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Complex dynamical features are explored in a discrete interregional macrodynamic model propos-
ed by Asada et al., using numerical methods. The model is five-dimensional with four parameters.
The results demonstrate patterns of dynamical behaviour, such as bifurcation processes and co-
existence of attractors, generated by high-dimensional discrete systems. In three cases of two-di-
mensional parameter subspaces the stability of equilibrium region is determined and its bound-
aries, the flip and Neimark-Hopf bifurcation curves, are identified by means of necessary coeffi-
cient criteria. In the first case closed invariant curves (CICs) are found to occur through 5D-crater-
type bifurcations, and for certain ranges of parameter values a stable equilibrium coexists with an
unstable CIC associated with the subcritical bifurcation, as well as with an outer stable CIC. A re-
markable feature of the second case is the coexistence of two attracting CICs outside the stability re-
gion. In both these cases the related hysteresis effects are illustrated by numerical simulations. In
the third case a remarkable feature is the apparent unfolding of an attracting CIC before it evolves
to a chaotic attractor. Examples of CICs and chaotic attractors are given in subspaces of phase
space.

1. Introduction

We consider a 5D nonlinear discrete timemodel of the economic transactions between two re-
gions with fixed exchange rates. The model is an extension of the original idea of Kaldor [1]
which may be relevant, for example, to the analysis of the economic interdependency bet-
ween two countries under currency integration such as two countries of the Eurozone. The
two regions interact economically through trade and capital movement. We note that an anal-
ogous 5D interregional model in continuous time was studied in Asada [2] and also in Malik
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and Zimka [3]. The present model was first studied in Asada et al. [4], mainly by analytical
methods, while the corresponding model with flexible exchange rates was presented and
explored numerically in Asada et al. [5]. Other two-regional Kaldorianmodels of business cy-
cles, based on trade interaction between the regions, have been studied by Lorenz [6] and Puu
[7].

In a previous paper (see [8], hereafter called paper I)we explored this model numeri-
cally and determined a trade threshold for the emergence of business cycles. In the present
paper we pursue further our numerical exploration to reveal different aspects of the model
dynamics. One of the aims is to illustrate the feasibility and effectiveness of the numerical ap-
proach for dynamical systems of high dimensionality and several parameters.

The present exploration concerns three characteristic cases of parameter ranges. In
each case we determine numerically the stability region in parameter space and identify the
flip and Neimark-Hopf bifurcation curves as parts of the boundary of this region. We also
compute bifurcation and Lyapunov exponent diagrams providing information on the occurr-
ing closed invariant curves (CICs) and on the type of bifurcation responsible for their occur-
rence.

The specific aim here is to illustrate certain remarkable patterns of asymptotic dyna-
mical behaviour that occur in this model, which to the authors’ knowledge have not previ-
ously been presented for high-dimensional systems. Indeed, in the first case considered CICs
are found to occur through “catastrophic” 5D-crater-type bifurcations, as a result of which
there exists a region of parameter values of the model for which a stable equilibrium of the
economy coexists with an attracting CIC, as well as with the repelling CIC characteristic of
the subcritical bifurcation. We explore the event of this bifurcation process in some detail and
illustrate the associated hysteresis effect by numerical simulations. In the second case CICs
first appear by supercritical bifurcations, and a remarkable feature is the coexistence and dis-
continuous succession of attracting CICs, occurring outside the stability region. Again, we
explore this case of attractor coexistence and illustrate the associated hysteresis effect. In the
third case CICs similarly appear by supercritical bifurcations, and a remarkable feature in this
case is the unfolding of an attracting CIC. Examples of fluctuations corresponding to CICs
and chaotic behaviour of the economic variables are presented in sections of phase space.

The paper proceeds as follows. In Section 2 we present briefly the equations of the
model. In Section 3 we present the position of equilibrium and briefly discuss the stability re-
gion in sections of the parameter space and the boundary curves of that region, namely the
flip and Neimark-Hopf bifurcation curves. The results of our exploration in the three cases
considered are presented, in the form of stability region and bifurcation and Lyapunov expon-
ent diagrams, and discussed in Sections 4 to 6. Section 7 summarizes and concludes.

