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We study dynamical behavior of a class of cellular neural networks system with dis-
tributed delays under dynamical thresholds. By using topological degree theory and Lya-
punov functions, some new criteria ensuring the existence, uniqueness, global asymptotic
stability, and global exponential stability of equilibrium point are derived. In particular,
our criteria generalize and improve some known results in the literature.

1. Introduction

Since Hopfield neural networks were introduced by Hopfield [9], they have been widely
developed and studied both in theory and applications, including both continuous-time
and discrete-time settings. Meanwhile, they have been successfully applied to associa-
tive memories, signal processing, pattern recognition, and optimization problems, and
so on. Many essential features of these networks, such as qualitative properties of sta-
bility, oscillation, and convergence issues have been investigated by many authors, see
[1, 2, 5, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17] and the references cited therein. As is well
known, the use of constant fixed delays in Hopfield neural networks provide a good ap-
proximation in simple circuits. Unfortunately, due to the existence of parallel pathways
with a variety of axon sizes and lengths, there will be a distribution of conduction veloci-
ties along these pathways and a distribution of propagation delays. Under these environ-
ments, the signal propagation is not instantaneous and cannot be described with discrete
delays. Thus, a suitable way is to introduce continuously distributed delays determined
by a delay kernel. Moreover, Hopfield neural networks with dynamic thresholds have not
received wide attention. Motivated by this, Gopalsamy and Leung [6] considered the fol-
lowing delayed neural networks under thresholds

x′(t)=−x(t) + a tanh
[
x(t)− b

∫∞
0
k(s)x(t− s)ds− c

]
, t ≥ 0, (1.1)

where a > 0, b ≥ 0, a(1− b) < 1, a(1 + b) < 1, x ∈ C(R,R), and k ∈ C(R+,R+) is delayed
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ker-function with the following property:

∫∞
0
k(s)ds= 1, (1.2)

∫∞
0
sk(s)ds < +∞. (1.3)

For the physical meaning of signs in (1.1), one can refer to Gopalsamy and Leung [6].
If the delayed ker-function satisfies (1.2) and (1.3), then, using Lyapunov function, they
established a sufficient condition ensuring global asymptotic stability of the unique equi-
librium x∗ = 0 of the system (1.1) with c = 0.

Cui [4] further considered the system (1.1). Using differential inequality and varia-
tions of constants, he obtained new criteria for global asymptotic stability of equilibrium
x∗ = 0 of system (1.1) with c = 0.

In this paper, our aim is to consider the multineurons model with delayed-ker-
functions under dynamic thresholds. That is to say, we will consider the following more
general multineurons model with delayed ker-functions under dynamic thresholds

x′i (t)=−gi
(
xi(t)

)
+

n∑
j=1

ai j f j

[
xj(t)− bi j

∫∞
0
ki j(s)xj(t− s)ds− cj

]
, t ≥ 0, (1.4)

where i = 1,2, . . . ,n, n denotes the number of units in the neural networks (1.4), xi(t)
represents the states of the ith neuron at time t, ai j and dj are positive constants, bi j and cj
are nonnegative constants, ai j denotes the strength of the jth neuron on the ith neuron,
bi j denotes a measure of the inhibitory influence of the past history of the jth neuron
on the ith neuron, cj denotes the neural threshold of the jth neuron, and gj : R→ R
is continuous function, which denotes the rate with which the jth neuron will rest its
potential to the resting state in isolation when disconnected from networks and external
inputs, and satisfies the following hypothesis:

(H1) gj :R→R is differentiable and strictly monotone increasing, that is,

dj = inf
x∈R

{
g′j(x)

}
> 0, gj(0)= 0, j = 1,2, . . . ,n. (1.5)

f j denotes the output of the ith neuron at time t and satisfies the following hypothesis:
(H2) for each j ∈ {1,2, . . . ,n}, f j : R→ R is globally Lipschitz with Lipschitz constant

Lj > 0, that is,

∣∣ f j(u)− f j(v)
∣∣≤ Lj|u− v| ∀u,v ∈R. (1.6)

ki j : [0,+∞)→ [0,+∞) is a continuous delayed ker-function satisfying (1.2) and (1.3).
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Using the topological degree theory and Lyapunov functions, some new criteria ensur-
ing the existence, uniqueness, global asymptotic stability, and global exponential stability
of equilibrium point of (1.4) are derived. In these results, we do not require the activation
function f j to be bounded, differentiable, and monotonic nondecreasing. Moreover, the
symmetry of the connection matrix is not also necessary.

The initial condition associated with (1.4) is of the form

x0i(t)= φi(t), t ∈ (−∞,0], i= 1,2, . . . ,n, (1.7)

where φi ∈ C((−∞,0],R), φi(t) is bounded on (−∞,0], and the norm of C((−∞,0],R) is
denoted by

∥∥φ(t)
∥∥= sup

t∈(−∞,0]

n∑
i=1

∣∣φi(t)∣∣, (1.8)

where φ(t)= (φ1(t), . . . ,φn(t)).

