursive implementation of Dijkstra’s algorithm [17]
is employed in this work to find the shortest path between a
pair of nodes (𝑛,𝑚) in the power grid in order to calculate

𝑃𝑖𝑗 𝑟𝑖𝑗 𝑗 𝑥𝑖𝑗

𝑧𝑖𝑗

𝑉𝑖-𝜃𝑖 𝑉𝑗-𝜃𝑗

Figure 2: Transmission line scheme.

its maximum active power (The shortest path between two
nodes is the succession of lines connecting them, in such a
way that they sum to the least possible weight and that no
node or line appears two times), given by

𝑃
𝑛𝑚max = max {𝑃𝑖𝑗


| 𝑖, 𝑗 ∈ 𝑔

𝑛𝑚
⊆ 𝑉} , (8)

where 𝑔
𝑛𝑚

is the set of nodes included in the shortest path
connecting 𝑛 and𝑚.

At each node 𝑘 ̸= 𝑖, 𝑗 ∈ 𝑔
𝑛𝑚
, an expression for the maxi-

mum active power injection of the shortest path is calculated
as follows:

𝑃
𝑛𝑚 (𝑘) = max {(𝑃𝑖𝑘

 ,

𝑃
𝑘𝑗


) | 𝑖, 𝑗, 𝑘 ∈ 𝑔

𝑛𝑚
⊆ 𝑉} . (9)

The ratio of 𝑃
𝑛𝑚
(𝑘) to 𝑃

𝑛𝑚max is the degree in which buses 𝑛
and𝑚 need bus 𝑘 to transmit active power along the shortest
electrical path as follows:

𝑟
𝑛𝑚 (𝑘) =

𝑃
𝑛𝑚 (𝑘)

𝑃
𝑛𝑚max

. (10)

If all shortest paths starting at 𝑛 are calculated, pair depen-
dency is defined as

𝑑
𝑚𝑘

=

𝑁

∑

𝑚=1

𝑃
𝑛𝑚 (𝑘)

𝑃
𝑛𝑚max

. (11)

This represents the dependency of node 𝑚 to node 𝑘 for
transmission of active power through the shortest path.

All pair dependency combinations are stored in a matrix
as follows:

𝐷 =

[
[
[
[
[
[
[
[
[

[

𝑑
11

𝑑
12

. . . 𝑑
1𝑘

. . . 𝑑
1𝑁

𝑑
21

𝑑
22

. . . 𝑑
2𝑘

. . . 𝑑
2𝑁

...
...

. . .
...

. . .
...

𝑑
𝑚1

𝑑
𝑚2

. . . 𝑑
𝑚𝑘

. . . 𝑑
𝑚𝑁

...
...

. . .
...

. . .
...

𝑑
𝑁1

𝑑
𝑁2

. . . 𝑑
𝑁𝑘

. . . 𝑑
𝑁𝑁

]
]
]
]
]
]
]
]
]

]

. (12)

It can be noticed that 𝐷 is an asymmetrical partially full
matrix with zero main diagonal and is the basis to define
closeness and betweenness centralities.

3.3. Closeness. In a topological framework, closeness central-
ity of a node is defined as the sum of all its shortest paths and
can be used to quantify how rapidly the information injected
in each node spreads in the network [18] by measuring how
“far” a node is from the rest. Analogously to [15], closeness of
a node𝑚 is given by

𝐶
𝑐 (𝑚) =

𝑁

∑

𝑛=1

𝑑
𝑚𝑘

=

𝑁

∑

𝑘=1

𝑁

∑

𝑛=1

𝑃
𝑛𝑚 (𝑘)

𝑃
𝑛𝑚max

. (13)
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Figure 3: Test power grid multigraphs (a) G
4
, (b) G

16
, (c) G

48
, and (d) G

50
. Nodes are scaled as a function of the MW injected (generators,

green dots) or withdrawn (loads, red dots). Since transmission nodes inject zero active power, they are scaled to zero but can be recognized
as junctions or direction changes of lines, for example, nodes 11 and 7, respectively, in (a).

According to [14], closeness of node 𝑚 is given by the sum
of the elements in the 𝑚th row of 𝐷; therefore, nodes with
smaller 𝐶

𝐶
(𝑚) are considered as closer to each other.

