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One of the interesting complex behaviors in many cell membranes is bursting, in which
a rapid oscillatory state alternates with phases of relative quiescence. Although there is an
elegant interpretation of many experimental results in terms of nonlinear dynamical sys-
tems, the dynamics of bursting models is not completely described. In the present paper,
we study the dynamical behavior of two specific three-variable models from the literature
that replicate chaotic bursting. With results from symbolic dynamics, we characterize the
topological entropy of one-dimensional maps that describe the salient dynamics on the
attractors. The analysis of the variation of this important numerical invariant with the
parameters of the systems allows us to quantify the complexity of the phenomenon and
to distinguish different chaotic scenarios. This work provides an example of how our
understanding of physiological models can be enhanced by the theory of dynamical sys-
tems.

Copyright © 2006 Jorge Duarte et al. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Introduction and preliminaries

The study of bursting is crucial in physical and biological systems. This complex behavior
is particularly interesting in neural systems where it plays an important role in informa-
tion processing [10–12, 15]. Bursting oscillations are ubiquitous in the experimental and
modeling studies of excitable cells. Biological significance and dynamical complexity of
bursting oscillations stimulated mathematical investigations of the mechanisms of burst-
ing behaviors (see [6, 16, 20], and references therein).

It is of biological interest to ask how the rhythm of bursting can come about the ac-
tion potentials, starting from the “building blocks” of the neural electrical activity. This
question leads to challenging mathematical problems. The bursting activity of individual
excitable cells is the result of high-dimensional dynamics of nonlinear events responsible
for variations in the ionic currents across the membrane. The numerical studies of such

Hindawi Publishing Corporation
Discrete Dynamics in Nature and Society
Volume 2006, Article ID 60918, Pages 1–18
DOI 10.1155/DDNS/2006/60918

http://dx.doi.org/10.1155/S1026022606609187


2 Computation of the topological entropy in bursting models

neural activity are usually based on either realistic ionic-based models or phenomenolog-
ical models. The ionic-based models proposed for a single neuron are designed to rep-
resent the biophysical mechanisms of the membrane, with the parameters and functions
derived from experimental data. Some of these models contain many nonlinear differen-
tial equations. The strong nonlinearity and high dimensionality of the phase space is a
significant obstacle in understanding the qualitative behavior of such dynamical systems
[9]. An alternative approach is to construct a polynomial model that retains the impor-
tant qualitative features but is simpler to analyse and understand [8]. Such a model has
the same relationship to the above models as the FitzHugh-Nagumo model does to the
Hodgkin-Huxley model: it is phenomenological in nature and based on the fact that the
underlying behavior of biophysical models can be distilled into a simpler model contain-
ing only polynomials.

In order to isolate essential aspects of bursting dynamics, there have been proposed
systems that contain just three dynamical variables. Indeed, the study of dynamical prin-
ciples and mechanisms underlying the bursting behavior is hardly possible without nu-
merical studies of low-dimensional models. In this work, we focus our attention on two
classical three-variable systems: the ionic model of Chay for the bursting of the pancreatic
β-cell [2], and the phenomenological model of Hindmarsh-Rose [8]. These models have
the form of a three-variable autonomous system:

dx

dt
= f1(x, y,z),

dy

dt
= f2(x, y,z),

dz

dt
= f3(x, y,z), (1.1)

with fast variables x and y, and slow variable z. In order to understand the dynamics
of models, it is necessary to explain the observed behavior from basic features of the
differential systems. For example, we can gain some important qualitative insights by
studying representative return maps, considered as one-dimensional interval maps (e.g.,
see [2, 22]).

The aim of this paper is to provide a contribution for the detailed analysis of the
chaotic behavior of the bursting models. More precisely, using results of symbolic dy-
namics theory, we compute the topological entropy of iterated maps (with the shape of
a logistic map) which incorporate the important dynamical properties of the attractors.
The variation of this measure of the amount of chaos in a dynamical system with the
parameters gives us a finer distinction between different states of complexity.