2. Existence and uniqueness of the equilibrium

In this section, we will consider existence and uniqueness of the equilibrium of the system
(1.4). Before starting our main results, we first give the definitions of topological degree
and homotopy invariance principle.

Definition 2.1 [3]. Assuming that f (x) : Ω→Rn is a continuous and differentiable func-
tion, if p /∈ f (∂Ω) and J f (x) 	= 0, for all x ∈ f −1(p), then

deg( f ,Ω, p)=
∑

x∈ f −1(p)

sgnJ f (x), (2.1)

where Ω ⊂ Rn is a bounded and open set, J f (x) = det( fi j(x)), fi j(x) = ∂ fi/∂xj . Suppose
f (x) : Ω→Rn is a continuous function, g(x) : Ω→Rn is a continuous and differentiable
function, if p /∈ f (∂Ω) and ‖ f (x)− g(x)‖ < ρ(p, f (∂Ω)), then

deg( f ,Ω, p)= deg(g,Ω, p). (2.2)

Lemma 2.2 (homotopy invariance principle) [3]. Assuming that H : Ω× [0,1] → Rn is
a continuous function, let ht(x) = H(x, t) and let p : [0,1]→ Rn be a continuous function
satisfying p(t) /∈ ht(∂Ω) if t ∈ [0,1]. Then, deg(ht,Ω, p(t)) is independent of t.

In the following, we will consider the existence and uniqueness of the equilibrium of
system (1.4).

Theorem 2.3. Assume that (H1), (H2), and (1.2) hold and that there exist positive con-
stants ξi > 0 such that

ξidi−
n∑
j=1

ξjajiLi
∣∣1− bji

∣∣ > 0, i= 1,2, . . . ,n. (2.3)

Then, system (1.4) has a unique equilibrium x∗.
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Proof. From (1.2), it is easy to see that x∗ = (x∗1 , . . . ,x∗n ) is an equilibrium of the system
(1.4) if and only if the following condition holds:

gi
(
x∗i
)= n∑

j=1

ai j f j
[(

1− bi j
)
x∗j − cj

]
, i= 1,2, . . . ,n. (2.4)

Let h(x)= (h1(x), . . . ,hn(x)), where

hi(x)= gi
(
xi
)− n∑

j=1

ai j f j
[(

1− bi j
)
xj − cj

]
, i= 1,2, . . . ,n. (2.5)

Obviously, the solutions of h(x)= 0 are equilibrium points of the system (1.4). We define
a homotopic mapping

F(x,λ)= λh(x) + (1− λ)g(x), (2.6)

where λ∈ [0,1], F(x,λ)= (F1(x,λ), . . . ,Fn(x,λ)), and

Fi(x,λ)= λhi(x) + (1− λ)gi
(
xi
)
. (2.7)

Then, from (H1), (H2), and (1.2), it follows that

∣∣Fi(x,λ)
∣∣= ∣∣λhi(x) + (1− λ)gi(x)

∣∣
=
∣∣∣∣∣λgi(x)− λ

n∑
j=1

ai j f j
[(

1− bi j
)
xj − cj

]∣∣∣∣∣
≥ ∣∣gi(xi)∣∣− λ

n∑
j=1

ai j
∣∣ f j[(1− bi j

)
xj − cj

]∣∣

= ∣∣gi(xi)∣∣− λ
n∑
j=1

ai j
∣∣ f j[(1− bi j

)
xj − cj

]− f j
(− cj

)
+ f j

(− cj
)∣∣

≥ ∣∣gi(xi)∣∣− λ
n∑
j=1

ai jLj

∣∣1− bi j
∣∣∣∣xj∣∣− λ

n∑
j=1

ai j
∣∣ f j(− cj

)∣∣

≥ di
∣∣xi∣∣− λ

n∑
j=1

ai jLj

∣∣1− bi j
∣∣∣∣xj∣∣− λ

n∑
j=1

ai j
∣∣ f j(− cj

)∣∣

≥ λ

(
di
∣∣xi∣∣− λ

n∑
j=1

ai jLj

∣∣1− bi j
∣∣∣∣xj∣∣

)
− λ

n∑
j=1

ai j
∣∣ f j(− cj

)∣∣.

(2.8)
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Further, by (2.3), we have

n∑
i=1

ξi
∣∣Fi(x,λ)

∣∣≥ λ
n∑
i=1

ξi

(
di
∣∣xi∣∣− λ

n∑
j=1

ai jLj

∣∣1− bi j
∣∣∣∣xj∣∣

)

− λ
n∑
i=1

ξi

( n∑
j=1

ai j
∣∣ f j(− cj

)∣∣)

= λ
n∑
i=1

[
ξidi−

n∑
j=1

ξjajiLi
∣∣1− bji

∣∣]∣∣xi∣∣

− λ
n∑
i=1

ξi

( n∑
j=1

ai j
∣∣ f j(− cj

)∣∣).

