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The exact with respect to step h (0,1] coercive inequality for solutions in C h of
difference elliptic equation is established.
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0. INTRODUCTION

It is well-known in the theory of differential
equations that the coercive inequalities approach
appeared to be very useful for the investigation
of general boundary value problems for elliptic
and parabolic differential equations.
The coercive inequalities hold also for various

difference analogues of such problems. These in-
equalities, evidently, permit to prove not only the
existence of solutions but also well-posedness of
these problems. Main role of the coercive in-
equalities for difference problems lies in that they
present a special type of stability, which permits
the existence of exact, i.e. two-sided estimates of
the rate of convergence approximate solutions

(with respect to the corresponding coercive

norms).
As it turns out, there are situations when the

difference problems are well-posed, but their lim-
it variants- differential problems- are ill-posed.
This paper deals with a consideration just of one
of such cases. The established here exact (with
respect to step h of difference scheme) coercive
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inequality gives the possibility to find (almost)
exact estimates of the rate of convergence of ap-
proximate solutions in the case when the differ-
ential problem is ill-posed.

0.1 lll-Posedness of Differential Elliptic
Equation in C

We will consider the simplest elliptic differential
equation

(0.1)

on the plane R2 of points x- (x1, x2). It is natu-

ral to call function v(x) v(x,xz) the (classical)
solution of Eq. (0.1), if it has the continuous and
bounded partial derivatives till the second order,
and if it satisfies Eq. (0.1). We will consider dif-
ferential equation (0.1) as the operator equation
in the Banach space C- C(R2) of continuous
and bounded (scalar) functions (x)= (x,x2)
with norm

I1 1 c sup (0.2)
xcR
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For the existence of such solution v of Eq. (0.1),
evidently, it is necessary that

fc C. (0.3)

We will say that Eq. (0.1) is well-posed in C (see
[1]), if the following two conditions are fulfilled:

(a) There exists the unique solution

v(x)= v(x;f) in C of Eq. (0.1) for any fc C. It
means, in particular, that formula

Iv(f)](x) v(x ;f) (0.4)

defines the homogeneous and additive operator,
acting from C in the Banach space C2 of (scalar)
functions b(x) b(x,x2), having continuous
and bounded partial derivatives till the second
order, with norm

+ IIo2/Ox, Oxalic. (0.5)
i,j

leads us to coercive inequality

Ilvll2 M. Ilfllc (0.9)

for solutions in C of Eq. (0.1) with some
_< M< +cx, does not depend on f C. How-

ever, it is well-known (see [1]) that Eq. (0.1) is

not well-posed in C. The corresponding counter-
example can be given by (0 < c < 1)

(0 < x2 + x2
2 < ), (0.10)

v(x) O ( <_ x + x and x, x2 O),

It means that vc e C and for 0 < Xl
2 + x <_ 1/9

+ a,l (x),

+ a,2 (x)
(0.11)

(a2) Operator v(f) is continuous in C.
This property is, evidently, equivalent to in-

equality

IIv(f)llc _< M. Ilfllc (0.6)

for some continuous functions a,i(x) a,i(x, X2)
(i 1,2). Therefore, evidently, Eq. (0.1) is ill-
posed in C. It means that coercive inequality (0.9)
is not true for any solution in C of Eq. (0.1).

with some l<M< /oo, does not depend on

f C. It turns out that property (al) leads us to
the essentially more stronger inequality. In fact,
the acting in C with domain C2 operators

(Ai)(x)--02/0x21 (i- 1,2), (0.7)

0.2. Well-Posedness of Difference Equation in C

We will consider now the difference analog of
differential equation (0.1), namely difference
equation

Vi,j [(1i+ 1,j 2" Vi,.j / Vi_ ,j) h-2

evidently, are closed. Then from properties (al)
and (a2) it follows that superposition operators

[Aiv(f)] (x) -02v(x;f)/Ox (i 1, 2) (0.8)

are closed operators, defined on the whole
Banach space C. Therefore, by the Banach theo-
rem, operators (0.8) are bounded. This statement