3.4. Betweenness. In complex network studies, betweenness
measures the ratio and total number of shortest paths in a
graph [19], and as a result, nodes with high values of the
metric can be designated to control or regulate information
flowing within a network [15]. However, when applied to
power grids, the measure indicates how frequently a certain
node 𝑘 is involved in the transmission of active power and is
defined by

𝐶
𝑐 (𝑘) =

𝑁

∑

𝑚=1

𝑑
𝑚𝑘

=

𝑁

∑

𝑚=1

𝑁

∑

𝑛=1

𝑃
𝑛𝑚 (𝑘)

𝑃
𝑛𝑚max

. (14)

As stated in [15], the index 𝐶
𝑐
(𝑘) of a node is the sum of the

elements in the 𝑘th column of𝐷.
As can be observed, pair dependency and betweenness

centralities have a similar structure; however, the difference
is that the former relates a node with a given pair of
nodes (specific interaction), while the latter represents the
dependency between a given node and all remaining ones
(global interaction).
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Table 1: Test power grids components, number of nodes 𝑁, and
transmission lines 𝑙 comprising each grid are presented.

Power grid Range (𝑁) Size (𝑙)
G
4

13 12
G
16

68 86
G
48

140 233
G
50

145 453

4. Description of the Test Power Grids
and Its Classification in the Complex
Networks Framework

The test power grids are presented from a topological per-
spective, firstly, described regarding the connection pattern
and the number of nodes and transmission lines, secondly,
classified either as exponential or scale-free using the cumu-
lative distribution function (CDF) of its node degree.

4.1. Test Power Grids Description. Figure 3 shows the graphs
corresponding to the test power grids, and Table 1 lists
the number of nodes, transmission lines, and generators
comprising them.Amodification has beenmade to the power
grid graphs in order to visually identify generation (clear
dots), transmission (junctions or direction changes of lines),
and load (dark dots) nodes.

As can be seen in Figure 3(a), the four generators power
grid (G

4
) is symmetrical, radial and divided into two areas

connected through a transmission corridor formed by the
junctions at the center of the figure, and since it is symmetric,
similar centralities are expected in certain nodes. As shown
in Figure 3(b), G

16
has both meshed and radial zones.

Figures 3(c) and 3(d) show the graphs of the test power
grids G

48
and G

50
, respectively. These are the biggest power

grids analyzed and are basically meshed. They have a similar
number of nodes and generators but very different number of
transmission lines.

4.2. Test Power Grids Classification. Classifying networks
into general groups is a tendency in complex networks
since it allows finding similarities between different kinds of
networks, [20] and reveals important characteristics related
to their structure. In this section, the test power systems are
classified either as scale-free or exponential type, in order
to show the necessity of considering information related to
power grids nature.

Although there are different ways to classify networks
(clustering coefficient, average length path, etc.) that are
based only in the subsets N and 𝐸 of G, the node degree
(𝑑) cumulative distribution is used in this work as a basis to
categorize each network (the number of lines incident with a
node is called degree in Figure 3(a), node 9 has degree three,
while node 4 has degree one). The CDF curves for each test
power grids are shown in Figure 4.

If the CDF fits a power law function; that is, it can be
described by 𝑃(𝑋 ≥ 𝑑) = 𝑓(𝑑) ∼ 𝑑

𝜁, the network is said
to be scale-free; according to [5], in most networks arising

Table 2: Fittings of the CDF curves of test power grids using
MATLAB’s curve fitting tool.

G
Exponential (𝑃(𝑋 ≤ 𝑑) = 𝑥𝑒

−𝑑𝜉
) Scale-free (𝑃(𝑋 ≥ 𝑑) = 𝑧𝑑

𝜁
)

𝑥 𝜉 𝑅
2

𝑧 𝜁 𝑅
2

G
4 2.048 −0.7011 0.96 1.025 −1.2490 0.91

G
16 1.774 −0.5051 0.93 1.081 1.0390 0.82

G
48 1.620 −0.3832 0.96 1.138 −0.9649 0.81

G
50 1.251 −0.1908 0.99 1.189 −0.7395 0.86
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≥
𝑑
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𝒢16
𝒢4

Figure 4: CDF of test power grids.

from real life, coefficient 𝜁 is bounded 2 ≤ 𝜁 ≤ 3. In such
a network, a few nodes called hubs have a major number of
connections [21], while the rest only has a few.Hence, it is said
to be vulnerable to targeted attacks but resistant to random
ones [22, 23] because the network structure is damaged to a
bigger extent if hubs fail (many nodes will be disconnected,
impairing an adequate information exchange).

