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The security of smart mobile terminals has been an increasingly important issue in recent years.
While there are extensive researches on virus detections for smart mobile terminals, most of them
share the same framework of virus detection as that for personal computers, and few of them tackle
the problem from the standpoint of detection methodology. In this paper, we propose a behavior-
based virus detection method for smart mobile terminals which signals the existence of malicious
code through identifying the anomaly of user behaviors. We first propose a model to collect and
analyze user behaviors and then present a polynomial time algorithm for the virus detection. Next,
we evaluate this algorithm by testing it with two commercial malwares and one malware written
by ourselves and show that our algorithm enjoys a high virus detection rate. Finally, we notice that
the rate of change of the virus detection rate of the algorithm with respect to thresholds matches
the real-world situation of user behaviors, which indicates that the proposed algorithm is feasible.

1. Introduction

Smart mobile terminals are a new type of communication devices that combine the func-
tionality of a traditional mobile terminal (i.e., voice-mail and text-messaging) with that
of a handheld computing device such as PDA. Unlike traditional mobile terminals, smart
mobile terminals can run third-party software applications and are data-centric [1]. These
advantages make the smart mobile terminal very attractive to a large number of users.
According to a study by the International Data Corporation, the number of smart mobile
terminals worldwide was 303.4 million in 2010 and more than 450 million in 2011 [2].

Unfortunately, the appealing features of smart mobile terminals with respect to
their data transmission ability, their growing popularity, and their capability of running
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third-party software applications have been taken advantage of by many virus writers.
This is partially due to the fact that there is a lack of regulations and standards on the
third-party application software developments and usages. As a result, those application
programs are typically “certified” by the developers themselves and cannot be fully trusted.
A paradigmatic example is the mobile phone worm Cabir, which was developed by the virus
writing group 29A in 2004 [3], and spreads across wireless networks through Bluetooth. In a
study conducted by some German researchers [4], smart mobile terminals are identified to be
extremely vulnerable allowing easy intrusions from amalicious third party. In particular, they
found that usernames and passwords are at a high risk when they are transferred via smart
mobile terminals. Evidently, virus detection for smart mobile terminals is a vitally important
and pressing issue.

The rest of this paper is organized as follows. Section 2 overviews the existing major
techniques for virus detections on smart mobile terminals. Section 3 proposes our behavior-
based model for virus detection. Section 4 presents and analyzes the algorithm for the model.
Section 5 evaluates the algorithm by testing it with three malwares and Section 6 concludes
the paper.

2. Related Work

Virus detections mainly depend on the antivirus softwares tools. The detection technique
used by most of the antivirus softwares detects viruses by scanning files against a (known)
virus signature database. While this detection technique is instantaneous, accurate, and
mature, it unfortunately cannot work out well in the context of smart mobile terminals for
the following reasons. (1) The variety of operating systems and hardware implementations
of smart mobile terminals, as well as their relatively limited openness to the public, make
it rather difficult to collect the type of smart mobile terminal viruses [5]. (2) The mobile
and compact natures of any smart mobile terminal, such as its memory size, processing
power, and battery life, affect the execution of an antivirus program installed on it [6]. (3)
The situation that an antivirus program installed on a smart mobile terminal needs to be
updated frequently causes a dilemma: if the user does not stay online long enough, then the
antivirus program will not have a chance to be updated properly which will directly affect
the virus detection on the terminal; if the user does stay connected long enough, however,
then that means he has to pay extra fees which could have been saved otherwise [1]. In [7],
four currently available antivirus solutions for handheld devices are evaluated to pinpoint
the weaknesses in the present antivirus software tools.

In addition to detecting viruses by scanning files, there is another virus detection
technique which determines whether a terminal is infected with viruses by comparing the
real-time code or terminal behaviors with the user normal behavior profile formed before to
see if there are any behavior anomalies. Two types of virus detection technique in this line
exist: static analysis and dynamic analysis.

Among the researches of static analysis, Schmidt et al. [8, 9] proposed two static
analysis models that can be used in the Android system. Schmidt et al. [10] also used a
classification algorithm to monitor the Symbian system function calls in programs in order to
determine if some behavior anomaly has occurred.