(2.9)

Define

ξ0 = min
1≤i≤n

{
ξidi−

n∑
j=1

ξjajiLi
∣∣1− bji

∣∣},

a0 = max
1≤i≤n

ξi

n∑
j=1

ai j
∣∣ f j(− cj

)∣∣.
(2.10)

Then, ξ0 > 0 by (2.3) and a0 is a positive constant by (H2). Let

U(0)=
{
x | ∣∣xi∣∣ < n

(
a0 + 1

)
ξ0

}
. (2.11)

It follows from (2.11) that for any x ∈ ∂(U(0)), there exist 1≤ i0 ≤ n such that

∣∣xi0∣∣= n
(
a0 + 1

)
ξ0

. (2.12)

By (2.10), we can obtain that for any λ∈ (0,1],

n∑
i=1

ξi
∣∣Fi(x,λ)

∣∣≥ λ
n∑
i=1

[
ξi0di0 −

n∑
j=1

ξjaji0Li0
∣∣1− bji0

∣∣]∣∣xi0∣∣− λ
n∑
i=1

a0

≥ λξ0
∣∣xi0∣∣− λna0

= λn > 0,

(2.13)

which implies that F(x,λ) 	= 0 for any x ∈ ∂(U(0)) and λ∈ (0,1].
If λ= 0, from (2.6) and (H1), we have F(x,λ)= g(x) 	= 0 for any x ∈ ∂(U(0)). Hence,

F(x,λ) 	= 0 for any x ∈ ∂(U(0)) and λ ∈ [0,1]. From (H1), it is easy to prove deg(g,
U(0),0)= 1. From Lemma 2.2, we have

deg
(
F,U(0),0

)= deg
(
g,U(0),0

)= 1. (2.14)
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By topological degree theory, we can conclude that equation h(x)= 0 has at least a solu-
tion in U(0). That is to say, system (1.4) has at least an equilibrium point x∗.

In the following, we will consider uniqueness of the equilibrium x∗ of system (1.4).
Suppose y∗ = (y∗1 , . . . , y∗n ) is also an equilibrium point of the system (1.4), then, we have

gi
(
y∗i
)= n∑

j=1

ai j f j
[(

1− bi j
)
y∗j − cj

]
, i= 1,2, . . . ,n. (2.15)

By (2.4) and (2.15), we have that for each j ∈ {1,2, . . . ,n},

gi
(
x∗i
)− gi

(
y∗i
)= n∑

j=1

ai j
{
f j
[(

1− bi j
)
x∗j − cj

]− f j
[(

1− bi j
)
y∗j − cj

]}
. (2.16)

According to (H1) and (H2), we get

di
∣∣x∗i − y∗i

∣∣≤ n∑
j=1

ai jLj

∣∣1− bi j
∣∣∣∣x∗j − y∗j

∣∣, (2.17)

and so

n∑
i=1

ξidi
∣∣x∗i − y∗i

∣∣≤ n∑
i=1

[
ξi

n∑
j=1

ai jLj

∣∣1− bi j
∣∣∣∣x∗j − y∗j

∣∣], (2.18)

namely,

n∑
i=1

[
ξidi−

n∑
j=1

ξjajiLi
∣∣1− bji

∣∣]∣∣x∗i − y∗i
∣∣≤ 0. (2.19)

In view of (2.3), we get |x∗i − y∗i | = 0, namely, x∗i = y∗i , i = 1,2, . . . ,n. Hence, x∗ = y∗.
Therefore, system (1.4) has a unique equilibrium point x∗. The proof is complete. �

If x∗ is a unique equilibrium of system (1.4), we set

y(t)= x(t)− x∗, (2.20)

then, for i= 1,2, . . . ,n, by (1.4), we have for t ≥ 0,

y′i (t)=−gi
(
yi(t) + x∗

)
+

n∑
j=1

ai j f j

[
yj(t) + x∗j − bi j

∫∞
0
ki j(s)

(
yj(t− s) + x∗j

)
ds− cj

]
.

(2.21)



F.-Y. Zhang and W.-T. Li 7

Further, by (H1), (H2), (1.2), and (2.4), we get

y′i (t)=−
(
gi
(
yi(t) + x∗

)− gi
(
x∗
))− n∑

j=1

ai j f j
[(

1− bi j
)
x∗j − cj

]

+
n∑
j=1

ai j f j

[
yj(t) +

(
1− bi j

)
x∗j − bi j

∫∞
0
ki j(s)yj(t− s)ds− cj

]

≤−di yi(t) +
n∑
j=1

ai jLj

∣∣∣∣yj(t)− bi j

∫∞
0
ki j(s)yj(t− s)ds

∣∣∣∣
≤−di yi(t) +

n∑
j=1

ai jLj

[∣∣yj(t)∣∣+ bi j

∫∞
0
ki j(s)

∣∣yj(t− s)
∣∣ds].

(2.22)

Obviously, if x∗ is a unique equilibrium point of the system (1.4), then y(t) = 0 is a
unique equilibrium point of system (2.21), moreover, y(t) = 0 is the trivial solution of
system (2.21). Therefore, the equilibrium x∗ of system (1.4) is globally asymptotically
stable and globally exponentially stable if and only if the trivial solution y(t)= 0 of system
(2.21) is globally asymptotically stable and globally exponentially stable.

