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We discuss the epidemic network model with infectious force in latent and infected period. We
obtain the basic reproduction number and analyze the globally dynamic behaviors of the disease-
free equilibrium when the basic reproduction number is less than one. The effects of various
immunization schemes are studied. Finally, the final sizes relation is derived for the network
epidemic model. The derivation depends on an explicit formula for the basic reproduction number
of network of disease transmission models.

1. Introduction

Disease spreading has been the subject of intense research since long time ago. With the
advent of modern society, fast transportation systems have changed human habits, and some
diseases that just a few years agowould have produced local outbreaks are nowadays a global
threat for public health systems. A recent example is given by influenza A(H1N1). In order to
understand the mechanism of diseases spreading and other similar processes, such as rumors
spreading, networks of movie actor collaboration and science collaboration, WWW, and the
Internet, it is of great significance to inspect the effect of complex networks features on disease
spreading. Therefore, it is of utmost importance to carefully take into account as much details
as possible of the structural properties of the network onwhich the infection dynamics occurs.
And in the general case, the epidemic system can be represented as a network where nodes
stand for individuals and an edge connecting two nodes denotes the interaction between
individuals. The degree k of a node is the number of its neighbors, that is, the number of
links adjacent to the node.
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In the past, researchers mainly focused the disease transmission study on the
conventional networks [1, 2] such as lattices, regular tree, and ER random graph. Since
late 1990s, scientists have presented a series of statistical complex topological characteristics
[3–6] such as the small-world (SW) phenomenon [7] and scale-free (SF) property [8] by
investigating many real networks. On scale-free networks, it was assumed that the larger
the node degree, the greater the infectivity of the node, and the infectivity is just equal to
the node degree. Under such an assumption, for instance, Pastor-Satorras et al. concluded
that the epidemic threshold λc = 0 for heterogenous networks with sufficiently large
size [9]. Subsequently, the studies of dynamical processes on complex networks also have
attracted lots of interests with various subjects [10–15], and as one of the typical dynamical
processes built on complex networks, epidemic spreading has been investigating intensively
once more. The susceptible-infected-susceptible (SIS) [10, 11], susceptible-infected-recovered
(SIR) [16, 17], and susceptible-infected (SI) [18–20] models on complex networks have been
extensively studied recently.

In this paper, we will establish the susceptible-exposed-asymptomatically infected,
symptomatically infected-recovered(SEAIR) epidemic model on a network. We provide a
detailed analytical of the SEAIR model on complex networks. The remainder of this paper
presents our model and results. In the next section, we describe the epidemic model on
networks with infectious force in latent and infected period. The subsequent section is
devoted to determine the stability of the disease-free equilibrium. In Section 4, we consider
two models of immunization. In Section 5, we derive the final sizes relation of the network
epidemic models.

2. Model and Parameters

We propose a SEIAR model by classifying the population as susceptible (S), exposed (E),
asymptomatically infected (A), symptomatically infected (I), and removed/immune (R),
for example, the spreading process of H1N1. The asymptomatic infected compartment
contains those who fail to show noticeable symptoms or with light flu-like symptoms
but are not identified, and are able to spread the H1N1 infection. We also assume that a
susceptible individual becomes infected if in contact with an exposed, asymptomatically or
symptomatically infective individual. Then the susceptible enters the exposed class E of those
in the latent period. After the latent period, the individual enters the class I orA of infectives,
who are infectious in the sense that they are capable of transmitting the infection. When the
infectious period ends, the individual enters the recovered classR. We assume that a removed
individual will never become susceptible or infected again. In our model, new births, natural
deaths and migrations are ignored. The flow diagram of the individuals is depicted in
Figure 1.

In contrast to classical compartment models, we consider the whole population
and their contacts in networks, each person in a community can be regarded as a vertex
in the network, and each contact between two individuals is represented as an edge
(line) connecting their vertices. The number of edges emanating from a vertex, that is,
the number of contacts a person has, is called the degree of the vertex. We classify the
population into groups based on the number of contacts the individual can make per unit
of time. The densities of susceptible, exposed, asymptomatically infected, symptomatically
infected,vaccinated and recovered nodes of degree k at time t, denoted by Sk(t), Ek(t),
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Figure 1: Flow diagram.