2. Discrete dynamics, topological entropy, and chaotic maps

In this paragraph, we describe techniques of symbolic dynamics, in particular some re-
sults concerning to Markov partitions associated to unimodal maps (family of continuous
maps on the interval with two monotonic subintervals and one turning point). For more
details see [7, 14, 17, 18].

A unimodal map f on the interval I = [c0,c2] is piecewise monotone and I is subdi-
vided into two subintervals:

L= [c0,c1[, . . . ,R=]c1,c2
]
, (2.1)
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in such a way that the restriction of f to interval L is strictly increasing and the restriction
of f to interval R is decreasing. Every such maximal interval on which the function f is
monotone is called a lap of f , and the number � = �( f ) of distinct laps is called the lap
number of f .

Denoting by c the turning point (relative extremum) of f and with the purpose of
studying the topological properties, we associate to each orbit O(x) a sequence of sym-
bols, itinerary (i(x)) j = S= S1S2 . . .S j . . . , where Sj ∈�= {L,C,R} and

Sj = L, if f j(x) < c,

Sj = C, if f j(x)= c,

Sj = R, if f j(x) > c.

(2.2)

The point c plays an important role as well as its orbit

O(c)= {xi : xi = f i(c), i∈N}. (2.3)

The dynamics of the interval is characterized by the symbolic sequence associated to the
orbit of point c, that is, the turning point itinerary. When O(c) is a k-periodic orbit,
we obtain a sequence of symbols that can be characterized by a block of length k, the
kneading sequence S(k) = S1S2 ···Sk−1C, see [17]. We introduce, in the set of symbols, an
order relation L < C < R.

The order of the symbols is extended to the symbolic sequences. Thus, for two of such
sequences P and Q in �N, let i be such that Pi �=Qi and Pj =Qj for j < i. Considering the
R-parity of a sequence, meaning odd or even number of occurrence of a symbol R in the
sequence, if the R-parity of the block P1 ···Pi−1 =Q1 ···Qi−1 is even, we say that P < Q
if Pi < Qi. And if the R-parity of the same block is odd, we say that P < Q if Pi > Qi. If no
such index i exists, then P =Q.

The ordered sequence of elements xij of O(c) determines a partition � of the interval
I = [ f 2(c), f (c)] = [x2,x1] into a finite number of subintervals labeled by I1, I2, . . . ,Ik−1.
To this partition we associate a (k− 1)× (k− 1) transition matrix M = [ai j] with

ai j =
⎧
⎨

⎩

1, if I j ⊂ f
(
Ii
)
,

0, if I j � f
(
Ii
)
.

(2.4)

Take, for example, the period-5 kneading sequence S = RLRRC. Its successive points of
the orbit are obtained by shifting the periodic sequence by one symbol at a time, that is,

i
(
x0
)= CRLRR, i

(
x1
)= RLRRC,

i
(
x2
)= LRRCR, i

(
x3
)= RRCRL,

i
(
x4
)= RCRLR, i

(
x5
)= CRLRR .

(2.5)
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I1 I2 I3 I4

x2 x0 x3 x4 x1

Figure 2.1. Partition of the interval corresponding to the kneading sequence RLRRC.

These points are ordered in the following way: x2 < x0 < x3 < x4 < x1. The dynamical in-
variant range is now divided into four subintervals, as shown in Figure 2.1.

By inspecting the partition � of the interval I = [x2,x1], we write down the transition
matrix

M =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 0 1 1

0 0 0 1

0 1 1 0

1 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦
. (2.6)

Now we consider the topological entropy. This numerical invariant allows us to quan-
tify the complexity of the phenomenon. A possible definition of chaos in the context of
one-dimensional dynamical systems states that a dynamical system is called chaotic if its
topological entropy is positive. Thus, the topological entropy can be computed to express
whether a map has a chaotic behavior.