Taking ξi = 1, i= 1,2, . . . ,n in condition (2.3), the following result holds.

Corollary 2.4. Assume that (H1), (H2), and (1.2) hold and that

di >
n∑
j=1

ajiLi
∣∣1− bji

∣∣, i= 1,2, . . . ,n. (2.23)

Then, the system (1.4) has a unique equilibrium x∗.

3. Global stability analysis

In this section, we will consider global asymptotic stability and global exponential stabil-
ity of the unique equilibrium of system (1.4).

Theorem 3.1. Assume that (H1), (H2), (1.2), and (1.3) hold and that there exist positive
constants ξi > 0 such that

ξidi−
n∑
j=1

ξjajiLi
(
1 + bji

)
> 0, i= 1,2, . . . ,n. (3.1)

Then, the trivial solution of the system (2.21) is globally asymptotically stable.

Proof. Since

ξidi−
n∑
j=1

ξjajiLi
∣∣1− bji

∣∣≥ ξidi−
n∑
j=1

ξjajiLi
(
1 + bji

)
> 0, (3.2)
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the condition (2.3) of Theorem 2.3 holds. Hence, Theorem 2.3 implies that system (1.4)
has a unique equilibrium x∗, and so, (2.21) holds.

Consider the Lyapunov function defined as follows:

V1(t)=
n∑
i=1

ξi

{∣∣yi(t)∣∣+
n∑
j=1

ai jbi jLj

∫∞
0
ki j(s)

(∫ t

t−s

∣∣yj(τ)
∣∣dτ)ds

}
. (3.3)

Calculating the upper right derivative D+V1(t) along the solution of system (2.21), by
(1.3), (2.22), and (3.1), we get

D+V1(t)|(2.21)

=
n∑
i=1

ξi

{(
sgn yi(t)

)
y′i (t) +

n∑
j=1

ai jbi jLj

∫∞
0
ki j(s)

[∣∣yj(t)∣∣−∣∣yj(t− s)
∣∣]ds

}

≤
n∑
i=1

ξi

{
−di

∣∣yi(t)∣∣+
n∑
j=1

ai jLj

[∣∣yj(t)∣∣+ bi j

∫∞
0
ki j(s)

∣∣yj(t− s)
∣∣ds]

+
n∑
j=1

ai jbi jLj

[∣∣yi(t)∣∣−
∫∞

0
ki j(s)

∣∣yj(t− s)
∣∣ds]

}

≤
n∑
i=1

ξi

[
−di

∣∣yi(t)∣∣+
n∑
j=1

ai jLj
(
1 + bi j

)∣∣yj(t)∣∣
]

=
n∑
i=1

[
− ξidi +

n∑
j=1

ξjajiLi
(
1 + bji

)]∣∣yi(t)∣∣

≤ α
n∑
i=1

∣∣yi(t)∣∣,

(3.4)

where

α= min
1≤i≤n

{
− ξidi +

n∑
j=1

ξjajiLi
(
1 + bji

)}
, (3.5)

and α < 0 by (3.1). Therefore, (3.4) means that the trivial solution of system (2.21) is
globally asymptotically stable, and hence, the equilibrium x∗ of the system (1.4) is glob-
ally asymptotically stable. The proof is complete. �

Taking ξi = 1 in (3.1), then

n∑
j=1

ajiLi
(
1 + bji

)
< di, i= 1,2, . . . ,n. (3.6)

In view of Theorem 2.3, we have the following result.
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Corollary 3.2. Assume that (H1), (H2), (1.2), and (1.3) hold and that

max
1≤i≤n

n∑
j=1

ajiLi
(
1 + bji

)
< di. (3.7)

Then, system (1.4) has a unique equilibrium x∗ which is globally asymptotically stable.

Theorem 3.3. Assume that (H1) and (H2) hold and fi, i = 1,2, . . . ,n is bounded on R.
Then, all solutions of system (1.4) remain bounded on (0,+∞) and there exists an equilib-
rium for system (1.4).

Proof. It is easy to see that all solutions of system (1.4) satisfy the following differential
inequalities:

−dixi(t)−βi ≤ x′i (t)≤−dixi(t) +βi, i= 1,2, . . . ,n, (3.8)

where βi =
∑n

j=1(ai j sups∈R | f j(s)|). In view of (3.8), we can obtain that all solutions of
the system (1.4) remain bounded on (0,+∞).

By the well-known Brouwer’s fixed point theorem, it is easy to see that the system (1.4)
has an equilibrium. Since its proof is simple, it will be omitted. �

Remark 3.4. It is well known that Brouwer’s fixed point theorem does not guarantee the
uniqueness of the fixed point. Therefore, we will derive some criteria on the globally
asymptotic stability of the equilibrium of system (1.4), which guarantee the uniqueness
of the equilibrium.