Ak(t), Ik(t), and Rk(t) respectively. Clearly, these variables obey the normalization condition:

Sk(t) + Ek(t) +Ak(t) + Ik(t) + Rk(t) = 1, (2.1)

k = 1, 2, . . . , n, n is the maximum number of contact each individual can make. Therefore the
network model with infectious force in latent and infected period follow

dSk(t)
dt

= −λ1kSk(t)ΘE(t) − λ2kSk(t)ΘA(t) − λ3kSk(t)ΘI(t),

dEk(t)
dt

= λ1kSk(t)ΘE(t) + λ2kSk(t)ΘA(t) + λ3kSk(t)ΘI(t) − δEk(t),

dAk(t)
dt

= qδEk(t) − α1Ak(t),

dIk(t)
dt

=
(
1 − q

)
δEk(t) − α2Ik(t),

dRk(t)
dt

= α1Ak(t) + α2Ik(t),

(2.2)

whereΘf(t) = (1/〈k〉)∑k kP(k)fk(t), f = E,A, I, 〈k〉 =
∑

k kP(k). The factorΘ(t) represents
the probability that any given link points to an infected node. It is assumed that all parameters
are positive constants and summarized in the following list:

λ1, λ2, λ3: transmission coefficient between communities Sk and Ei, Ai, Ii, i =
1, 2, . . . , n;

δ: the transfer rate between the exposed and the infectious;

q, 1 − q: rate of becoming asymptomatically infected and symptomatically infected;

α1, α2: recovery rate of asymptomatically infected and symptomatically infected.

The mathematical formulation of the epidemic problem is completed given initial
conditions such as Sk(0) � 1, Ik(0) � 0, Ek(0) = Ak(0) = Rk(0) = 0.
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3. Global Stability of the Model and Basic Reproduction Number

In this section, we will show the basic reproduction number R0 and the global stability of
the disease-free equilibrium. Following van den Driessche and Watmough [21], we note that
only compartments Ek, Ak, and Ik are involved in the calculation of R0. At the disease-free
equilibrium P 0(1, 0, 0, 0, 0, . . . , 1, 0, 0, 0, 0), the rate of appearance of new infections F and the
rate of transfer of individuals out of the two compartments V are given by

F =
(
Fn×n
ij

)

3×3
, (3.1)

where Fn×n
21 , Fn×n

22 , Fn×n
23 , Fn×n

31 , Fn×n
32 , and Fn×n

33 are zero matrices, Fn×n
11 = (λ1/〈k〉)Tn×n, Fn×n

12 =
(λ2/〈k〉)Tn×n, and Fn×n

13 = (λ3/〈k〉)Tn×n, where

Tn×n =

⎛

⎜⎜⎜⎜⎜⎜
⎝

P(1) 2P(2) · · · nP(n)

2P(1) 22P(2) · · · 2nP(n)

...
...

...

nP(1) 2nP(2) · · · n2P(n)

⎞

⎟⎟⎟⎟⎟⎟
⎠

, (3.2)

and V = (V n×n
ij )

3×3, where V n×n
12 , V n×n

13 , V n×n
23 , and V n×n

32 are zero matrices,

V n×n
11 =

⎛

⎜⎜⎜⎜⎜⎜
⎝

δ 0 · · · 0

0 δ · · · 0

...
...

. . .
...

0 0 · · · δ

⎞

⎟⎟⎟⎟⎟⎟
⎠

, V n×n
21 =

⎛

⎜⎜⎜⎜⎜⎜
⎝

−qδ 0 · · · 0

0 −qδ · · · 0

...
...

. . .
...

0 0 · · · −qδ

⎞

⎟⎟⎟⎟⎟⎟
⎠

, V n×n
22 =

⎛

⎜⎜⎜⎜⎜⎜
⎝

α1 0 · · · 0

0 α1 · · · 0

...
...

. . .
...

0 0 · · · α1

⎞

⎟⎟⎟⎟⎟⎟
⎠

,

V n×n
31 =

⎛

⎜⎜⎜⎜⎜⎜
⎝

−(1 − q
)
δ 0 · · · 0

0 −(1 − q
)
δ · · · 0

...
...