In the study of dynamic analysis, Egele et al. [11] provided a complete survey on
malicious code detections and program behavior anomaly discoveries and commented on the
development, advantages, and disadvantages of various dynamic virus detection techniques.
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Cheng et al. [1] proposed the first Windows Mobile dynamic unknown-virus detection
model. Schmidt et al. [12] presented a terminal virus detection model which works by
checking Linux kernel calls from application programs. In [13], Enck et al. demonstrated
an Android-based behavior anomaly detection system which basically keeps track of
an application program’s access to sensitive system information and thereby determines
whether or not this program’s behavior is normal with the invocation of a relevant algorithm.

It seems that most of the existing researches on mobile terminal malicious code
detections focus on selecting different attributes of the system to monitor or to study and
rarely seek to find a new approach in terms of methodology. Note that mobile terminals
are a part of people’s daily life; therefore, the observed behaviors of mobile terminals
naturally reflect some aspects of human behaviors. Note also that human behaviors are
multidimensional and have cycles, which should be considered when we deal with the virus
detections on smart mobile terminals. As such, we, in this paper, propose a novel user-
behavior-based virus detection scheme for smart mobile terminals which takes the factor of
human behaviors into account and detects virus by identifying anomalies in users’ behaviors.

3. Behavior-Based Model for Virus Detection

We now describe the user behavior-based model for virus detections. The model creates a
user behavior profile through collecting the user’s regular behaviors first and then compares
the user’s real-time behavior with the established behavior profile through an invocation of
the corresponding algorithm to determine if the terminal is infected with malicious code.

3.1. Selection of the User Behavior Indicator

The current researches for virus detections mostly concentrate on some properties of the
application programs installed on mobile terminals, rather than on the properties of smart
mobile terminals themselves. Although a user might make frequent changes in terms of using
a specific application program, the usage of the terminal as a whole tends to be invariant
which can be seen and measured by such terminal properties as power consumptions and
traffic volumes. For example, if a user experiences a high power consumption (on using some
programs), then he would try to keep the total power consumption balanced by reducing
the uses of other programs. Thus, determining whether a terminal is infected with virus by
inspecting a certain property of the terminal itself seems to be a more reasonable approach.
Actually, Buennemeyer et al. [14] proposed a remarkable virus detection model which
determines user behavior anomaly in real time by inspecting the power consumptions of
terminals; Shabtai et al. [15] demonstrated a host-based behavior anomaly detection system
which, via the technique of machine learning, also works by inspecting the usage situation
associated with some terminal properties.

With the rapid development of the mobile Internet, we have been experiencing an
increasing number of application programs that depend on the access to the mobile Internet,
for instance, the weather forecasting software and the InstantMessenger software. Also, some
application program developers embed certain adware (e.g., AdMob) into their products
(especially free products) which needs a frequent access to the mobile Internet to update
itself [16]. All of these not only can result in a huge undesired increase of traffic on users’
mobile terminals, but also may provide hackers an opportunity to invade users’ privacy.
Unfortunately, the traffic management component of most security software tools can only
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keep track of the traffic volume for each individual program installed on a terminal and
is unable to determine whether the terminal experiences an abnormal behavior in a timely
manner. As a result, it may just be simply too late when users themselves notice some unusual
traffic situations on their terminals. Thus, it is significant to be able to detect users’ traffic
anomalies in real time. In this paper, we select the users’ traffic volume as their behavior
indicator to devise the virus detection technique.

3.2. Description of the Model

The model first collects a user’s traffic data over a certain period of time and designates this
set of data as the initial value regarding the user’s behavior properties. This initial set of
data is then classified into different classes through the clustering technique; thereby, a user’s
normal behavior profile is established. Subsequent traffic data collected from the user is then
compared to the user’s profile via a similarity-checking scheme to determine whether a user
behavior anomaly has occurred. Accordingly, the model consists of the following modules: a
user behavior collecting module, a user behavior profile creating module, a virus detection
module, and a virus alerting and bookkeeping module.

It is worth noting that users’ behaviors are heterogeneous. For example, a user may
exhibit distinct (but normal) behaviors at different occasions (such as on vacation, at work,
on business trips, etc.). As such, simply classifying a user’s real time behaviors into one
class may not be able to correctly determine if this behavior is normal or not, and in the
worst case scenario, may treat a normal behavior as abnormal. We, thus, in addition to
the clustering, formalize the notion of similarity between two instances of data and use
the ensuing calculation of similarity to ensure the correctness of the data classification and
virus detection. A user normal behavior profile is first created by the model using the initial
data, and subsequent data instances collected on each day are checked against this profile by
the corresponding virus detection algorithm. If the computing result shows no sign of virus,
then the user profile will be updated by including the new instances of data into appropriate
classes; otherwise, the user will be alerted that the mobile terminal is probably infected with
some viruses. The flow chart of the model is depicted in Figure 1.