Theorem 3.5. Assume that (H1), (H2), (1.2), and (1.3) hold, and further fi, i= 1,2, . . . ,n
is bounded on R and there exists a positive diagonal matrix ξ = diag(ξ1, . . . ,ξn) such that for
i= 1,2, . . . ,n, one of the following conditions holds:

(i)
∑n

j=1[ai j(1 + bi j)Ljξi + aji(1 + bji)Liξj] < 2diξi;
(ii)

∑n
j=1[ai j(Lj + bi j)Ljξi + aji(1 +Libji)ξj] < 2diξi;

(iii)
∑n

j=1[ai j(1 + bi jLj)ξi + aji(Li + bji)Liξj] < 2diξi;
(iv)

∑n
j=1[ai j(1 +Ljbi j)Ljξi + aji(Li + bji)ξj] < 2diξi;

(v)
∑n

j=1[ai j(1 + bi j)L2
j ξi + aji(1 + bji)ξj] < 2diξi;

(vi)
∑n

j=1[ai j(1 + bi jL
2
j )ξi + aji(L2

i + bji)ξj] < 2diξi;
(vii)

∑n
j=1[ai j(Lj + bi j)ξi + aji(1 +Libji)Liξj] < 2diξi;

(viii)
∑n

j=1[ai j(L2
j + bi j)ξi + aji(1 + bjiL

2
i )ξj] < 2diξi;

(ix)
∑n

j=1[ai j(1 + bi j)ξi + aji(1 + bji)L2
i ξ j] < 2diξi.

Then, the trivial solution of system (2.21) is globally asymptotically stable.

Proof. Since fi (i= 1,2, . . . ,n) is bounded on R, Theorem 3.3 holds, and so (2.21) holds.
(i) Consider the Lyapunov function defined as follows:

V2(t)=
n∑
i=1

ξi

{
1
2
y2
i (t) +

1
2

n∑
j=1

ai jbi jLj

∫∞
0
ki j(s)

(∫ t

t−s
y2
j (τ)dτ

)
ds

}
. (3.9)
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Calculating the upper right derivative of V2(t), using (1.2), (1.3), and (2.22), we have

D+V2(t)|(2.21)

=
n∑
i=1

ξi

{
yi(t)y′i (t) +

1
2

n∑
j=1

ai jbi jLj

∫∞
0
ki j(s)

[
y2
j (t)− y2

j (t− s)
]
ds

}

≤
n∑
i=1

ξi

{
−di y

2
i (t) +

1
2

n∑
j=1

ai jbi jLj

∫∞
0
ki j(s)

∫ t

t−s

[
y2
j (t)− y2

j (t− s)
]
ds

+
n∑
j=1

ai jLj

[∣∣yi(t)∣∣∣∣yj(t)∣∣+ bi j
∣∣yi(t)∣∣

∫∞
0
ki j(s)

∣∣yj(t− s)
∣∣ds]

}

≤
n∑
i=1

ξi

{
−di y

2
i (t) +

1
2

n∑
j=1

ai jbi jLj

∫∞
0
ki j(s)

∫ t

t−s

[
y2
j (t)− y2

j (t− s)
]
ds

+
1
2

n∑
j=1

ai jLj
[
y2
i (t) + y2

j (t)
]

+
1
2

n∑
j=1

ai jbi jLj

∫∞
0
ki j(s)

[
y2
i (t) + y2

j (t− s)
]
ds

}

=
n∑
i=1

ξi

[
−di y

2
i (t) +

1
2

n∑
j=1

ai j
(
1 + bi j

)
Lj
(
y2
i (t) + y2

j (t)
)]

=
n∑
i=1

{
−diξi +

1
2

n∑
j=1

[
ai j
(
1 + bi j

)
Ljξi + aji

(
1 + bji

)
Liξj

]}
y2
i (t)

≤ β
n∑
i=1

y2
i (t),

(3.10)

where

β = max
1≤i≤n

{
−diξi +

1
2

n∑
j=1

[
ai j
(
1 + bi j

)
Ljξi + aji

(
1 + bji

)
Liξj

]}
(3.11)

and β < 0 by condition (i). From (3.10), we have

V2(t)−β
∫ t

0

n∑
i=1

y2
i (t)dt ≤V2(0), t ≥ 0. (3.12)

It follows from (3.12) that

n∑
i=1

y2
i (t)∈ L1[0,+∞). (3.13)
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In view of Theorem 3.3, we know that the solution xi(t) of system (1.4) and its derivative
x′i (t) is bounded on [0,+∞), which implies boundedness of yi(t) and y′i (t), hence, yi(t)
is uniformly continuous on [0,+∞), and so

∑n
i=1 y

2
i (t) is also uniformly continuous on

[0,+∞). From (3.10), we get

n∑
i=1

y2
i (t)−→ 0 as t −→ +∞, (3.14)

this means yi(t)→ 0 as t→ +∞ for all i= 1,2, . . . ,n. Thus, the trivial solution of the system
(2.21) is globally asymptotically stable, and so, the equilibrium x∗ of the system (1.4) is
globally asymptotically stable.

The proof of (ii)–(ix) is complete similar to that of (i), with the exception of the def-
inition of Lyapunov functions and choice of elements used to estimate the derivative
D+Vi(t)|(2.21) by the inequality ab ≤ (1/2)(a2 + b2), listed as follows.