The topological entropy of a unimodal interval map f , denoted by htop( f ), is given by

htop( f )= log2 λmax
(
M( f )

)= log2 s( f ), (2.7)

where λmax(M( f )) is the spectral radius of the transition matrix M( f ) and s( f ) is the
growth rate,

s( f )= lim
k→∞

k
√
�
(
f k
)
, (2.8)

of the lap number of f k (kth-iterate of f ) (see [13, 17, 19]).
Now, regarding the previous considerations we discuss dynamical properties of the

three-variable bursting models of Chay and Hindmarsh-Rose. In order to facilitate the
analysis and make this paper self-contained, we outline briefly some important aspects of
these models pointed out in previous papers (for further information see [2, 8]).

2.1. The Chay β-cell model. One of the first models for bursting was proposed by
Atwater et al. [1]. It was based on extensive experimental data, incorporating the im-
portant cellular mechanisms that were thought to underlie bursting. Following this ex-
perimental work, Chay and Keizer developed a mathematical model for the ionic and
electrical behavior of the pancreatic β-cell [3]. Chay reduced the model to three variables
[2], in the context of the general model (1.1), presented in the first section. The Chay’s β-
cell model was recently studied using qualitative methods for singular perturbed systems
of differential equations [16].
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The ionic events in excitable membranes may be represented by the following system:

dV

dt
= g∗I m

3
∞h∞

(
VI −V

)
+ g∗K ,V n4(VK −V

)
+ g∗K ,C

C

1 +C

(
VK −V

)
+ g∗L

(
VL−V

)
,

dn

dt
= n∞ −n

τn
,

dC

dt
= ρ
(
m3
∞h∞

(
VC −V

)− kCC
)
,

(2.9)

where

αm = 0.1(25 +V)
1− exp(−0.1V − 2.5)

, βm = 4exp
(
− V + 50

18

)
,

m∞ = αm
αm +βm

, αh = 0.07exp(−0.05V − 2.5),

βh = 1
1 + exp(−0.1V − 2)

, h∞ = αh
αh +βh

,

αn = 0.01(20 +V)
1− exp(−0.1V − 2)

, βn = 0.125exp
(
− (V + 30)

80

)
,

n∞ = αn
αn +βn

, τn = 1
(
αn +βn

)
230

.

(2.10)

An excitable membrane is considered to contain voltage-sensitive channels which al-
low Na+ and Ca2+ ions to enter the cell, voltage-sensitive K+ channels which allow K+

ions to leave, and voltage-insensitive K+ channels known to be activated by intracellular
calcium ions [1].

The excitable cell model consists of the following three dynamical variables:
(1) the membrane potential, denoted by V , is the difference of external and internal

voltages;
(2) the variable n is the probability of opening the voltage-sensitive K+ channel;
(3) the variable C is the intracellular concentration of Ca2+ ions.

The fast variables are V and n. The slow variable is C, with ρ the time scale parameter.
For further information concerning the physiological significance of the variables, the
reader is referred to the papers [1, 2]. The values of the parameters used in the numer-
ical computations are VK =−75mV, VI = 100mV, VL =−40mV, VC = 100mV, g∗K ,V =
1700s−1, g∗I = 1800s−1, g∗L = 7s−1, KC = 3.3/18mV, and ρ = 0.27mV−1s−1. We use g∗K ,C

as a bifurcation parameter.
In order to illustrate the chaotic nature of the model, it is interesting to exhibit some

numerical results about the behavior of the dynamical variables, namely,
(1) the dynamics of membrane potentials, which reveal the transition from a regular

to a nonperiodic mode;
(2) the time variation of C, which closely follows the mode of the potentials;
(3) iterated maps on the interval, which confirm that the irregular feature of the ac-

tion potentials is indeed deterministic in nature.
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−35

−45

V

5 10 15 20 25

t

Figure 2.2. Time sequence of membrane potentials for gK ,C = 10.0 s−1 (rhythmic single spiking).
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Figure 2.3. Time sequence of calcium concentrations for gK ,C = 10.0 s−1.
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Figure 2.4. Time sequence of membrane potentials for gK ,C = 10.8 s−1 (doublets).