3.3. Module for Collecting User Behaviors

This module acquires the factual data regarding the user terminals’ traffic, preprocesses this
set of data for the purpose of preparation, and then passes it to the user behavior profile
creating module for the establishment of user normal behavior profiles.

We divide a day (24 hours) evenly into p time intervals. For example, if p = 4, then
the four time intervals could be (02–08, 08–14, 14–20, and 20–02). The traffic volume for a
specific time interval t (1 ≤ t ≤ p) can be obtained by subtracting the traffic volume at the
beginning time of the interval t from that at the end time of the interval t. In the example
above, if t = 3, then the beginning time and the end time for this internal would be 14 and 20,
respectively. The aggregation of the traffic volume of each interval forms a piece of data for
the user behavior collecting module. The format of data is defined as follows.

Definition 3.1. A data instance X is a tuple

(
a1, a2, . . . , ap

)
, (3.1)
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Figure 1: Model flow chart.

where p is the number of time intervals in a day, and ai (1 ≤ i ≤ p) is the traffic volume in the
ith time interval.

Much of our experiences and heuristics indicate that human behaviors bear a certain
kind of periodicity and regularity, which is further evidenced by [17] in which it is shown
that the interevent time associated with human behaviors follows the fat-tailed distribution.
In our work, we stipulate that the users’ behavioral period for smart mobile terminals is one
week; subsequently, the user behavior collecting module gathers the user traffic information
for a week as the initial data for the model.

3.4. Module for Creating User Profiles

The task of this module is to establish user normal behavior profiles which give a defining
description for the normal user behaviors. In other words, this module records the traffic flow
volumes at different time intervals when the user is not under attack.

As mentioned before, human behaviors are heterogeneous and multifarious. Even
within the same behavioral period, the behaviors exhibited by a person when he is at work,
on vacation, or on business trips tend to be all different. As an indispensable part of people’s
life, mobile terminals should accordingly possess multifarious behaviors or performances.
Clearly, it would be unreasonable to treat all user behaviors in one behavioral period as the
same and classify them into only one group. We, instead, split the user behaviors in one
behavioral period into several classes using the clustering technique proposed in [18] and
thereby create multiple user behavior subprofiles (one subprofile for each class). By doing so,
the heterogeneous and multifarious nature of user/terminal behaviors will be respected. The
details of creating user behavior profiles will be discussed in Section 4.
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3.5. Module for Virus Detections

This module consists primarily of a virus detection algorithm which takes the data collected
from a user terminal in a day as input, performs the relevant computation, and produces an
answer to the question: “Is this terminal infected with virus?” If the result is negative, then
the user’s normal behavior profile contents will be updated with the current data to make it
more accurate; otherwise, the virus alerting module will be invoked with a warning message.
Both the virus detection algorithm and the user behavior profile updating will be described
in detail in Section 4.

3.6. Module for Virus Alerting and Bookkeeping

Once having received the warning message sent from the virus detection module, this
module alerts the user that the terminal may have been infected with some viruses or worms
and at the same time records such information as date, time, similarity degree calculation,
traffic volume, and so forth into a log. Users can then likely locate the viruses by examining
the recently installed programs on and/or downloaded files to the terminal. Moreover, users
can also educate themselves about terminal behavior anomalies by studying the contents and
properties shown in the log, which would be valuable in helping them to be more vigilant to
terminal behavior anomalies in the future.

4. Algorithms Used in the Model

In this section, we present the algorithms that deal with the user behavior profile creation and
updating and virus detections.

4.1. Creation and Updating of User Profiles

Our model uses the clustering technique to classify user behaviors into different classes. An
entire user behavior profile consists of several classes (or subprofiles), whereas each class
consists of several data instances which are collected by the user behavior collecting module.
The clustering technique used in our work is the classic MacQueen’s k-means algorithm [19]
which is notably simple and fast at converging.

Let m be the number of classes resulted in from the k-means clustering algorithm,
and Xclass(1), Xclass(2), . . . , Xclass(m) be the initial centers of these classes. If a data instance X
(i.e., traffic flow volumes collected on some day) can be classified into class k and does not
reveal any abnormal behaviors, then class k needs to be updated. Assuming there are n data
instances X1, X2, . . . , Xn with each Xi = (ai1, ai2, . . . , aip) in class k, the updating of class k is a
two-step process.