(ii) Similar to (i), except using Lj|yi(t)||yj(t)| ≤ (1/2)(L2
j y

2
i (t) + y2

j (t)).
(iii) Similar to (i), except using Lj|yi(t)||yj(t)| ≤ (1/2)(y2

i (t) +L2
j y

2
j (t)).

(iv) The Lyapunov function defined by

V3(t)=
n∑
i=1

ξi

{
1
2
y2
i (t) +

1
2

n∑
j=1

ai jbi j

∫∞
0
ki j(s)

(∫ t

t−s
y2
j (τ)dτ

)
ds

}
, (3.15)

and D+V3(t)|(2.21) is estimated by

Lj

∣∣yi(t)∣∣∣∣yj(t)∣∣≤ 1
2
Lj
(
y2
i (t) + y2

j (t)
)
;

Lj

∣∣yi(t)∣∣∣∣yj(t− s)
∣∣≤ 1

2

(
L2
j y

2
i (t) + y2

j (t− s)
)
.

(3.16)

(v) Similar to (iv), except using Lj|yi(t)||yj(t)| ≤ (1/2)(L2
j y

2
i (t) + y2

j (t)).
(vi) Similar to (iv), except using Lj|yi(t)||yj(t)| ≤ (1/2)(y2

i (t) +L2
j y

2
j (t)).

(vii) The Lyapunov function defined by

V4(t)=
n∑
i=1

ξi

{
1
2
y2
i (t) +

1
2

n∑
j=1

ai jbi jL
2
j

∫∞
0
ki j(s)

(∫ t

t−s
y2
j (τ)dτ

)
ds

}
, (3.17)

and D+V4(t)|(2.21) is estimated by

Lj

∣∣yi(t)∣∣∣∣yj(t)∣∣≤ 1
2
Lj
(
y2
i (t) + y2

j (t)
)
;

Lj

∣∣yi(t)∣∣∣∣yj(t− s)
∣∣≤ 1

2

(
y2
i (t) +L2

j y
2
j (t− s)

)
.

(3.18)
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(viii) Similar to (vii), except using Lj|yi(t)||yj(t)| ≤ (1/2)(L2
j y

2
i (t) + y2

j (t)).
(ix) Similar to (vi), except using Lj|yi(t)||yj(t)| ≤ (1/2)(y2

i (t) +L2
j y

2
j (t)).

The proof is complete. �

Obviously, if we take ξi = 1 in Theorem 3.5, then we can obtain the following result.

Corollary 3.6. Assume that (H1), (H2), (1.2), and (1.3) hold, and further fi, i= 1,2, . . . ,n,
is bounded on R and one of the following conditions holds:

(i)
∑n

j=1[ai j(1 + bi j)Lj + aji(1 + bji)Li] < 2di;
(ii)

∑n
j=1[ai j(Lj + bi j)Lj + aji(1 +Libji)] < 2di;

(iii)
∑n

j=1[ai j(1 + bi jLj) + aji(Li + bji)Li] < 2di;
(iv)

∑n
j=1[ai j(1 +Ljbi j)Lj + aji(Li + bji)] < 2di;

(v)
∑n

j=1[ai j(1 + bi j)L2
j + aji(1 + bji)] < 2di;

(vi)
∑n

j=1[ai j(1 + bi jL
2
j ) + aji(L2

i + bji)] < 2di;
(vii)

∑n
j=1[ai j(Lj + bi j) + aji(1 +Libji)Li] < 2di;

(viii)
∑n

j=1[ai j(L2
j + bi j) + aji(1 + bjiL

2
i )] < 2di;

(ix)
∑n

j=1[ai j(1 + bi j) + aji(1 + bji)L2
i ] < 2di.

Then, the trivial solution of the system (2.21) is globally asymptotically stable.

Theorem 3.7. Assume that (H1), (H2), and (1.2) hold and that

(A1)
∫∞

0 skj(s)esds < +∞,
(A2) there exists positive constant ξi, i= 1,2, . . . ,n and γ > 0 such that

ξi
(
γ−di

)
+

n∑
j=1

ξjaji
(
1 + bjiMji

)
Li < 0, i= 1,2, . . . ,n, (3.19)

where Mij =
∫∞

0 ki j(s)esds. Then, the trivial solution of system (2.15) is globally expo-
nentially stable.

Proof. Since lims→∞ ki j(s)es/ski j(s)es = 0, by (A1),
∫∞

0 ki j(s)esds < +∞. Further, we have
1= ∫∞0 kj(s)ds <

∫∞
0 kj(s)esds, so Mj ≥ 1. By (A2), for i= 1,2, . . . ,n, we get

ξidi−
n∑
j=1

ξjaji

∣∣1− bji

∣∣Li ≥ ξi
(
di− γ

)− n∑
j=1

ξjaji
(
1 + bjiMji

)
Li > 0. (3.20)

By Theorem 2.3, we know that the system (1.4) has a unique equilibrium x∗, and so,
(2.21) holds.

In the following, we only consider the case 0 < γ < 1. If γ ≥ 1, we can choose 0 < δ <
1 ≤ γ, and transform γ into δ in condition (A2), then the proof is the same as the case
0 < γ < 1.