/ (Vi,j+ 2. Vi,j / Vi,j_l) h-2]

fi,j (i, j -oc, +oc

(0.12)

for some 0 < h <_ 1. We will consider Eq. (0.12)
as operator equation

h,2vh fhv i’ (D’2 + D2 (0.13)
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in the Banach space Ch of (scalar) bounded grid
functions

)h (ff)i,j i,j -x, +x) (0.14)

Therefore Eq. (0.18) has the unique solution
v hEC for any fEC and A>0, i.e. operator
AI--(Dlh’2/ D2h’2) has (bounded) inverse for any
A > 0, and estimate

with norm

llllc sup ]i,j (o.15)
i,j=-o,+o

Here operators Okh’2 (k-1,2) are defined by for-
mulas

h,2 hD b [(bi+,j. 2. 3i,j / )i-1,j)" h-2"
i,j cx +o ],

h 2 2i,j + i,j- 1) h-Z;D2, oh [(i,j+l-
i,j-- -, +].

(0.16)

For any fh6 Ch Eq. (0.13) has the unique solution
vh Ch, and the difference coercive inequality

[ivhllc + iiD ,21lc + limb2 h fhv2’v IIc Mc(h).
(0.17)

takes place with some <Mc(h)< +oc, does
not depend on fh Ch. In fact, let us consider
more general, then (0.13) operator equation with
parameter A > 0

h,2 fh,Fh (D,2vh / D2 lh)

or (infinite) system of linear algebraic equations

/Yi,j [(1i+ 1,j 2. Fi,j / li 1,j) h-2

-nt- (vi,j+l 2. Fi,j _qt_ Fi,j 1)" h-2] --fi,j
(i,j -oc, +oc ).

(0.19)

Since, evidently, operators (0.16) are bounded
(for fixed h), then, in virtue of contraction map-
ping principle, Eq. (0.18) for any fh Ch has the
unique solution vhE Ch, if A>0 is sufficiently
large. Further we apply the maximum principle
(to system (0.19)) and obtain a priori estimate

is true. Since Dkh’2 (k- 1,2) are bounded operators
(for fixed h), then coercive inequality (0.17) is true.
The value Mc(h) in this inequality, evidently, must
tend to /, when h / 0, since the differential
coercive inequality (0.9) is not true. It is the
consequence of ill-posedness in C of differential
equation (0.1). From estimate (0.21) and from
formulas (0.16), evidently, it follows that we can
put

Mc(h) M. h-2 (0.22)

in inequality (0.17) for some <_ M < + ec, does
not depend on fh Ch and 0 < h <_ 1. It turns out
that essentially more exact result is true. Namely,
for solution v h in Ch of Eq. (0.13) coercive
inequality (0.17) takes place for

mc(h) mo ln /h (O < h 1/2 (0.23)

with some _< M0 < +c, does not depend on fh
and h. It is, in particular, the consequence of
theory of difference equations which is devoted in
this paper. Formula (0.23) means that

sup c
fhch.fh=O

_< Mo. In 1lb. (0.24)

It turns out that (0.24) is the exact with respect to
order h --+ + 0 estimate. In fact (see formula (0.10)),
let

Vi,j 11 (Xl,X2) (xl ih, X2 jh; i,j -cx, +oo).
(0.25)

Then from formulas (0.11) it follows that (0 <

X12 / X2
2 < })
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(vi+ ,j 2 vi,j + vi- ,j) h-2

y 2. In
(x + hyz) 2

+ a,,l(X, + hyz, x2)]dz]dy,
(vi,j+ 2. vi,j + vi,j- 1) h-2

Y I- 2" lnx + (x2 + hyz)2

+ a,,2(x,, x2+ hyz)] dzI dy

(0.26)

Therefore for some a0 > 0 and sufficiently small
h > 0 estimates from. below

[(vi+ ,j 2. vi,j + vi-,j) h-2],
[(vi,j+ 2. vi,j + vi,j-

_> 8. (1 aoh). In 1/h
(0.27)

are true. Finally, from (0.10) and (0.26) it follows
that estimates from above

I.fi,j] <_ rno, ji,j -vi,j {(vi+ ,j 2.vi,j + vi_,j).h-2

+ (vi,j+, 2. vi,j + vi,j-1)" h-2] (0.28)

take place for some 0 < m0 < +oc, does not

depend on h. Therefore from (0.27) and (0.28) it
follows that estimate from below

/ {IDh2’2v h

C/,/
h2 hDl’V [c’,

c’]" Ilfhl[ >- 8 aoh. In 1/h
mo

(0.29)

holds for sufficiently small h > 0.