On the other hand, if the CDF curve fits an exponential
function 𝑃(𝑋 ≤ 𝑑) = 𝑓(𝑑) ∼ 𝑒

−𝑑𝜉, the network is
considered exponential. In this case, most nodes in the
network have a similar degree. Then, when high degree
nodes are disconnected, its adjacent nodes usually remain
connected to the network through some other line. Hence
this kind of network is said to be less vulnerable to both
random and targeted attacks [22, 23].

Table 2 shows the results of both fittings, where it is clear
that the test power grids have a better fit in the exponential
classification (although scale-free fitting has a fairly high
correlation coefficient, 𝑅

2). The difference between both
fittings can be spotted in Figure 5, where the exponential
curve (Exp) fits the CDF of test power grid G

50
better than

the scale-free curve (SF).
Results shown in Table 2 indicate that the topology of

the test power grids is barely vulnerable to either random
or targeted attacks. However, a single failure in a power grid
can initiate a series of events leading to a major damage, for
example, what is reported in [24]. Therefore, weak points
cannot be detected using only the subsets of G related to
pattern connection, and other physical characteristics of
power systems must be considered when using a complex
network framework.
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5. Description and Comparison of Modified
Centrality Measures in Test Power Grids

In this section, results found using modified centrality mea-
sures in the test power grids are presented. First, discussions
of their interpretation are drawn, and the indices obtained are
normalized and compared with the widely used betweenness
and closeness proposed originally in [25, 26] and joined
by Freeman in [15], and also against two recent proposals
defining these same concepts as a function of the electrical
distances of power grids [12, 13].

5.1. Closeness of the Test Power Grids. Closeness indices
obtained in all four test power grids, shown in Figure 6, have
particular characteristics to notice.The first is that in a certain
power grid all nodes have a similar index; however, it tends to
augment, as the power grid range increases.This particularity
is inherited from the exponential nature of electric networks
as a consequence of the homogeneousness presented by the
node degree, and deeper insight of this characteristic can be
found in [27].

The second observation is that as a power grid becomes
meshed, its nodes get closer, and this is apparent when
comparing closeness indices in power gridsG

50
andG

48
.This

particularity connects directly with the relationship between
𝑙 and 𝑁, where a bigger ratio 𝑙/𝑁 means that there are
more possibilities of going from one node to another, and
hence the nodes in the power grid are closer [28]. Although
these observations may seem trivial, they enclose the effect of
topology over the closeness index that is influenced mainly
by power grids topology, rather than by the power flowing
through it.

Results obtained with the modified index are compared
with the original definition of closeness and a redefinition
based on the work presented in [13]. The former uses only
the node-line information of the graph (setsN and 𝐸), while
the latter uses the effective resistance (𝑅

𝑒
(𝑖, 𝑗)) between nodes

to define closeness as 𝑆
2
(𝑖) = 1/∑

𝑗
𝑅
𝑒
(𝑖, 𝑗).

As it has been pointed out, modified closeness retains
the connection pattern of the grid, and because of this,
results from both modified and original indexes (presented
in Figure 7) are similar for all test grids. On the other hand,
closeness centrality based on effective resistance has a similar
behavior in small power grids but differs in large ones. InG

50
,

for example, nodes 34, 35, 36, and 99 are designated as the
closest; however, they are far from the rest of the grid (detail
in Figure 3(d)). In this case, all these nodes are connected
through short lines with impedances much lower than the
average in the network 𝑧

36−99
≪ 𝑧, which produces a poorly

conditioned inverse matrix.

5.2. Betweenness of the Test Power Grids. Graphs correspond-
ing to the test power grids, scaled using the normalized
betweenness index (𝐶

𝐵
) of each node, are shown in Figure 8.

It can be noticed in the upper right side of Figure 8(b)
that the beginning of a radial portion of the power grid leads
to a big dependence of the node connecting it. In Figure 8(c),
an important transmission zone can be detected as a bundle
of nodes with similar betweenness. Finally, Figure 8(d) shows
how a node takes great importance by laying in a big number
of shortest paths.

The indices (𝐶
𝐵
) calculated are compared with results

using its original definition and with the modification pro-
posed in [12], which uses the diagonal values 𝑧

𝑖𝑖
of the 𝑍Bus

matrix as the node betweenness. Figure 9 shows the cumu-
lative distribution function of the normalized node index
obtained with each definition. In the first case, impedance
based centralities have a different distribution compared with
the other two indices, which means that the first considers all
nodes having a similar betweenness. In this case, themodified
index results in a close to zero magnitude for node 10, while
the original and impedance based definitions have a value
close to that of nodes 9 and 11. Since power flow through node
10 is low, a failure in this node would not interrupt the service
to the loads, making the grid resistant to node failures.