Typical regimes of the oscillatory patterns obtained for different values of g∗K ,C, the
maximal conductance of the Ca2+-sensitive K+ channel, are pictured in Figures 2.2–2.11.
Note that when g∗K ,C = 10.0s−1, the cell fires repetitive action potentials at a regular in-
terval (Figure 2.2). When g∗K ,C = 11.0s−1, the same cell fires bursts in clusters of several
action potentials. The clusters of V pulses have different sizes and are separated by an
interval of quiescence (Figure 2.6). During the active phase, the concentration of Ca2+

increases with individual action potentials, and in the quiet intervals it falls to its mini-
mum value.

For intermediate values of g∗K ,C, the model generates chaotic action potentials, and the
intracellular calcium concentration also varies chaotically. The study of one-dimensional
maps, constructed from the relative (local) maxima of calcium concentrations, is very
important in the characterization of chaos. The iterated maps consist of pairs (Cn,Cn+1),
obtained from the local maxima of the numerical solution C(t) (see Figure 2.7). As shown
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Figure 2.5. Time sequence of calcium concentrations for gK ,C = 10.8 s−1.
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Figure 2.6. Time sequence of membrane potentials for gK ,C = 11.0 s−1 (irregular firing pattern).
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Figure 2.7. Time sequence of calcium concentrations for gK ,C = 11.0 s−1.
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Figure 2.8. Time sequence of membrane potentials for gK ,C = 15.0 s−1.
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Figure 2.9. Time sequence of calcium concentrations for gK ,C = 15.0 s−1.
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Figure 2.10. Time sequence of membrane potentials for gK ,C = 15.2 s−1.
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Figure 2.11. Time sequence of calcium concentrations for gK ,C = 15.2 s−1.

in Figure 2.12, the data from the chaotic time series appear to fall on a logistic curve.
Indeed, there is so much to be gained by treating the graph as a function Cn+1 = f (Cn).

At this point, we direct our attention to the study of the topological entropy. In order
to illustrate the outlined formalism about the computation of this numerical invariant,
we discuss the following example (for more details see [4]).

Example 2.1. Let us consider the map of Figure 2.12. The orbit of the turning point de-
fines the period-11 kneading sequence RLLLLRRRRRC. Putting the orbital points in or-
der we obtain

x2 < x3 < x4 < x5 < x0 < x9 < x7 < x6 < x8 < x10 < x1. (2.11)
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0.48

0.47

0.46

0.45

C
n

+
1

0.45 0.46 0.47 0.48

Cn

Figure 2.12. The iterated map constructed from the successive local maxima of calcium concentra-
tions (g∗K ,C = 11.0 s−1).

The corresponding transition matrix is

M( f )=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 1 1 1 0 0 0

0 0 0 0 0 0 0 1 1 1

0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 1 1 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0 0 0

1 1 1 1 0 0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (2.12)

which has the characteristic polynomial

p(t)= det
(
M( f )− λI

)= 1− λ+ λ2− λ3 + λ4− λ5− λ6− λ7− λ8− λ9 + λ10. (2.13)

The growth number s( f ) (the spectral radius of matrix M( f )) is 1.95305 . . . . Therefore,
the value of the topological entropy can be given by

htop( f )= log2 s( f )= 0.96573 . . . . (2.14)

The bifurcation diagram for C with the variation of g∗K ,C, shown in Figure 2.13, is
characterized by the occurrence of large periodic windows. In Figure 2.14, we exhibit
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0.45

0.4

0.35

0.3

C
n
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g∗K,C

Figure 2.13. Bifurcation diagram for C with variation of g∗K ,C .
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h

11 12 13 14 15

gK,C

Figure 2.14. Variation of the topological entropy with g∗K ,C ∈ [10.7,15.3].

the variation of the topological entropy with g∗K ,C ∈ [10.7,15.3]. We emphasize that the
Chay’s model for excitable cells shows endogenous (nondriven) chaos for intermediate
values of g∗K ,C. With the topological entropy it is possible to distinguish different chaotic
regimes.