0.3. The Almost Exact Estimate of Convergence
Rate

Let v be the solution in C of Eq. (0.1), having the
continuous and bounded partial derivatives till the
fourth order. Let further vi,j (i,j- -oc, +oc) be

the solution of system (0.12) for

fi,j f ih,jh (0.30)

Then, evidently, values

Zi,j v(ih,jh) Fi,j (i,j- -oc, +oc) (0.31)

are the solutions of the system

Zi,j [(Zi+ 1,j 2. Zi,j / Zi_ 1,j)h-2

Jr- (zi,j-t- 2. zi,j Jr- zi,j-

(0.32)

and for values Fi,j estimates

Iri,j{ M. h2 (0.33)

take place for some <_M< +oo, does not

depend on h. Therefore, from (0.24) it follows
that estimate from above

,-.h2 h h2 hII hllc 4-IILl’ z 4-IID2’z IIc
_< M1 h2" In 1/h (0.34)

is true for some _< M1 < + oc, does not depend
on h.

Finally, let f(xl,x2)O be the smooth func-
tion, which partial derivatives till the second or-

der sufficiently quickly tend to zero, when

x2 + x22 tend to infinity. Then, evidently,

sup lO4v/Ox / 04v/Ox24] > 0, (0.35)
xR

and therefore estimate

sup Iri,jl >_ m. h2 (0.36)
k,j =-ec,

is true for some 0 < m < / oc, does not depend on
h. Estimate (0.36) and triangle inequality lead us to
estimate from below

 nll . + 2D,’ z [ch + zn + IlD’2[[c > m’ h2
(0.37)
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for some 0 < ml < /oc, does not depend on h.
Estimates (0.34) and (0.37) give the almost exact
estimate of convergence rate of difference method
(0.12) in the difference coercive norm.

is established for its solutions va in Ca’a(E) with
some _< M < oc, does not depend not only on

fa Ca,a(E) and 0 < c < 1, but also on h. From
inequality (0.42) it follows that

0.4. The Content of Paper

This paper is devoted to investigation of well-
posedness of differential equation

-d2v/dt2 + Av-f (-oc < < +oc) (0.38)

and its difference analog

(Vi+ 2. F / Vi_ 1) h-2 / Avi
(i-- (0.39)

in the arbitrary Banach space E. Here A is the
(unbounded) closed linear operator in E with
dense domain D(A). Equation (0.38) is con-
sidered in the functional (abstract) H61der space
Ca(E) (0 < c < 1), and for any positive (see [2])
in E operator A coercive inequality

IIAvl c(/ M. oz-1. (1 o) -1. Ill C(E) (0.40)

Avhl 0() <- M. In 1/h Ilfhllc,,() (0 < h < !)2
(0.43)

Here Ca (E) is the Banach space of uni-
formly bounded grid functions /)h__ ()i E;
i=-oc, +oc). Inequality (0.43) leads us to for-
mula (0.23) of exact value M.(h) in difference
coercive inequality (0.17).
To difference equation (0.39) Grisvard’s theory

is also applicable even in more general case,
when A is only positive operator in E, but it
leads us to inequality

I[Avhllo,,(Ai M. c-. fhllc,,,(/ (0 < c 1/2).
(0.44)

From (0.44) only estimate

Avhllo(/ M. In2 1/h. (0.45)

follows.

is established for its solution v in Ca(E) with
some I_<M< /oc, does not depend on

f<=_ Ca(E) and 0 < c < 1. To differential equation
(0.38) Grisvard’s theory (see [3]) is applicable,
but it leads us to the coercive inequality
(0 < < 1/21

(0.41)

Difference equation (0.39) is considered as the
operator equation in the H61der space Ch’ (E)
(0 < c < 1) of (abstract) grid functions, and for
any strongly positive (see [2]) in E operator A
coercive inequality

IkAv
(0.42)