When observing the rest of the CDFs, a pattern similar
to that of exponential networks is visible, and although there
are some nodes with high betweenness, these power grids
can be considered robust in general. However, nodes with
higher values of this centrality should be considered critical
to active power transmission and are candidates for control
device allocation to effectively modify active power transfer.
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Figure 7: Closeness indices of test power grids (a) G
4
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, and (d) G
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obtained using three different definitions: the original

definition —+—, the proposed modification —∗—, and the centrality based solely on 𝑅
𝑖𝑗
—◻—.

After analyzing the results obtained, the test power grids
seem to be robust to some extent, but, as it will be tested in the
next section, nodes detected as critical viamodified centrality
measures are still expected to produce major damages than
one chosen randomly.

6. Vulnerability Analysis via Global Efficiency

In order to evaluate if nodes identified using modified
centrality measures have a mayor impact in the performance
of the electric network, vulnerability of the test power grids
is analyzed via their global efficiency. This metric was first
introduced in [29] to measure the performance of a network
under topological changes, and it only takes into account

its graph. Here it is used as a first insight to evaluate power
system vulnerability. The metric is defined as [29]

𝐸 (G) =
1

𝑁 (𝑁 − 1)

𝑁

∑

𝑛 ̸=𝑚

1

𝑑
𝑛𝑚

=
1

𝑁 (𝑁 − 1)

𝑁

∑

𝑛 ̸=𝑚

𝑒
𝑛𝑚
, (15)

where 𝑑
𝑛𝑚

is the length of the shortest path connecting nodes
𝑛 and𝑚, that is, the sum of all 𝑧

𝑖𝑗
included in 𝑔

𝑛𝑚
, and 𝑒

𝑛𝑚
is

the efficiency between nodes 𝑛 and𝑚.
As can be seen in (15), global efficiency of a network is

given by the average sum of the inverse of all shortest paths
between its nodes; therefore, a network is more efficient if
its shortest paths get smaller (or 𝑒

𝑛𝑚
gets bigger). However,

a value of global efficiency is representative only with respect
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to the network it belongs to, and it is prohibitive to compare
two different networks just using this metric. Because of
this, global efficiency is used as a measure of vulnerability
[7, 8] within a network, and a similar philosophy to evaluate
the global efficiency when critical nodes are disconnected or
attacked is used here.

To analyze the vulnerability in all test power grids, two
scenarios are proposed.

(1) Targeted attacks. In this scenario, lines connecting
nodes with higher centrality indices are disconnected until
each node is completely isolated from the power grid. A list
of these nodes is given in Table 3.

(2) Random attacks. Lines disconnected belong to nodes
chosen randomly with a uniform probability distribution.

Table 3: Nodes with higher centrality in each test power grid.

G 𝐶
𝐵

𝐶
𝐶

4 9, 11 9, 11
16 36, 16, 2, 9, 5 37, 65, 68, 2, 9
48 54, 52, 50, 37, 43 86, 130, 132, 52, 50
50 6, 12, 7, 17, 67 6, 7, 12, 139, 66

Figure 10 shows the results of both scenarios for each
test power grid. Figure 10(a) illustrates that both closeness
and betweennes based attacks result in the same drop in
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global efficiency. This is due to the fact that nodes 9 and 11
are, at the same time, the closest ones and those with bigger
betweenness, as can be seen in Table 3. A similar situation can
be spotted in Figure 10(d), with nodes 6 and 12.

Since global efficiency is a function of all shortest paths
in a power grid, a node with high betweenness that affects
a considerable portion of these paths (𝑁 times the number
of shortest paths it lies on) produces a big decrease in global
efficiency, while a low decrease results from a node with high
closeness that usually influences a small number of paths (at
least 𝑁 and at most 𝑁 times the number of shortest paths
it lies on). In this way, the vulnerability analysis performed
in this section, although it does not take into account the
modification of power flow in the grid, shows that nodes

detected via centralitymeasures are critical to their respective
power grid.

7. Conclusions

In general, power grids are exponential rather than scale-
free, as shown from the results in Table 2, which makes them
barely vulnerable if only its connection patterns are taken into
account. This information is fundamental if a cascade failure
model is defined for power grids.

The use of global efficiency shows that the modified
centrality measures used in this paper identify critical or
dominant nodes in a power grid. This information can
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be used to filter credible contingencies before performing
a contingency analysis or to define control allocation to
regulate power transfer over specific corridors.
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