Step 1. Include X into class k as a new data instance, that is, let Xn+1 = X.

Step 2. Recalculate the center of class k, Xclass(k) = (
∑n+1

i=1 ai1/(n + 1),
∑n+1

i=1 ai2/(n +
1), . . . ,

∑n+1
i=1 aip/(n + 1)).
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4.2. Definition of the Similarity Degree

We now address the issues concerning the algorithm for virus detections. We introduce a
new notion similarity degreewhich formalizes the situation of how close (or similar) two data
objects can be. Given any two data objects, the basic idea is to use the reciprocal of their
distance to capture the degree of their similarity, so that the smaller (or larger) the distance
the greater (or littler) the similarity.

Note that there are mainly two different formulations regarding the measurement
of distance: Euclidean distance [20] and Mahalanobis distance [21]. Euclidean distance is
the one that is commonly used in calculating the distance between two points in an n-
dimensional space. In our work, Euclidean distance is adopted in calculating similarity
degrees between two data instances or between a data instance and a class.

Definition 4.1. If p is the number of time intervals in a day, and Xi = (ai1, ai2, . . . , aip) and
Xj = (aj1, aj2, . . . , ajp) are two data instances, then the similarity degree between Xi and Xj is
defined as flows:

sim
(
Xi,Xj

)
=

1
√∑p

k=1

(
aik − ajk

)2
. (4.1)

Definition 4.2. Let X = (a1, a2, . . . , ap), class(i) = (Xi1, Xi2, . . . , Xin), and Xclass(i) be,
respectively, a data instance, a class with n data instances, and the center of class i. The
similarity degree sim(X, class(i)) between X and class i is defined to be the similarity degree
between X and the center of class i, that is,

sim(X, class(i)) = sim
(
X,Xclass(i)

)
. (4.2)

4.3. Virus Detection Algorithm

We are now ready to describe the virus detection algorithm which is shown in Algorithm 1.
This algorithm consists of four steps. The first step (lines 1-2) uses Definition 4.2

to calculate the similarity degree between X and each class class(i) of the entire user
profile; sim(i) = sim(X, class(i)) (i = 1, 2, ..., m, m is the number of user subprofiles).
The second step (lines 3-4) finds the maximum similarity degree MaxClassSim among
all sim(i) and the class index x for which sim(x) = MaxClassSim. The result of this
step means that X belongs to the user subprofile (or class) x. The third step (lines 5–
8) computes the similarity degrees between X and each data instance in class x and
produces the minimum MinSim and the maximum MaxSim of all these similarity degrees.
The last step (lines 9–14) determines if the terminal is infected with virus. Namely, if
either MinSim or MaxSim is below the threshold value, then X exhibits an abnormal
behavior and the terminal is infected with some virus; otherwise, X is a normal behavior
and will be used to update the user subprofile x using the algorithm in Section 4.1.

4.4. Algorithm Time Complexity Analysis

We now show that the proposed algorithm has polynomial time complexity.
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Input:
The traffic data instance X collected on one day (m is the number of user subprofiles; n is

the number of instances in the user subprofile into which X can be classified.);
Output:

The answer to the question: “Is this terminal infected with virus?”;
(3.1) for i = 1 to m do
(4.1) Calculate the Similarity degree sim(X, class(i)) between X and user subprofile i;
(4.2) for i = 1 to m do
(4) Find the maximum value MaxClassSim among all sim(X, class(i)) and the

corresponding class class(x) that yieldsMaxClassSim;
(5) for j = 1 to n do
(6) Calculate the similarity degree sim(X,Xj) between X and the jth instance in class x;
(7) for j = 1 to n do
(8) Find the minimum value MinSim and the maximum value MinSim among all sim(X,Xj);
(9) if MinSim > a&&MaxSim > b then (a, b are predetermined thresholds.)
(10) Update subprofile x by including X into it;
(11) return there’s no virus;
(12) else
(13) return the terminal is infected with virus;
(14) end if

Algorithm 1: Virus detection algorithm.

Proposition 4.3. Algorithm 1 has time complexity O(m + n).