2. Model Equations

We consider the 5D model of interregional Kaldorian dynamics under fixed exchange rates
proposed by Asada et al. [4]. The equations of the model in the form explored in paper I are
the following five nonlinear difference relations:

Y1(t + 1) − Y1(t) = F1 = α1[−0.36Y1(t) + 75 + Φ1(t) + δH(t)],

K1(t + 1) −K1(t) = F2 = Φ1(t),

Y2(t + 1) − Y2(t) = F3 = α2[−0.36Y2(t) + 75 + Φ2(t) − δH(t)],
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K2(t + 1) −K2(t) = F4 = Φ2(t),

M1(t + 1) −M1(t) = F5 = δH(t) + β
[
10
(
[Y1(t)]1/4 − [Y2(t)]1/4

)
+M − 2M1

]
,

(2.1)

where we have abbreviated

Φi(t) = f[Yi(t)] − 0.3Ki(t) − 10[Yi(t)]1/4 +Mi(t), i = 1, 2,

H(t) = −0.3Y1(t) + 0.3Y2(t) + 40.
(2.2)

Total nominal money supply of the two regions is fixed atM1(t) +M2(t) = M = 600, and the
function f is a particular case of the Kaldorian S-shaped dependence of the investment fun-
ction on income given by

f(Y ) =
80
π
arc tan

[
9π
80

(Y − 250)
]
+ 35. (2.3)

The subscript i (= 1, 2) is the index number of a region and t denotes the time period. The
price levels are considered fixed, and the meanings of the system variables are as follows. Yi

is the real regional income, Ki the real physical capital stock, and Mi the nominal money
stock. The parameters of the model are αi > 0 the adjustment speed of the goods market of
each region, β > 0 the degree of capital mobility, and δ the degree of interregional trade
(0 ≤ δ ≤ 1). For a fuller description of the model and its economic foundations we refer to
paper I.

3. Equilibrium Stability and Bifurcations

It is easily found that the system has a unique equilibrium at

Y ∗
1,2 =

625
3

± 1000δ
3(3 + 5δ)

,

K∗
i = 1000 +

10
3

{
f
(
Y ∗
i

) − 5
[(
Y ∗
1

)1/4 + (
Y ∗
2
)1/4]} +

(−1)i+1δ
6β

[
400 − 3

(
Y ∗
1 − Y ∗

2
)]
, i = 1, 2,

M∗
1 = 300 + 5

[(
Y ∗
1

)1/4 − (
Y ∗
2
)1/4] +

δ

20β
[
400 − 3

(
Y ∗
1 − Y ∗

2
)]
.

(3.1)

All equilibrium values except K∗
2 are positive, for β > 0 and 0 ≤ δ ≤ 1.K∗

2 is also positive and
we have a positive equilibrium if

β > β0, β0 ∼= 21δ(22 + 91δ)
143(42 + 242δ + 287δ2)

< β1 ∼= 0.03. (3.2)
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Stability of the equilibrium is determined by the roots of the characteristic polynomial of the
Jacobian of the mapping (2.1):

P5(λ) = λ5 + a4λ
4 + a3λ

3 + a2λ
2 + a1λ + a0, (3.3)

and for stability all roots of P5(λ)must be inside the unit circle in the complex plane. Our basic
tool for the numerical determination of the region of stability is the grid-search technique.
This involves computing the characteristic polynomial and its roots at the node points of a
dense grid in a two-dimensional space of parameters and plotting the points at which the
equilibrium is stable.

The flip bifurcation curve is represented by the coefficient relation

P5(−1) = a0 + a2 + a4 − (1 + a1 + a3) = 0, (3.4)

as a necessary condition, while a coefficient relation that must be satisfied as a necessary con-
dition by the Neimark-Hopf bifurcation curve can be obtained by requiring that two of the
roots of the characteristic polynomial have unit product (see paper I) (points of a dense grid):

g
(
α1, α2, β, δ

)
=a4

0+a
2
0(a1 − 2)−a2

2 − a0a2

(
a2
0 + 3a1 − 2a3 − 1

)
+ (1 + a1 − a3)

[
(a1−1)2 + a2

0a3

]