1. DIFFERENTIAL EQUATION OF THE
SECOND ORDER IN THE BANACH
SPACE

1.1. Well-Posedness in C(E)

We will consider (abstract) differential equation

-v"(t)+Av(t)-f(t) (-oc< t<+oc) (1.1)

in the Banach space E as the operator equation
in the functional Banach space C(E)-C[(-oc,
+oc), E] with norm

()- sup II(t)ll,

We will call the function v(t) C(E) the solution
in C(E) of Eq. (1.1), if v"(t),Av(t) C(E), and
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Eq. (1.1) is fulfilled. If such solution exists, then,
evidently,

f(t) C(E). (1.3)

We will say that Eq. (1.1) is well-posed in C(E),
if the following two conditions are fulfilled:

(al) For any f C(E) there exists the unique
solution v(t)= v(t; f) in C(E) of Eq. (1.1). It, in
particular, means that

d2{v(t;f)]/(dt) 2 and Av(t;f) (1.4)

are acting in C(E) additive and homogeneous
operators, defining on whole Banach space C(E).

(a2) Operator v(t; f) is continuous in C(E), i.e.

inequality

bounded in E inverse for any A >_ 0, and estimate

(1.9)

is true for some <M < +ec. Such A is called
positive in E operator (see [2]). So, if Eq. (1.1) is

well-posed in the functional Banach space C(E),
then A is positive operator in the Banach space E
(under condition that operator A-1 is bounded in

E). Whether the positivity of operator A in E
is sufficient condition of the well-posedness of
Eq. (1.1) in C(E)?.
For arbitrary Banach space F let us consider

the acting in C(F)= C[(-oc,+oc), F] operator
A, defining by formula

Ab(x) -b"(x) + b(x)(-oc, (1.10)

IIv(t; f)llc(/ M Ilfllc(/

holds.
Properties (a l) and (a2), in virtue of Banach’s

theorem, lead us to coercive inequality

IIv’llc(/+ IIAv(t)llc(l Me" Ilfllc(/
(1 _< Mc <

(1.6)

Inequality (1.6) permits to investigate the spec-
tral properties of operator coefficient A for well-
posed in C(E) of Eq. (1.1). For any u D(A) and
A > 0 we will put

on functions (x) C(F), such that "(x) C(F).
Evidently, operator AI / A has the bounded in-
verse for any A >_ 0, and formula

[(XI-+- A)-lb](x)

f+e-+lx-l(y)dy (1.11)
2V/A+

holds. From (1.11) estimate (1.9) (for M 1) fol-
lows, i.e. A is positive operator in the Banach
space E=C(F). However the counter-example
from the Introduction shows that Eq. (1.1) is ill-
posed in C(E).

b Au + Au. (1.7) 1.2. Formula of Solution in C(E)

Then, evidently, function eivtu(i- x/S-l) is the
solution in C(E) of Eq. (1.1) for function

f(t)- eivS. Therefore from coercive inequality
(1.6) inequality

From estimate (1.9), evidently, it follows that
operator M/ A has bounded inverse for all
complex numbers A cr + ir + +(M)
(0 < e < 1), such that

.,,Xllull: + IlAull <_ Mc[l@ll: (1.8)

follows. We will suppose that operator A has
bounded in E inverse A-1. Then, evidently, from
inequality (1.8) it follows that operator I/ A has

Irl <
1-e
M ( +) (>_0)

or (1.12)

(0.2 / 7.2)1/2 < e
(or < O)M
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and estimate

II(,xI- A)-IIE__+E M,. -. (1 + ,Xl)- (1.13)

holds for some < M1 < /oc, does not depend
on 0<e< 1. It means that spector or(A) of
operator A is outside of set - -{j+ and inside
of {j and on its boundary 0{j- estimate

II(I- A)-IIIE__+E _< MI" -1. (1 / Il) -1 (1.14)

is true. Therefore for any analytic in the neigh-
borhood of or(A) (scalar) function b(z), such that
esitmate