Proof. From Algorithm 1 and the explanation above, we can see that the first step takes
O(m) time to compute the similarity degrees between X and all user subprofiles; that the
second step finds MaxClassSim in O(m − 1) time; that the third step takes O(n + 2(n − 1))
time in computing the similarity degrees between X and all instances of the user subprofile
which it belongs to and finding their maximum and minimum values; that the last step
of the algorithm is of O(1) time. It follows immediately that the entire algorithm has time
complexity O(m + n).

5. Experimental Results

In order to evaluate the virus detection algorithm presented in the previous section, we
conducted some experiments by implementing the algorithm on the Android open platform.
In the experiment, we split a day (24 hours) into four time intervals 02–08, 08–14, 14–20, and
20–02 and collected the regular traffic volume information of 10 volunteers on these intervals
of a day, for a period of one week. This set of data was used to create the user normal behavior
profiles by the relevant module described in Section 3.4. Each user profile was classified into 3
classes corresponding, respectively, to the different user behaviors exhibited when they are at
work, on vacation, and on business trips, so that each user has 3 normal behavior subprofiles.

As an example, Figure 2 depicts the traffic volumes of a particular user on the four
intervals of a day for consecutive 7 days (a week), and Figure 3 shows his total traffic volume
of each day for that week. From these figures, it can be seen clearly that this user exhibits
similar behaviors on Monday, Friday, Saturday, and Sunday and on Tuesday andWednesday
as well. His behavior on Thursday, however, is not close to that of any of the other days.



Discrete Dynamics in Nature and Society 9

Time

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Fl
ow

 v
ol

um
e
(M

B
)

Mon Tue Wed Thu Fri Sat Sun

Flow

Figure 2: Traffic volumes indexed by time intervals.
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Figure 3: Traffic volumes indexed by a day.

We tested our algorithm by installing some malwares onto the volunteers’ mobile
terminals and running the algorithm to detect those malwares. The malwares used were the
malicious version of SteamyWindow andMonkey Jump 2, as well as a worm Furtively Load,
which was written by ourselves. The detection rates are shown in Table 1 .

Evidently, Table 1 demonstrates that the algorithm has an excellent detection rate
against the malware written by ourselves and a very good detection rate (above 85%) against
the other two commercial malwares, which indicates that our algorithm is fully capable of
detecting malicious code in an effective manner.

Figures 4 and 5 show the changes of the detection rate of the algorithm with respect
to one of the two thresholds (a and b in Algorithm 1) when the other one is fixed. As we can
see from these two figures, the detection rate increases with a decreasing rate of change as
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Table 1: Comparison of virus detection rates.

Malware name Number of total behavior anomaly Number of successful detections Detection rate
Steamy Window 100 91 91%
Monkey Jump 2 100 86 86%
Furtively Load 100 96 96%
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Figure 4: Detection rate with respect to a when b = 1.5.

the threshold increases, converging to a stable value when the threshold is beyond a certain
point (a = 0.8 in Figure 4, b = 1.5 in Figure 5). This shows that the virus detection rate cannot
be gained any more after the threshold reaches a certain value, which is consistent with the
realistic situation that user behaviors are not identical in spite of being periodically similar
since a higher threshold requires a closer matchup between user behaviors. Thus, we claim
that our model faithfully reflects the human behaviors in the real world. Also, we found that
when a > 0.8 with b being fixed, some normal user behaviors will be treated as abnormal
creating a false alarm thereby. So a is set to be 0.8 in our algorithm, and b to 1.5 for the same
reason.

6. Conclusion and Future Work

Human behaviors are heterogeneous, multifarious, and periodic; user behaviors on smart
mobile terminals naturally resemble these characteristics of human behaviors. As such, these
behavioral characteristics should be factored in when devising a behavior anomaly detection
technique for smart mobile terminals, which is unfortunately not the case in the current virus
detection research for mobile terminals.

In this paper, as an initial research effort to deal with this situation, we have proposed a
novel virus detection strategy/algorithm for smart mobile terminals which takes into account
the behavioral characteristics inherited by mobile terminals from humans. The analysis and
implementation of the algorithm show that it is of polynomial time complexity, has a very
high virus detection rate, and reflects the true user behaviors in the real world.
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Considering that the evaluation of a virus detection algorithm can be enhanced by
checking how many normal user behaviors are caught as abnormal (in addition to the
abnormal behavior detection rate), and that everyone lives in a society and interacts with
a group of people, we plan, as the future work, to further the study of user behavior anomaly
detections with a false alarm rate report and on the levels of individual, group, and the
combination of both.
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