. . .
...

0 0 · · · −(1 − q
)
δ

⎞

⎟⎟⎟⎟⎟⎟
⎠

, V n×n
33 =

⎛

⎜⎜⎜⎜⎜⎜
⎝

α2 0 · · · 0

0 α2 · · · 0

...
...

. . .
...

0 0 · · · α2

⎞

⎟⎟⎟⎟⎟⎟
⎠

.

(3.3)

According to the concepts of next generation matrix and the basic reproduction number
presented in [21], then, the reproduction number R0 = ρ(FV −1) for (2.2), where ρ represents
the spectral radius of the matrix.
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To determine the spectral radius of FV −1, we first represent the inverse of V by the
following matrix V −1 = (V −1n×n

ij )
3×3, where V −1n×n

12 , V −1n×n
13 , V −1n×n

23 , V −1n×n
32 are zero matrices,

V −1n×n
11 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
δ

0 · · · 0

0
1
δ

· · · 0

...
...

. . .
...

0 0 · · · 1
δ

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, V −1n×n
21 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

q

α1
0 · · · 0

0
q

α1
· · · 0

...
...

. . .
...

0 0 · · · q

α1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, V −1n×n
22 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎜
⎝

1
α1

0 · · · 0

0
1
α1

· · · 0

...
...

. . .
...

0 0 · · · 1
α1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟
⎠

,

V −1n×n
31 =

⎛

⎜
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 − q

α2
0 · · · 0

0
1 − q

α2
· · · 0

...
...

. . .
...

0 0 · · · 1 − q

α2

⎞

⎟
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, V −1n×n
33 =

⎛

⎜
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1
α2

0 · · · 0

0
1
α2

· · · 0

...
...

. . .
...

0 0 · · · 1
α2

⎞

⎟
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

(3.4)

Let C = FV −1, we have C = (Cn×n
ij )

3×3, where Cn×n
21 , Cn×n

22 , Cn×n
23 , Cn×n

31 , Cn×n
32 , and Cn×n

33

are zero matrices, Cn×n
11 = (1/〈k〉)[λ1/δ + λ2q/α1 + λ3(1 − q)/α2]Tn×n, Cn×n

12 = (λ1/α1〈k〉)Tn×n,
Cn×n

13 = (λ2/α2〈k〉)Tn×n.
Now we are ready to compute the eigenvalues of the matrix C = FV −1. Obviously,

the C and Cn×n
11 have same spectral radius. Since matrix Cn×n

11 has rank 1, the spectral radius
ρ(Cn×n

11 ) is equal to the trace of matrix Cn×n
11 .

Therefore, the basic reproduction number R0 is

R0 =

[
λ1
δ

+
λ2q

α1
+
λ3
(
1 − q

)

α2

]〈
k2〉

〈k〉 . (3.5)

In summary, we have the following theorem.

Theorem 3.1. If R0 < 1, the infection-free equilibrium P 0(1, 0, 0, 0, 0, . . . , 1, 0, 0, 0, 0) is locally
asymptotically stable, and if R0 > 1, the infection-free equilibrium P 0 is unstable, an epidemic ensues.

Next, we will prove the global asymptotic stability of the infection-free equilibrium.

Theorem 3.2. If R0 < 1, the infection-free equilibrium P 0(1, 0, 0, 0, 0, . . . , 1, 0, 0, 0, 0) is global
asymptotic stability.

Proof. Let us consider the Lyapunov function

L(t) =
∑

k

(akSk(t) + bkEk(t) + ckAk(t) + dkIk(t)), (3.6)
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where ak = 2kP(k), bk = 3kP(k), ck = (k/q)P(k), and dk = (k/(1−q))P(k). We now compute
the time derivative of L(t) along the solutions of (2.2). It is seen that

L′(t) = −2
∑

k

kP(k)
(
λ1kSkΘE + λ2kSkΘA + λ3kSkΘI

)

+ 3
∑

k

kP(k)
(
λ1kSkΘE + λ2kSkΘA + λ3kSkΘI − δEk

)