(1 -+-Izl)c. I(z)l <_ M2 (1.15)

takes place for some 0 <
the Cauchy-Riesz’s formula defines bounded op-
erator

takes place with some < M(c,/3)< +, does
not depend on u ED(A). Operator A for
c E (0,1) have the better spectral properties, than
operator A. In particular, from identity

hi + A (vI- v/) (x/-I + v/), (1.20)

inequality (1.19) (for c- 1/2,/3- 1) and estimate

(1.14) it follows that operator x/I- has the
bounded inverse for k {j-, and estimate

(x/-I- A)-111E E --< M3" g-l(1 / %/)-1
(1.21)

is true for some _< M3 < / oc, does not depend
on e and . In particular, operator hi + v has
bounded inverse for any complex number such
that Re , _> 0, and estimate

(1.22)

fo b(z). (zI- A) -1 dz (i- x/-21).b(A) i
(1.16)

In particular, the negative fraction powers A
(c>0) of positive operator A are defined (see
[2]), A-C-(A-1) for integer c, and semigroup
identity

A-(+/) A-".A- (0 < a,/3 < +oc) (1.17)

is true. From these statements, evidently, it fol-
lows that positive fractional powers A(c >0)
can be defined by formula

A-(A-)-’ (1.18)

holds. Acting in the Banach space E linear opera-
tor B with dense domain D(B) is called strongly
positive (see [2]), if operator hi+ B has bounded
inverse for any complex number A with Re A _> 0,
and estimate

(1.23)

is true for some l_<M< +oo. Operator B is

strongly positive iff-B is the generator of analy-
tic semigroup exp{-tB} (t > 0) of linear bounded
in E operators with exponentially decreasing
norm, when + /oc, i.e. estimates

exp{-tB} IIF+ E, tB exp{-tB} IIE- E
<_ M(B) .e-a(B)t (t > O)

(1.24)

Operators A(c > 0) already are unbounded, and
their domains D(A) are dense in E. The follow-
ing moment inequality

are true for some I<_M(B)< +ec, O<
a(B) < +oc. Thus, is strongly positive in E
operator, i.e. the following estimates hold:

AulIEM(c,).IAuI/ Ilulle
[0 < c < fl < +oc, u D(A)]

(1.19)
exp{-tx/-} IIE_ , tV/--’exp{--tV/--}E_E

_< e (t > 0). (1.25)
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The consideration of operator permits to re-
duce differential equation (1.1) of the second or-
der to equivalent system

’() + ,/5. () (), ’(t) + v. z(t) f(t)

(-oc < < +oc) (1.26)

of differential equations of the first order. This
fact prompts that for solution v(t) in C(E) of
Eq. (1.1) formula

()_ j’+2v/
exp{-x/- It s } .f(s)ds

(1.27)

is true for its solution v(t) in Ca(E) with some

l_<M(c0<+oc, does not depend on f(t)
Ca(E). As in the case of space C(E) it is estab-
lished that from coercive inequality (1.30) the
positivity of operator A in Banach space E fol-
lows. It turns out that this property of operator
A in E is not only necessary, but also sufficient
condition of well-posedness of Eq. (1.1) in Ca(E)
for all c(0,1). In fact, from formula (1.27),
evidently, it follows that

Av(t) -- exp{- s }

If(s) -f(t)l ds +f(t). (1.31)

must be true. It is easy to see that formula (1.27)
defines the unique solution in C(E) of Eq. (1.1)
if, for example.

Af(t) or f"(t) C(E). (1.28)

It turns out that formula (1.27) defines the
unique solution in C(E) of Eq. (1.1) under essen-

tially less restrictions on the smoothness of func-
tion f(t).

The application of estimates (1.25) leads us to
estimate

e-a(/-)- It- sl It sl ds

x H(f)+ Ilfll<). (1.32)

Here and in what follows

1.3. Well-Posedness in Ca(E)

We will consider differential equation (1.1) as the
operator equation in the (abstract) H61der space
Ca(E) C [(-oc, +oc), E] (0 < c < 1) with norm

sup II(t)ll
< <

sup II(t + s)
< t+s < q-oo

(1.29)

Analogously to the case of space C(E) the notion
of solution v(t) of Eq. (1.1) in the space Ca(E) is
defined. The well-posedness in Ca(E) of Eq. (1.1)
means that coercive inequality

v IIc,() + lay c,,(e) <- M(oe). Ill Ic((e) (.30)