+a4

{(
1 + 2a2

0 + a1

)
a2−a0

[
a2
0+a

2
1+3a3−a1(2 + a3)−1

]}

−a2
4

(
a2
0 + a1 + a0a2

)
+a0a

3
4

= 0.
(3.5)

Each one of (3.4) and (3.5) represents a relation among the model parameters α1, α2, β, δ.
For fixed values of two of the parameters it represents a relation between the remaining two
parameters providing one or more curves in the plane of the remaining parameters. Segments
of the curves arising from (3.4) form the parts of the boundary of the stability region that are
flip bifurcation curves, and similarly segments of the curves arising from (3.5) form the parts
of the boundary that are Neimark-Hopf bifurcation curves. In such a parameter plane CICs,
the discrete equivalent of cyclical behaviour, are generated locally by bifurcation on a Nei-
mark-Hopf bifurcation curve.

The bifurcation is established theoretically by the Neimark-Hopf bifurcation theorem
for discrete systems (see [9, 10]). It is employed successfully for the prediction of bifurcations
in the present high-dimensional system under the same assumptions regarding the critical
pair of eigenvalues of the Jacobian at the critical value of the bifurcation parameter, with the
additional plausible requirement that all other eigenvalues satisfy the stability criterion |λ| <
1, the case of interest being the occurrence of CICs when stability of equilibrium is lost.

In the case of a supercritical bifurcation an attracting CIC is born out of the equilibrium
when the latter loses stability. In the case of a subcritical bifurcation, on the other hand,
equilibrium loses stability because a repelling CIC collapses on it. Both these bifurcations are
local. The subcritical bifurcation, however, is often preceded by a global bifurcation in which
an attracting CIC of finite amplitude is also generated inside the stability region. In this case
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Figure 1: Region of stability of the equilibrium for α1 = α2 = α = 1 in the (δ, β) parameter plane. Flip bi-
furcation curve is shown dashed.

we have coexistence of two attractors of different type, the equilibrium point itself and a
stable CIC, with the unstable CIC also present. This process begins with the generation of
the two CICs inside the stability region and ends when equilibrium loses stability on the bi-
furcation curve. Outside the stability region only the stable outer CIC remains. This two-
phase bifurcation process is sometimes called a crater bifurcation (see [11]). It can be thought
of as a catastrophic event occurring at the loss of equilibrium stability, due to the lack of con-
tinuity of the evolution of the steady state of the economy involved in the process. Note that as
stated in Benhabib and Miyao [12] both supercritical and subcritical orbits seem plausible
from an economic point of view. In economic dynamics, however, it is usually the super-
critical stable CICs that are seen as stylized business or growth cycles.

In the next sections we proceed to discuss some interesting dynamics in three specific
cases of parameter ranges of the model.

4. Hypercrater Bifurcation, Coexistence of Point and CIC Attractors

In this section we assume equal speeds of adjustment of the goods markets of the two regions
α1 = α2 = α and adopt the value α = 1 for the common speed of adjustment. We are then left
with the two parameters β and δ for the model. This is the case exhibiting most clearly the
economic interaction of the regions, as it leaves the regional interaction parameters free for
variation enabling one to explore the influence of regional interaction on the dynamics of the
economy. The stability region in this case as found by our grid search technique is shown in
Figure 1. All branches of the curves produced by relations (3.4) and (3.5) are included but it is
easy to see the relevant segments forming the boundary curves of the stability region. The
curve representing condition (3.2) for positive equilibrium is also drawn in as a continuous
line (at the bottom of the diagram). The region’s upper right-hand “corner” is at δ = 0.5633,
β = 1.0863. For the economic interpretation of stability diagrams in the (δ, β) parameter plane
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(a) (b)

Figure 2: Bifurcation diagrams for α = 1, β = 0.8.

we refer to paper I. The bifurcation diagrams of the regional incomes Y1 and Y2 are shown in
Figure 2 for β = 0.8, as computed with starting values very near to the equilibrium.

The sudden appearance of finite amplitude at the value of the bifurcation parameter
δ ∼= 0.568, at which equilibrium loses stability, suggests that the stability loss is caused by a
subcritical Neimark-Hopf bifurcation and that the finite size attractor appearing exists before
the loss of equilibrium stability.