+
∑

k

kP(k)
(
δEk − α1

q
Ak

)
+
∑

k

kP(k)
(
δEk − α2

1 − q
Ik

)

=
∑

k

kP(k)Sk

(
λ1kΘE + λ2kΘA + λ3kΘI

)
−
∑

k

δkP(k)Ek

−
∑

k

α1

q
kP(k)Ak −

∑

k

α2

1 − q
kP(k)Ik

≤
∑

k

kP(k)
(
λ1kΘE + λ2kΘA + λ3kΘI

)
−
∑

k

δkP(k)Ek

−
∑

k

α1

q
kP(k)Ak −

∑

k

α2

1 − q
kP(k)Ik

=
(
λ1ΘE + λ2ΘA + λ3ΘI

)
〈k2〉 −

(
δΘE +

α1

q
ΘA +

α2

1 − q
ΘI

)
〈k〉

=
(
δΘE +

α1

q
ΘA +

α2

1 − q
ΘI

)
〈k〉
(

λ1ΘE + λ2ΘA + λ3ΘI

δΘE +
(
α1/q

)
ΘA +

(
α2/
(
1 − q

))
ΘI

〈k2〉
〈k〉 − 1

)

≤
(
δΘE +

α1

q
ΘA +

α2

1 − q
ΘI

)
〈k〉(R0 − 1) ≤ 0.

(3.7)

Furthermore, L′(t) = 0 if and only if Ek = Ak = Ik = 0. Therefore, by the LaSalle Invariance
Principle [22], P 0 is the global asymptotic stability if R0 < 1.

4. Immunization Strategy

Immunization is very helpful in controlling diseases. In this section, we will discuss various
immunization schemes [23–25].

4.1. Uniform Immunization Strategy

Uniform immunization strategy is simplest immunization schemes [23–25], and vaccinates is
also a fraction of the population randomly. Immune nodes cannot become infected and, thus,
do not transmit the infection to their neighbors. In this case, for a fixed spreading rate, the
relevant control parameter is the immunity p (0 < p < 1), defined as the fraction of immune
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nodes present in the network. At the mean-field level, the presence of uniform immunity will
effectively reduce the spreading rate by a factor (1 − p) [23], that is, the probability of finding
and infecting a susceptible. By substituting λ1 → (1−p)λ1, λ2 → (1−p)λ2, and λ3 → (1−p)λ3
in the system (2.2), then the system (2.2) becomes

dSk(t)
dt

= −λ1k
(
1 − p

)
Sk(t)ΘE(t) − λ2k

(
1 − p

)
Sk(t)ΘA(t) − λ3k

(
1 − p

)
Sk(t)ΘI(t),

dEk(t)
dt

= λ1k
(
1 − p

)
Sk(t)ΘE(t) + λ2k

(
1 − p

)
Sk(t)ΘA(t) + λ3k

(
1 − p

)
Sk(t)ΘI(t) − δEk(t),

dAk(t)
dt

= qδEk(t) − α1Ak(t),

dIk(t)
dt

=
(
1 − q

)
δEk(t) − α2Ik(t),

dRk(t)
dt

= α1Ak(t) + α2Ik(t).

(4.1)

We obtain that the basic reproduction number is

R̃0 =
(
1 − p

)
R0. (4.2)

If no immunization were done, then R̃0 = R0; when 0 < p < 1, R̃0 < R0, that is, the
immunization scheme is effective; while as p → 1, R̃0 → 0, that is, in the case of a full
immunization, it would be impossible for the epidemic to spread in the network.

4.2. Targeted Immunization

We can use a targeted immunization scheme [25]. We introduce the lower and upper
threshold κ1 and κ2, such that if k > κ2, all nodes with connectivity k are immunized, if
κ1 < k < κ2, pk is defined as the fraction of immune individuals, that is, we define the
immunization rate σk by

σk =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1, k > κ2,

pk, κ1 < k ≤ κ2,

0, k ≤ κ1,

(4.3)
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where 0 < pk ≤ 1, and
∑

k σkP(k) = σ. σ is the average immunization rate. The epidemic
model (2.2) becomes

dSk(t)
dt

= −λ1k(1 − σk)Sk(t)ΘE(t) − λ2k(1 − σk)Sk(t)ΘA(t) − λ3k(1 − σk)Sk(t)ΘI(t),

dEk(t)
dt

= λ1k(1 − σk)Sk(t)ΘE(t) + λ2k(1 − σk)Sk(t)ΘA(t) + λ3k(1 − σk)Sk(t)ΘI(t) − δEk(t),

dAk(t)
dt

= qδEk(t) − α1Ak(t),

dIk(t)
dt

=
(
1 − q

)
δEk(t) − α2Ik(t),

dRk(t)
dt

= α1Ak(t) + α2Ik(t).