H’(f) sup Ilf(t + ) -f(t)l[u" -.
(1.33)

Formula (1.31) permits also to estimate H61der
coefficient Ha(Av) of function Av(t). These esti-
mates lead us to the following results"

THEOREM 1.1 Equation (1.1) is well-posed
in functional Banach space Ca(E) (0 < ct < 1),
iff A is positive operator in Banach space E. For
solution v(t) in C(E) of Eq. (1.1) coercive in-

equality

IlAvllc,(u) _< M. c-’. (1 c)-’ Ilfllc() (1.34)

takes place with some

depend on f Ca(E) and o (0, 1).
does not
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2. DIFFERENCE EQUATION OF THE
SECOND ORDER IN THE BANACH
SPACE

2.1. Well-Posedness in Ch(E)

Now we will consider the difference analog of
differential equation (1.1), namely difference
equation

(1i+ 2. 1 -1- 1i_ 1)" h-2 + Avi --ft"
(i-- (2.1)

Difference equation of the second order (2.1) is
equivalent to system of difference equations of
the first order

(Vi- Vi-1) h-1 @ Vi Zi,

(Zi+ Zi) h-1 + zi (1 -I- h/)J
(i--

(2.2)

defining by formula

Avi- B. (2 + B) -1. (1 + B)-li-klfk

(i- -oc, + oc ), (2.7)

which is analogous to formula (1.27). The basis
of these statements will be given under supposi-
tion that A is positive operator in E, and estimate
(1.9) will be comfortable to write in the form

ll(AI+ A)-I I1 M(A). [A + a(A)] -1 (2.8)

for any A>0 and some I_<M(A) < +
0 < a(A)< + oc. For the investigation of spec-
tral properties of unbounded operator B(h2A)
we will construct the bounded operator [AI+
B(h2A)]-1 for A > 0. Since (scalar) function

B(z) z/2 + (z2/4 + z) /2 (2.9)

which is analogous to system of differential equa-
tion (1.26). Here operator B-B(hZA)-h is
defined by formula

B- h2A/2 + [hZA/2) 2 + hZA] /2, (2.3)

i.e. B is the solution of operator quadratic equation

B2. (1 q- B) -1 h2A. (2.4)

We will consider difference equation (2.1) as

operator equation in the Banach space Ch(E) of
grid functions

)h (1/3 e E; -oc, + (2.5)

with norm

is analytic on whole complex plane, except points
0,-4, and B(z). z-1 --+ 1, when Izl--, + oc, then,
in virtue of estimate (2.8), the Cauchy-Riesz for-
mula gives

[AI + B(hZA)] -1

/ [,, q-- B(z)] -1- (zI- h2A)-ldz
27ri

h20 (;

(i x/Z-l). (2.10)

Finally, since z-0, -4 are the bifurcation points
of function B(z), then the deformation of integra-
tion contour, in virtue of Cauchy’s theorem,
leads us to the formula

sup IIillE (2.6)

System (2.2) permits to show that for any

fh Ch(E) there exists the unique solution v,
Av a (Avi, -oc, + oc) Ca(E) of Eq. (2.1),

[AI+B(h2A)]-
if

4

27r
(A2 Ap + p)-’. V/p(4- p)

x (pI+ h2A) -1 do (2.11)
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Since, evidently, function

MI(A,p)

(2rr)-I. (A2 Ap + p)-l. V/p(4 p) >_ 0

(0 < p <_ 4, A _> 0), (2.12)

then, in virtue of estimate (2.8), estimate

II[I+ B(h2A)]-IIE_E M(A)

jo
4

X M1 (, p)" [p + ha(A)]-ldp (2.13)

is true. The application now of formulas (2.11) and
(2.12) in the case, when operator hA is replaced by
number hZa(A), gives estimate

I1[ I+
<_ M(A) + B[hZa(A)]}-1

<_ M(A) [A + hv/a(A)] -1. (2.14)