In Figure 3 we present the results of some numerical experiments aimed at obtaining
numerical-visual evidence of the existence of the unstable CIC, characteristic of the subcritical
bifurcation, which causes equilibrium to lose stability by collapsing on it at the critical value
of the bifurcation parameter. Each bifurcation diagram, and corresponding Lyapunov expon-
ent diagram, of Figure 3 has been computed with the same starting values, equal to the equi-
librium values for all variables, except Y2 the starting value of which is marked in each case
by a dot.

It is seen that the larger the distance of the starting Y2 value is from its equilibrium
value, the earlier the CIC appears in the bifurcation and Lyapunov exponent diagram. The
stable CIC appears first (earliest) at δ ∼= 0.535 for a starting distance of +10 (or more) units in
Y2, in the first diagram. In the second diagram for a starting distance of +8 units in Y2 the
stable CIC appears later (at δ ∼= 0.546), and in the third diagram for a starting distance of +6
units in Y2 it appears even later (at δ ∼= 0.559). Finally, in the last diagram for near-zero start-
ing distance in Y2 the stable CIC appears when equilibrium loses stability at δ ∼= 0.568.

Repeating the experiment for several starting distances in Y2, above and below the
equilibrium value (heavy line), we obtain the curves shown in all bifurcation diagrams of
Figure 3. For starting distances in Y2 between these curves orbits converge to the equilibrium,
and for starting distances in Y2 above the upper or below the lower curve orbits converge to
the outer stable CIC. These curves provide the sought visualization of the Y2 amplitude of the
unstable CIC which causes equilibrium to lose stability by collapsing on it at the critical value
of the bifurcation parameter. It is established by these results that in the interval of the
bifurcation parameter values 0.535 < δ < 0.568 the stable equilibrium coexists with an
inner unstable CIC and with an outer stable CIC, as in the crater bifurcation case of
two-dimensional systems. For a high-dimensional system as the present one, we call this
a “hypercrater” bifurcation process. The outer stable CIC is shown for two values of δ in
Figure 4.
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Figure 3: Bifurcation diagram (of Y2) and Lyapunov exponent for α = 1, β = 0.8, and various starting
values of Y2, resulting from numerical experiments designed to detect the interval of attractor coexistence
and the “invisible” repelling CIC of the subcritical bifurcation.
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Figure 4: Stable CIC for α = 1, β = 0.8, and δ = 0.55 (bold, coexisting with stable equilibrium), δ = 0.7, in
(Y1, Y2) projection.

The subcritical-crater bifurcation process has interesting implications from the mathe-
matical as well as the economic point of view. These have been studied extensively in the case
of two dimensions (see, e.g., [11, 13–15]). The mathematical interest relates to the study of the
first phase of the bifurcation process in which the equilibrium is still stable and the attracting
CIC coexists with the repelling CIC. From the economic point of view the interest relates to the
interpretation of the dynamics involved in the case of attractor coexistence. When the stable
equilibrium coexists with the attracting CIC, the coexisting repelling CIC bounds the basin of
attraction of the equilibrium and ensures that small shocks do not affect the dynamical behav-
iour of the system. However, large shocks may lead to permanent fluctuations. In economic
policy terms the hysteresis effect, whichmay be present in cases of attractor coexistence, creat-
es uncertainty since adjustment of the parameter by policy cannot guarantee a return to stable
equilibrium.

This effect has been illustrated for an important two-dimensional economic model in
Agliari [16]. Here we illustrate the same effect in the case of the present 5D model for α = 1,
β = 0.8. Figure 5 shows the trajectory under two shocks applied to the system by means of
sudden changes of the parameter δ (parametric shocks). Initially the value of the bifurcation
parameter is δ = 0.55 for which the equilibrium is stable and coexists with a stable CIC (see
Figure 2). We start the iteration near the equilibrium value, and after a transient phase the
value of Y2 quickly settles down to the equilibrium value Y ∗

2
∼= 178.03. At t = 200 a shock on

the system is applied, by changing the parameter value to δ = 0.6 for which the equilibrium is
unstable. The trajectory begins to fluctuate and after a transient phase attains regular large
fluctuations. It has been attracted by the stable CIC.