2.2. The Hindmarsh-Rose model. We begin this paragraph presenting a three-variable
model for the bursting of neurons developed by Hindmarsh and Rose [8], which is a
modified version of the FitzHugh-Nagumo model [5]. Much of their paper concerns the
xy-subsystem, which describes the action potential. Hindmarsh and Rose added an adap-
tation current z governed by a linear equation which gradually hyperpolarizes the cell and
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approaches a steady-state value. With this procedure, the model did not fire indefinitely
and has the nice property of generating oscillations with a long interspike interval. As
pointed out in [8], the resulting autonomous system admits a periodic behavior. We con-
sider this system in the context of the general model (1.1).

The Hindmarsh-Rose model with adaptation has three variables x, y, z and three equi-
librium points, satisfying the following polynomial equations:

dx

dt
= y− ax3 + bx2 + I − z,

dy

dt
= c−dx2− y,

dz

dt
= r
(
s
(
x− x1

)− z
)
.

(2.15)

For details concerning the physiological significance of the variables, the reader is referred
to the original paper [8]. The bursting behavior is accomplished in this model by the
presence of the variable z that modulates the applied current I on a slower time scale. In
this context, the third variable is the slow variable and r is the time scale parameter.

In this model (x1, y1) are the coordinates of the leftmost equilibrium point of the
model without adaptation (i.e., without the variable z). This has the result that (x1, y1,0)
is an equilibrium point of the model with adaptation.

For numerical investigation we will use a = 1, b = 3, c = 1, and d = 5 as in [8]. We
obtain

dx

dt
= y− x3 + 3x2 + I − z,

dy

dt
= 1− 5x2− y,

dz

dt
= r
(
s
(
x− x1

)− z
)
,

(2.16)

where x1 =−(1 +
√

5)/2 (the x-coordinate of the resting state in the xy-subsystem) and I
is the applied current. The responses of this model to a short depolarizing current pulse
depend on the values given to the parameters r and s.

To see what the trajectories do in the long run we use numerical integration. After an
initial transient, a structure emerges when the solution (x(t), y(t),z(t)) is visualized as a
trajectory in three-dimensional space (Figure 2.15). Some examples of projections of the
three-dimensional trajectory onto a two-dimensional plane are presented in Figures 2.16
and 2.17. We show the burst pattern for the current pulse I = 3.25 (Figure 2.18).

With the purpose of understanding the main features of the three-dimensional flow,
we can use the Poincaré map technique to reduce the dimensionality of the phase space
and so make the analysis simpler. Now we focus on the construction of a Poincaré map.

Consider an n-dimensional system dx/dt = f (x). Let P be an (n− 1)-dimensional sur-
face, called a Poincaré section. P is required to be transverse to the flow. The Poincaré map
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3z

−1
0

1x

−6

−4

−2

0

y

Figure 2.15. Solution visualized as a trajectory in the three-dimensional space (I = 3.25, r = 0.005,
and s= 4.0).
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2.9 3 3.1 3.2 3.3

z

x = −0.85

Figure 2.16. Projection of the three-dimensional trajectory onto the zx-plane (I = 3.25, r = 0.005,
and s= 4.0).
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−1

x

−8 −6 −4 −2 0

y

Figure 2.17. Projection of the three-dimensional trajectory onto the yx-plane (I = 3.25, r = 0.005,
and s= 4.0).
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Figure 2.18. Time sequence of membrane potentials for I = 3.25, r = 0.005, and s = 4.0 (irregular
firing pattern).
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2.9

2.8

z n
+

1

2.8 2.9 3 3.1 3.2 3.3

zn

Figure 2.19. The iterated map for I = 3.25, r = 0.005, and s= 4.0.