Consider the Lyapunov function defined by

V5(t)=
n∑
i=1

ξi

{
eγt
∣∣yi(t)∣∣+

n∑
j=1

Ljai jbi j

∫∞
0
ki j(s)

(∫ t

t−s

∣∣yj(τ)
∣∣eγ(τ+s)dτ

)
ds

}
. (3.21)



F.-Y. Zhang and W.-T. Li 13

Calculating the upper right derivative D+V5(t) along the solution of system (2.21), by
(1.2), (2.22), and (A1), (A2) of Theorem 3.7, we have

D+V5(t)|(2.21)

=
n∑
i=1

ξi

{
γeγt

∣∣yi(t)∣∣+ eγt
(

sgn yi(t)
)
y′i (t)

+
n∑
j=1

ai jbi jLj

∫∞
0
ki j(s)

[∣∣yj(t)∣∣eγ(t+s)−∣∣yj(t− s)
∣∣eγt]ds

}

= eγt
n∑
i=1

ξi

{(
γ−di

)∣∣yi(t)∣∣+
n∑
j=1

ai jLj

[∣∣yj(t)∣∣+ bi j

∫∞
0
ki j(s)

∣∣yj(t− s)
∣∣ds]

+
n∑
j=1

ai jbi jLj

∫∞
0
ki j(s)

[∣∣yj(t)∣∣eγs−∣∣yj(t− s)
∣∣]ds

}

≤ eγt
n∑
i=1

ξi

{(
γ−di

)∣∣yi(t)∣∣+
n∑
j=1

ai jLj

[
1 + bi j

∫∞
0
kj(s)eγsds

]∣∣yj(t)∣∣
}

< eγt
n∑
i=1

ξi

{(
γ−di

)∣∣yi(t)∣∣+
n∑
j=1

ai jLj
(
1 + bi jMij

)∣∣yj(t)∣∣
}

= eγt
n∑
i=1

{
ξi
(
γ−di

)
+

n∑
j=1

ξjaji
(
1 + bjiMji

)
Li

}∣∣yi(t)∣∣

≤ ηeγt
n∑
i=1

∣∣yi(t)∣∣,

(3.22)

where

η = max
1≤i≤n

{
ξi
(
γ−di

)
+

n∑
j=1

ξjaji
(
1 + bjiMji

)
Li

}
, (3.23)

and η < 0 by (A2). So, we have V5(t) < V5(0) for t ≥ 0. Since

eγt min
1≤i≤n

ξi

n∑
i=1

∣∣yi(t)∣∣≤V5(t), t ≥ 0,

V5(0)=
n∑
i=1

ξi

{∣∣yi(0)
∣∣+

n∑
j=1

ai jbi jLj

∫∞
0
ki j(s)

(∫ 0

−s

∣∣yj(τ)
∣∣eγ(τ+s)dτ

)
ds

}

≤
{

max
1≤i≤n

ξi +
n∑
i=1

n∑
j=1

ξiγ
−1ai jbi jLj

∫∞
0
ki j(s)eγsds

}∥∥y(0)
∥∥

≤
{

max
1≤i≤n

ξi +
n∑
i=1

n∑
j=1

ξiγ
−1ai jbi jMijLj

}∥∥y(0)
∥∥,

(3.24)



14 Global stability for DCNNs

where y(0)= x∗ −φ, then

eγt min
1≤i≤n

ξi

n∑
i=1

∣∣yi(t)∣∣≤
{

max
1≤i≤n

ξi +
n∑
i=1

n∑
j=1

ξiγ
−1ai jbi jMijLj

}∥∥x∗ −φ
∥∥, (3.25)

and so

n∑
i=1

∣∣yi(t)∣∣≤ θ
∥∥x∗ −φ

∥∥e−γt, (3.26)

where

θ = 1
min1≤i≤n ξi

{
max
1≤i≤n

ξi +
n∑
i=1

n∑
j=1

ξiγ
−1ai jbi jMijLj

}
≥ 1 (3.27)

is a constant. From (3.26), we see that the trivial solution of system (2.21) is globally
exponentially stable, and so, the equilibrium x∗ of system (1.4) is globally exponentially
stable. The proof is complete. �

Corollary 3.8. Assume that (H1), (H2), and (1.2) hold and that

(i)
∫∞

0 sk(s)esds < +∞,
(ii) di >

∑n
j=1 aji(1 + bjiMji)Li, where Mji =

∫∞
0 kji(s)ds≥ 1.

Then, system (1.4) has a unique equilibrium which is globally exponentially stable.

4. Discussion and examples

It is easy to see that Theorem 3.5 concludes Theorem 3.1. However, the conditions of
Corollary 3.6 are independent of the conditions of Corollary 3.2. That is to say, for any
condition of (i)–(ix) of Corollary 3.6, there exists a network which satisfies it but does
not satisfy the other, and also does not satisfy Corollary 3.2. The following Example 4.2
will prove the above fact. We note that Corollary 3.6 conclude Theorem 3.1 in this paper.
However, the verification of Corollary 3.6 is much easier than that of Theorem 3.1.