A second shock is applied, at some later time, by restoring the parameter to its pre-
vious “stable” value. There are now two possibilities as follows.

If at the time of application of the second shock the variables have values sufficiently
near the stable equilibrium, then the trajectory is attracted by the equilibrium again. In our ex-
ample this happens with the second shock applied at t = 515 as shown in Figure 5(a).
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Figure 5: Trajectory of Y2 for α = 1 and δ = 0.55 initially attracted by the stable equilibrium. After the first
shock when the value of δ is changed to 0.6 the trajectory is attracted by the stable CIC. (a)After the second
shock applied at t = 515 the trajectory is attracted by the equilibrium. (b) After the second shock applied
at t = 500 the trajectory continues being attracted by the CIC. The two parametric shocks are marked by
dots.

If, however, at the time of application of the second shock the variables have values
sufficiently far from the stable equilibrium, then the trajectory is attracted by the coexisting
stable CIC instead. In our example this happens with the second shock applied at t = 500 as
shown in Figure 5(b). The trajectory does not return to the equilibrium as could be expected
but continues to fluctuate (soft line) as before the second shock. The trajectory continues to be
attracted by the coexisting CIC because at this different time of application of the second
shock for the new value of the parameter the variables have values corresponding to a point
in phase space which still belongs to the basin of attraction of the coexisting CIC. This is the
hysteresis effect.

5. Coexistence of Attracting Closed Invariant Curves

Let us now specify a fixed speed of adjustment of the goods market of region 2, α2 = 0.1, and
the extreme value of the degree of interaction of the two economies through trade, δ = 1. In
this case we are left with the two free parameters α1 and β. For the specification δ = 1 the
equilibrium expressions (3.1) are simplified to

Y ∗
1 = 250, Y ∗

2 =
500
3

∼= 166.667,

K∗
1
∼= 990.510 +

25
β
, K∗

2
∼= 860.058 − 25

β
, M∗

1
∼= 301.917 +

15
2β

.

(5.1)

The stability region of the equilibrium in this case is shown in Figure 6. The part of the stabi-
lity region in which the roots of the characteristic equation are all real is shown dark-shaded.
The part in which some of the roots are complex conjugate is shown light-shaded. The upper
right-hand “corner” is at β = 1.0099, α1 = 0.03663.

We see that for the specifications adopted in the present case of the model, increase of
the parameter α1, the speed of adjustment of the goods markets of region 1, destabilizes the
equilibrium quickly (for small values of α1). Equilibrium stability is possible only when α1 is
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Figure 6: Region of stability of the equilibrium for δ = 1, α2 = 0.1 in the (β, α1) parameter plane. Flip
bifurcation curve is shown dashed.

(roughly) less than half of α2. On the other hand, increase of the parameter β, the degree of
capital mobility between the regions, destabilizes the equilibrium less quickly and does not
appreciably affect the destabilization process due to α1. The Neimark-Hopf bifurcation curve
can be identified as part of the boundary of the stability region and is shown as a continuous
line.

As in the previous case, we have employed numerical simulations to obtain appro-
priate bifurcation and Lyapunov exponent diagrams. In Figure 7 we present the bifurcation
diagrams of the variables Y1, Y2, and K1 together with the corresponding Lyapunov expon-
ent diagram, for β = 0.1 with α1 as the bifurcation parameter. These bifurcation diagrams pro-
vide visual estimates of the amplitude size of the occurring fluctuations.

In the present case of the model the Neimark-Hopf bifurcation curve gives rise to
supercritical bifurcations. The CICs generated initially increase in amplitude in a continuous
manner. But, for small values of the parameter β, such as the present value β = 0.1, after a cer-
tain value of α1 we meet with a discontinuous succession of attractors. This appears as a sud-
den jump observed clearly in the bifurcation diagrams where we have a sudden decrease of
amplitude size. As seen in Figure 7 this sudden jump occurs at α1

∼= 0.40.
The sudden change of amplitude implies a discontinuous succession from one attractor

existing before this succession value of α1 to another attractor existing after this value. We
found, however, that the succession value of the bifurcation parameter at which the discontin-
uity appears depends on the starting values used for the computation of the bifurcation diag-
ram. While the discontinuity appears at α1

∼= 0.40 if the starting values are near the equi-
librium, it appears at α1

∼= 0.45 if the starting values are far from the equilibrium. This is clear
in Figure 8 showing in detail the results of the two calculations. It is the same phenomenon as
in Section 4 (Figures 2 and 3) indicating coexistence of attractors, but now the coexisting attra-
ctors are both closed invariant curves. The two attractors coexisting in this example are shown
in Figures 9 and 10.
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Figure 7: Bifurcation diagrams and Lyapunov exponent for δ = 1, β = 0.1 and α1 as bifurcation parameter.