Analogously to formula (2.11) for any rn 1,
formula

4

[M+ B(hZA)]-m__ mm(/ p) (pI + hZA)-dp

(2.15)

is established. However, function Mm(,p) for
m_>2 changes the sign on segment 0<_p_<4.
Therefore the method, which was applied in the
case rn- 1, does not work in the cases rn _> 2. We
will suppose additionally that -A is the generator
of strongly continuous semigroup exp{-tA} (t > 0)
with exponentially decreasing norm, i.e. estimate

exp{--tA}IIEE M(A) e-ta(A) (t>o)
(2.16)

takes place for some I<_M(A) < +oo, 0<a
(A) < +oo. Then, it is well known (see [2]), there
exists the bounded inverse (M+A)- for any
complex number A with Re A>-a(A), and

formula

(AI + A) -1 e-a- exp{-tA} dt (2.17)

holds. Formula (2.17) means that resolvent of
operator -A is the Laplace transform of semi-
group exp{-tA}. From (2.16) and (2.17), in
particular, it follows that A is positive operator
in E, i.e. estimate (2.8) is true.

Further from (2.15) it follows that

[M+ B(h2A)] -m _,m(,, t) exp{-th2a} dt,

(2.18)
/m (/, t) Mm(/, p) e-pt dp. (2.19)

In the case when h2A is the positive numbers, for-
mula (2.18) means that function [M+ B(hZA)]-m is

(for fixed _> 0) the Laplace transform of function

Em(A, t). Then from properties of Laplace trans-
form it follows that m(, t) is the convolution of
rn copies of function 1 (A, t), and this convolution
is defined by recurrent correlation

Em+l(A,t) Em(A,s) El(A, s) ds

(m 1, + o). (2.20)

Since M(A, p) >_ O, then from (2.19) it follows that

E (A, p) >_ O. Therefore, in virtue of (2.20),

m(/, t) >__ 0 (m- 1, + oo). (2.21)

Inequality (2.21) permits to apply by estimate of
norm of operator [AI-+-B(hZA)]-m, defining by
formula (2.18), the same approach, as in the case
rn- for formula (2.11). Namely estimate (A >_ 0)

[AI + B(hZA)]-milE__ E

<_ M(A) {A + B[hZa(A)] }-m

<_ M(A) [A + hv/a(A)] (2.22)
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is true. This estimate permits to establish that
difference equation (2.1) is well-posed in the space
Ch(E) (for fixed h), i.e. for any fhECh(E) there
exists the unique solution in Ch(E) of Eq. (2.1),
defining by formula (2.7), and following inequal-
ities

Ilvhllc( M(h). Ilfhllc(,
IIAvhllc( Mc(h). Ilfhl C(fl

(2.23)

(2.24)

are true with some <_ Ms(h), Mc(h)< +oc, do
not depend on fhE Ch(E). Inequality (2.23) is,
evidently, corollary of inequality (2.24), since A-1

is bounded operator in E.
However under investigation of convergence of

difference method it is necessary to establish the
well-posedness of Eq. (2.1) in Banach space
Ch(E) not for some fixed h(0,1) but in the
aggregate of such spaces for all h (0,1]. To this
aim we must establish inequalities

2.2. Well-Posedness in ch’(E)

Now we want to consider difference equation
(2.1) as operator equation in the Banach space
Ch’(E) (0 < c < 1) of grid functions h=
(i E; i- -oc, +ec) with norm

sup IIbi[IE
=-o,q-o

+ sup [li+k il[E" (kh)-.
-o < i< i+k < +oc

(2.27)

The well-posedness of difference equation (2.1) in
the aggregate of such space for all h (0.1] means
that for solutions vh of Eq. (2.1) in Ch’(E) stabil-
ity inequality

(2.28)

and coercive inequality

II hllc ( / Ms. Ilfhllc ( /
IIAvhllc ( l Mr IIfhllc ( /

(2.25)

(2.26)

with some <_ Ms, Mc < +oc, do not depend on

fhECh(E) and 0 < h_< 1. Inequality (2.26) is,
generally speaking, not true for any Banach
space E and generator -A of strongly continuous
semigroup exp{-tA} with exponentially decreas-
ing norm, and this statement (see Section 1.1)
follows from ill-posedness in C(E) of Eq. (1.1).