In the following, we will give some examples to illustrate our results.

Example 4.1. Consider the following model:

x′1(t)=−3x1(t) + tanh
[
x1(t)−

∫∞
0
e−sx1(t− s)ds− 1

]

+
3
2

tanh
[
x2(t)− 1

3

∫∞
0
e−sx2(t− s)ds− 2

]
,

x′2(t)=−4x2(t) +
2
3

tanh
[
x1(t)− 1

2

∫∞
0
e−sx1(t− s)ds− 1

]

+ tanh
[
x2(t)− 1

2

∫∞
0
e−sx2(t− s)ds− 2

]
.

(4.1)
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Functions g1(x1(t)) = 3x1(t) and g2(x2(t)) = 4x2(t) satisfy hypothesis (H1) with d1 = 3
and d2 = 4, respectively. Function f j(x) = tanhx satisfies hypothesis (H2) with Lj = 1
( j = 1,2) and ki j(s)= e−s satisfy (1.2) and (1.3) for i, j = 1,2. Then, taking ξ1 = 9/8, ξ2 = 1
in condition (3.1), we have

ξ1d1−
2∑
j=1

ξjaj1L1
(
1 + bj1

)= 1
8
> 0,

ξ2d2−
2∑
j=1

ξjaj2L2
(
1 + bj2

)= 1
4
> 0.

(4.2)

However, for any ξi > 0 (i = 1,2), non of conditions (i)–(ix) of Theorem 3.5 is satisfied.
Equation (4.2) implies that the condition of Theorem 3.1 holds, but Theorem 3.5 does
not hold. Therefore, by Theorem 3.1, system (4.1) has a globally asymptotically stable
equilibrium.

Example 4.2. Consider the following model:

x′1(t)=−36
5
x1(t) + 2tanh

[
x1(t)− 1

5

∫∞
0
e−sx1(t− s)ds− 1

]

+ 2tanh
1
2

[
x2(t)− 3

5

∫∞
0
e−sx2(t− s)ds− 3

2

]
,

x′2(t)=−4x2(t) +
1
2

tanh
[
x1(t)− 2

5

∫∞
0
e−sx1(t− s)ds− 1

]

+ 4tanh
1
2

[
x2(t)− 2

5

∫∞
0
e−sx2(t− s)ds− 3

2

]
.

(4.3)

Functions g1(x1(t))= (36/5)x1(t) and g2(x2(t))= 4x2(t) satisfy hypothesis (H1) with d1 =
36/5, d2 = 4, respectively. Function f1(x)= tanhx, f2(x)= tanh(1/2)x satisfies hypothe-
sis (H2) with L1 = 1 and L2 = 1/2, respectively. Function ki j(s) = e−s satisfies (1.2) and
(1.3) for i, j = 1,2. It is easy to verify that condition (3.7) of Corollary 3.2 and conditions
(ii)–(ix) of Corollary 3.8 do not hold. However, we have

2d1−
2∑
j=1

[
a1 j
(
1 + b1 j

)
Lj + aj1

(
1 + bj1

)
L1
]= 1

10
> 0,

2d2−
2∑
j=1

[
a2 j
(
1 + b2 j

)
Lj + aj2

(
1 + bj2

)
L2
]= 1

10
> 0.

(4.4)

Namely, (4.4) implies that condition (i) of Corollary 3.6 holds. Therefore, by Corollary
3.6, system (4.3) has a globally asymptotically stable equilibrium.
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Example 4.3. Consider the following model:

x′1(t)=−2x1(t) +
2
3

tanh
[
x1(t)− 1

4

∫∞
0

2e−2sx1(t− s)ds− 1
]

+ tanh
[
x2(t)− 1

6

∫∞
0

2e−2sx2(t− s)ds− 3
2

]
,

x′2(t)=−5x2(t) +
5
6

tanh
[
x1(t)− 1

6

∫∞
0

2e−2sx1(t− s)ds− 1
]

+ tanh
[
x2(t)− 1

4

∫∞
0

2e−2sx2(t− s)ds− 3
2

]
.

(4.5)

Functions g1(x1(t)) = 2x1(t) and g2(x2(t)) = 5x2(t) satisfy hypothesis (H1) with d1 = 2
and d2 = 5, respectively. Function f j(x)= tanhx satisfies hypothesis (H2) with Lj = 1 for
j = 1,2. Function ki j(s)= 2e−2s satisfies (1.2) and condition (A1), Mij =

∫∞
0 ki j(s)esds= 2

for i, j = 1,2. Then, taking ξ1 = 1, ξ2 = 1/2, we have

ξ1
(
γ−d1

)
+

2∑
j=1

ξjaj1
(
1 + bj1Mj1

)
L1 =− 1

12
< 0,

ξ2
(
γ−d2

)
+

2∑
j=1

ξjaj2
(
1 + bj2Mj2

)
L2 =−25

36
< 0.

(4.6)

Equation (4.6) implies that condition (A2) of Theorem 3.7 holds. Therefore, by Theorem
3.7, system (4.5) has a globally exponentially stable equilibrium.
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