(4.4)

We obtain that the basic reproduction number is

R0 =

[
λ1
δ

+
λ2q

α1
+
λ3
(
1 − q

)

α2

]〈
k2(1 − σk)

〉

〈k〉 , (4.5)

or

R0 = R0 −
[
λ1
δ

+
λ2q

α1
+
λ3
(
1 − q

)

α2

]〈
k2σk

〉

〈k〉 . (4.6)

5. The Final Sizes Relation

First, we show that the disease will eventually die out, that is, Ek(∞) = 0, Ak(∞) = 0, and
Ik(∞) = 0.

Note that the positive quadrant is invariant, so all solutions of (2.2) lie in the
nonnegative, bounded set defined by Sk(t), Ek(t), Ak(t), Ik(t), Rk(t) ≥ 0 and Sk(t) + Ek(t) +
Ak(t) + Ik(t) + Rk(t) = 1. Observing that

d

dt
(Sk(t) + Ek(t)) = −δEk(t), (5.1)

we see that Sk(t) +Ek(t) is decreasing whenever Ek(t) > 0. However, Sk(t) +Ek(t) is bounded
below by 0, hence it has a limit as t → ∞. Because Sk(t) is bounded and decreasing, it has a
limit as t → ∞. Therefore, Ek(t) has a limit as t → ∞.

In analyzing the system (2.2) we adopt the conventions that for an arbitrary
continuous function w(t)with nonnegative components,

w∞ = lim
t→∞

w(t), w =
∫∞

0
w(t)dt. (5.2)
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Integrating (5.1) from 0 to t, we have

Ek(t) − Ek(0) + Sk(t) − Sk(0) = −δ
∫ t

0
Ek(t)dt. (5.3)

Thus,

Ek(0) − Ek(∞) + Sk(0) − Sk(∞) = δEk, (5.4)

as t → ∞.
The left hand side of (5.4) is finite because the components of Sk(0), Sk(∞), Ek(0) and

Ek(∞) are bounded by the initial total population size. Therefore the right hand side (5.4) is
also finite and because δ is positive, Ek < ∞. Since Ek(t) is a smooth nonnegative function,
Ek(∞) = 0 (Similarly Ak(∞) = 0, Ik(∞) = 0), and

Ek = δ−1(Sk(0) − Sk(∞)) + δ−1Ek(0). (5.5)

Similarly, we can obtain

Ak(t) −Ak(0) = qδ

∫ t

0
Ek(t)dt − α1

∫ t

0
Ak(t)dt, (5.6)

when t → ∞, we have

Ak(∞) −Ak(0) = qδEk − α1Ak. (5.7)

Because Ak(∞) = 0 and Ek are bound, we have

Ak =
qδEk +Ak(0)

α1
. (5.8)

For the same reason, we obtain

Ik(t) − Ik(0) =
(
1 − q

)
δ

∫ t

0
Ek(t)dt − α2

∫ t

0
Ik(t)dt, (5.9)

when t → ∞, we have

Ik(∞) − Ik(0) =
(
1 − q

)
δEk − α2Ik. (5.10)

Because Ik(∞) = 0 and Ek are bound, we have

Ik =

(
1 − q

)
δEk + Ik(0)
α2

. (5.11)
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Integrating the first equations of (2.2) from 0 to t gives

ln
Sk(0)
Sk(t)

=
∫ t

0

(
λ1kΘE + λ2kΘA + λ3kΘI

)
dt

=
λ1k

〈k〉
∑

k

kP(k)
∫ t

0
Ek(t)dt +

λ2k

〈k〉
∑

k

kP(k)
∫ t

0
Ak(t)dt +

λ3k

〈k〉
∑

k

kP(k)
∫ t

0
Ik(t)dt.

(5.12)