This phenomenon has similar characteristics to the hypercrater bifurcation process illus-
trated in the previous section. But, instead of a “point-to-CIC” interplay inside the stability
region of the equilibrium, we now have a “CIC-to-CIC” interplay outside the stability region.
The second attracting CIC appears suddenly when the first one is still attracting (in this exam-
ple at α1

∼= 0.40), just as in the crater bifurcation the attracting CIC appears when the equi-
librium point is still attracting. The two CICs then coexist until the first CIC becomes unstable
(at α1

∼= 0.45), and for larger values of the parameter the second CIC dominates the system re-
maining as the only attractor.

Implications of this coexistence of attracting CICs are similar to those of the crater bi-
furcation discussed in Section 4. Economic interpretation is that small shocks do not generally
affect the fluctuations but larger shocks may lead to quite different fluctuations. Among the
characteristics of both types of attractor coexistence is the associated hysteresis effect.

In Figure 11 we now illustrate this effect for the CIC-to-CIC interplay of the coexisting
attracting CICs of the present example (β = 0.1). Initially the value of the parameter is α1 =
0.43. The first CIC is still stable but the second CIC already exists (see Figure 8). With starting
values far from the equilibrium the trajectory settles on the first CIC, after a transient phase.
At t = 300 we apply a shock on the parameter, changing its value to α1 = 0.45 for which the
first CIC has become unstable. The trajectory begins to deviate from the first CIC and settles
on the second CIC, the latter being the only attractor for the new value of the parameter. At t =
600 a second shock on the parameter is applied, restoring it to its initial value. The hysteresis
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Figure 8: (a) Details of the bifurcation diagram of K2 for δ = 1, β = 0.1. (a) As computed with starting
values far from the equilibrium. (b) As computed with starting values near equilibrium.

220 240 260 280

160

165

170

175

Y1

Y2

Figure 9: The two attracting closed invariant curves coexisting for β = 0.1 and α1 = 0.42, as projected in the
(Y1, Y2) plane.
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(a) (b)

Figure 10: Development of the two attracting closed invariant curves coexisting for β = 0.1 as projected in
the (Y1, Y2) plane: (a) α1 = 0.05 to 0.4, and (b) α1 = 0.45 to 0.85.

Y2

300 600

155

165

175

t

Figure 11: The hysteresis effect associated with coexistence of attracting CICs. Time path of Y2 for β = 0.1
and α1 = 0.43 (1st CIC stable), with two parametric shocks, shown as black dots, at times t = 300 when the
value of α1 is changed to 0.45 (1st CIC unstable) and t = 600 when α1 is restored to its previous value.

effect is now revealed as the trajectory does not return to the first CIC but remains on the
second CIC characterized by a different frequency.

6. Unfolding of an Attracting Closed Invariant Curve

We consider now parameter values as in Section 5, except for the value of the degree of inter-
action of the two economies through trade which is now fixed at δ = 0.5. In this case the equi-
librium expressions are simplified to

Y ∗
1 =

2625
11

= 238.636, Y ∗
2 =

5875
33

∼= 178.030,

K∗
1
∼= 877.661 +

200
11β

, K∗
2
∼= 860.283 − 200

11β
, M∗

1
∼= 301.388 +

60
11β

.

(6.1)
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Figure 12: Region of stability of the equilibrium for δ = 0.5, α2 = 0.1 in the (β, α1) parameter plane. Flip bi-
furcation curve is shown dashed.
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Figure 13: Bifurcation diagrams of Y2 and Lyapunov exponent for δ = 0.5, β = 0.4.