It turns out that the more weaker inequality
(2.25) is true. Namely formula .(2.7) and estimate
(2.22) permit to show that we can put

Ms =M(A)- [a(A)] -/2 [1 + M(A)] /2

x { + 2[a(A)]-/2}.

The property (2.25) is called the stability of dif-
ference equation (2.11) in the Banach space

(2.29)

are true for some < Ms(cO, Mc(c)< +oc, do
to depend onf Ch’(E) and h (0, 1].
The stability in ch’l(E), evidently, from stabil-

ity in Ch(E) follows. Then the application of in-
terpolation theorem permits to estabish the
stability in the space Ch’(E) for all a (0,1].

Further we will suppose that A is strongly posi-
tive in E operator, i.e. -A is the generator of analy-
tic semi-group with exponentially decreasing norm:

exp{-tA}lle--,e, IItA. exp{-tA}lle_e

<_ M(A) e-ta(A)

(t > O), <_ M(A) < +oe, O < a(A) <
(2.30)

The proof of well-posedness of difference equa-
tion (2.1) in Ch’(E), i.e. the proof of coercive
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inequality (2.29), is based on estimates of norms
of operators.

B. (2 + B) -1. (1 + B) -m,

B2.(2+B)-1.(I+B) (m-- 1,+ec) (2.31)

Analogously to formula (2.18) we can establish
formula

[2 + O(h2a)] -1. [1 -I- B(h2A)] -m

El(2, t), 12m(1, t).exp{-th2A}dt.

(2.32)

Here /21 (2, t) /m(1, t) is the convolution of
functions 1 (2, t) and m(1, t). Formula (2.32),
evidently, leads us to estimate

[[(2 + B) -1- (1 +
<_ M(A) {1 + h[a(A)]l/2}-(m+ 1) (2.33)

which is analogous to estimate (2.22). Further, in
virtue of formulas (2.4) and (2.32), we have for
rn > 2 formula

B2(2 + B) -1. (1 + B) -m

heA exp{-th2A} dt. (2.34)

Now we apply estimate (2.30) and obtain

B2 (2 + B) -1. (1 -- B)-mIIE E<_ M(A). 1(2, t)*/m- l(l, t)- e-th2a(A)dt.

Further from evident formula

-1 e-" ds (t > 0) (2.36)

it follows that

lib2. (2 + B) -1. (1 + B)-mIIE E

< M(A). 1 (2, t) m-1 (1, t)

e-t[s+ h2a(A)] dt/ ds. (2.37)

Finally, the application of formula (2.32) for the
case, when operator h2A is replaced by number
s + hZa(A), gives estimate

lIB2. (2 + B) -1. (1 + B)-mllEE

)ds. (2.38)

Therefore the following estimate is true:

[IBZ(hZA) [2 + B(h2A)] -1. [1 + B(hZA)]-mllE
<_ 2M(A). (m2 1) -1 <_ M2" m-2. (2.39)

For operator B. (2 + B)-- (1 + B)-m(m >_ 2) we

apply estimate (2.37) and (2.39), moment in-
equality

1/2 1/2 [’//3 0(82)1
(2.40)

and obtain

IIB(h2A) [2 + B(hZA)] -1. [1 + B(h2a)]-ml[E_E
_< M1 m-1 (2.41)

It is easy to see that estimates (2.38) and (2.41) are

true also in the case m 1. These estimates are

analogous to estimates of analytic semigroup.
They permit to establish the following result.

THEOaEM 2.1 Let A be strongly positive operator
in the Banach space E. Then difference equation
(2.1) is well-posed in the aggregate of Banach
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space Ch’(E (0 < c < 1) and coercive inequality and obtain

Av Ich,() -< M-o-. (1 a)-.
(2.42)

holds for its solutions vh in Ch’ (E) with some
_< M < +oo, does not depend on fh E ch’(E),

a E (0,1) and h (0,1].
From definition (2.27) and from inequality

(2.42), evidently, it follows that

for any a(0,1/2],h(0, e-2] ,and some 1
M < +oo, does not depend on f h, h and a. We
will put here

a (ln l/h) -1 (2.44)

It means that we can put

M(h) M. e In 1/h

in inequality (2.24).

(2.45)

(2.46)
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