When t → ∞, we have

ln
Sk(0)
Sk(∞)

=
λ1k

〈k〉
∑

k

kP(k)Ek +
λ2k

〈k〉
∑

k

kP(k)Ak +
λ3k

〈k〉
∑

k

kP(k)Ik

=
λ1k

〈k〉
∑

k

kP(k)Ek +
λ2k

〈k〉
∑

k

kP(k)
qδEk +Ak(0)

α1
+
λ3k

〈k〉
∑

k

kP(k)

(
1 − q

)
δEk + Ik(0)
α2

=
λ1k

〈k〉
∑

k

kP(k)Ek +
λ2k

α1〈k〉
∑

k

kP(k)
(
qδEk +Ak(0)

)

+
λ3k

α2〈k〉
∑

k

kP(k)
((

1 − q
)
δEk + Ik(0)

)

=
λ1k

δ〈k〉
∑

k

kP(k)(Sk(0) − Sk(∞) + Ek(0)) +
λ2k

α1〈k〉
∑

k

kP(k)

×
(
qδ
(
δ−1(Sk(0) − Sk(∞)) + δ−1Ek(0)

)
+Ak(0)

)

+
λ3k

α2〈k〉
∑

k

kP(k)
((

1 − q
)
δ
(
δ−1(Sk(0) − Sk(∞)) + δ−1Ek(0)

)
+ Ik(0)

)

=
λ1k

δ〈k〉
∑

k

kP(k)(Sk(0) − Sk(∞) + Ek(0))

+
λ2k

α1〈k〉
∑

k

kP(k)
(
q(Sk(0) − Sk(∞) + Ek(0)) +Ak(0)

)

+
λ3k

α2〈k〉
∑

k

kP(k)
((
1 − q

)
(Sk(0) − Sk(∞) + Ek(0)) + Ik(0)

)

=

[
λ1
δ

+
λ2q

α1
+
λ3
(
1 − q

)

α2

]
k

〈k〉
∑

k

kP(k)(Sk(0) − Sk(∞) + Ek(0))

+
λ2k

α1〈k〉
∑

k

kP(k)Ak(0) +
λ3k

α2〈k〉
∑

k

kP(k)Ik(0)
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= R0
k

〈k2〉
∑

k

kP(k)(Sk(0) − Sk(∞) + Ek(0)) +
λ2k

α1〈k〉
∑

k

kP(k)Ak(0)

+
λ3k

α2〈k〉
∑

k

kP(k)Ik(0). (5.13)

If Sk(0) = Sk0, Ik(0) = Ik0, and Ek(0) = Ak(0) = 0, then the final size relation is

ln
Sk0

Sk∞
= R0

k

〈k2〉
∑

k

kP(k)(Sk0 − Sk∞) +
λ3k

α2〈k〉
∑

k

kP(k)Ik0. (5.14)

If Sk(0) = Sk0, Ik(0) = Ik0, Ek(0) = Ek0, and Ak(0) = Ak0, then the final size relation is

ln
Sk0

Sk∞
= R0

k

〈k2〉
∑

k

kP(k)(Sk0 − Sk∞) + R0
k

〈k2〉
∑

k

kP(k)Ek0

+
λ2k

α1〈k〉
∑

k

kP(k)Ak0 +
λ3k

α2〈k〉
∑

k

kP(k)Ik0.

(5.15)

Therefore, we show that the final size of the susceptible S(∞) = N
∑

k P(k)Sk∞, where
N is the whole population size. Similarly, we can obtain the final sizes under various
immunization schemes.

6. Conclusions

In this paper, we describe a network epidemic model and calculate the basic reproduction
number R0 and the final sizes relation. The basic reproduction number is the spectral radius
of the matrix FV −1. We prove the global asymptotic stability of the disease-free equilibrium
when the basic reproduction number is less than 1. The effects of various immunization
schemes are studied. Finally, a final size relation is derived for network epidemic models.
The derivation depends on an explicit formula for the basic reproduction number of network
of disease transmission models.
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