F is a map from P to itself, obtained by following trajectories from one intersection with
P to the next. If xn ∈ P denotes the nth intersection, then the Poincaré map is defined by
xn+1 = F(xn). In our particular case, we choose the Poincaré plane defined by x =−0.85.
After allowing the initials to decay, we record the successive intersections of the trajec-
tory with the plane, which are specified by two coordinates (yn,zn). The iterated map of
Figure 2.19 consists of pairs (zn,zn+1), obtained from the successive second coordinates
of the points defined by the Poincaré map.

In order to see the long term behavior for different values of the parameters at once,
we plot typical bifurcation diagrams (Figures 2.20–2.22).

With the same procedure used in the case of Chay’s model, we compute the topological
entropy of the interval maps. Several situations of the variation of the topological entropy
with each of the parameters are plotted in Figures 2.23–2.25.
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3

2.8

z n

3.1 3.2 3.3 3.4 3.5

I

Figure 2.20. Bifurcation diagram for zn as a function of I , with r = 0.005 and s= 4.0.
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Figure 2.21. Bifurcation diagram for zn as a function of r, with I = 3.25 and s= 4.0.
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Figure 2.22. Bifurcation diagram for zn as a function of s, with I = 3.25 and r = 0.005.
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Figure 2.23. Variation of the topological entropy for I ∈ [3.12, 3.462], r = 0.005, and s= 4.0.

1

0.8

0.6

0.4

0.2

0

h

0.003 0.004 0.005 0.006 0.007 0.008 0.009

r

Figure 2.24. Variation of the topological entropy for I = 3.25, r ∈ [0.0029, 0.00965], and s= 4.0.

We note that the Hindmarsh-Rose model exhibits a chaotic behavior in a certain range
of the parameters. The topological entropy allows us to quantify the orbit complexity and
to extract the order from chaos.
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Figure 2.25. Variation of the topological entropy for I = 3.25, r = 0.005, and s∈ [3.77, 4.422].

3. Final considerations

In this paper, we have studied the chaotic dynamics of two specific three-variable bursting
models.

A detailed analysis of the iterated maps, that incorporate the salient dynamical prop-
erties of the systems, became possible by the study of the variation of the topological
entropy with the parameters.

Indeed, the biophysical models exhibit positive topological entropy, which means that
in certain conditions the bursting behavior of excitable cells has a chaotic nature.

In the presence of the evidence for the existence of chaos, we are invited to meditate
about its role in neurophysiology, in particular, in neural systems. Why evolution has se-
lected chaos as an apparently typical pattern of behavior in neural systems? What might
be accomplished by this choice? And perhaps slightly elusively, what could not have been
accomplished by the choice of regular, predictable behavior? These delicated questions,
of incontestable pertinence, are object of attention of several authors (e.g., see [21]). A
central aspect of the discussion consists of understanding how chaos is employed by neu-
ral systems to accomplish biologically important goals. These types of questions are quite
different than a classical approach associated with the usual inquiry where in the struc-
ture of a neural or any other system the origin of dynamical chaos lies. The questions
presented go beyond the purely technical and it is plausible that they have no definitive
answer.

Chaotic motions explore a broad sector of the system state space, which give a means to
explore the opportunities available to the system when the environment changes. There-
fore, chaos can act as a precursor to adaptive, reliable, and robust behavior for living
systems. This behavior differs from regular, rigidly confined motions which lie on a par-
ticular region of the state space.
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The nonlinear dynamics of systems with chaos facilitates the extraordinary ability of
neural systems to adapt, make transitions from one pattern of behavior to another when
the environment is altered, and consequently create a rich variety of patterns.

The demonstration that chaotic neurons can synchronize and transmit information
tells us that these states of motion, useful for evolution, also allow collective activity di-
rected toward useful functions and goals [21]. The investigations suggest that nature uses
complex dynamics of neural assemblies in promoting principles of adaptability and reli-
ability as well as in providing rapid response to changing external stimuli for information
processing and response. These arguments state the physiological relevance of the quali-
fication of chaos in neural models.
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