The stability region of the equilibrium in this case is shown in Figure 12. As in the previous
cases, the part of the stability region in which the roots of the characteristic equation are all
real is shown dark-shaded, and the part in which some of the roots are complex conjugate is
shown light-shaded. We see that for the specifications adopted in this case increase of
the parameter α1, the speed of adjustment of the goods market of region 1, does not desta-
bilize the equilibrium quickly, contrary to the case δ = 1.

The Neimark-Hopf bifurcation curve can be identified as part of the boundary of the
stability region as in the previous cases and is shown as a continuous line in Figure 12. The
remaining part of the boundary is a flip bifurcation curve. The stability region is now much
larger than in the previous case. Its upper right-hand “corner” is at β = 1.1059, α1 = 3.6587.

Again, numerical simulations are employed, and in Figure 13 we present the bifurca-
tion diagram of Y2 together with the corresponding Lyapunov exponent diagram, for β = 0.4
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 14: Top row: development of the attracting closed invariant curve after the supercritical bifurcation.
Second and third row: attractor unfolding. Fourth row: Eventually the closed invariant curve becomes a
chaotic attractor.
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with α1 as the bifurcation parameter. The CICs occur through supercritical bifurcation and in-
crease in amplitude size in a continuous manner.

But, after a certain value of the bifurcation parameter α1 we meet with the phenome-
non of attractor unfolding as an intermediate phase between the initial phase of continuously
increasing regular CICs and the subsequent phase of chaotic behaviour. The situation is depi-
cted in Figure 14. Initially, the CIC develops for increasing values of α1 after its generation at
the supercritical bifurcation. The unfolding then occurs at α1

∼= 2.868. The evolution of the at-
tracting CIC is shown in (Y1, Y2) and (Y1, M1) plane “projections.” After unfolding, as α1 is
further increased the unfolded CIC becomes chaotic.

7. Summary—Conclusions

We have explored numerically a nonlinear 5D discrete interregional Kaldorian macro-dyna-
mic model with fixed exchange rates and presented certain remarkable patterns of dynamical
behaviour that occur. To the authors’ knowledge these patterns of dynamical behaviour have
not previously been presented for high-dimensional discrete systems.

In the first case we assumed equal speeds of adjustment of the goods markets of the
regions α1 = α2 = α = 1 and established that attracting and repelling CICs are generated in-
side the region of equilibrium stability. This is the first phase of a crater-type bifurcation pro-
cess, the second phase of which is the subcritical Neimark-Hopf bifurcation occurring on the
bifurcation curve. As a result there exists a region of parameter values of the model for which
a stable equilibrium coexists with a stable CIC. The repelling CIC signposts the boundary of
the basin of attraction of the equilibrium. Inside this parameter region of attractor coexistence,
as well as after equilibrium loses stability by means of the subcritical bifurcation, the attract-
ing CIC is far from the equilibrium. Economic interpretation is that small shocks do not affect
the asymptotic behaviour of the system, but large shocks may lead to permanent fluctuations.
As observed by Kind [11], this is a more accurate description of the idea of corridor stability
[17], in that large shocks do not lead to totally unstable dynamics. The associated hysteresis
effect was illustrated by numerical simulations.

In the second case we assumed a fixed speed of adjustment of the goods market of
region 2, α2 = 0.1, and an extreme fixed value of the degree of interaction of the two economies
through trade, δ = 1. A remarkable feature found in this case is the coexistence and dynamical
interplay between two single attracting CICs, occurring outside the stability region. Again,
the associated hysteresis effect was illustrated by numerical simulation.

In the third case we assumed a fixed speed of adjustment of the goodsmarket of region
2, α2 = 0.1, as before, but a smaller degree of interaction of the two economies through trade,
δ = 0.5. For the parameter constellation considered the CICs occur through supercritical bifur-
cation. A remarkable feature in this case is the eventual unfolding of the occurring stable
CIC. This was illustrated graphically by means of successive 2D projection plots of the 5D
attracting CIC for increasing values of the bifurcation parameter.

Since high-dimensional systems are largely unexplored, the present results are useful
in demonstrating the feasibility of the numerical approach for detecting and describing pat-
terns of complex dynamical behaviour, such as bifurcation processes and coexistence of at-
tractors, generated by high-dimensional discrete systems of economic dynamics.
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