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Radionuclide-based imaging is an alternative to evaluate ventricular function and synchrony and may be used as a tool for the
identification of patients that could benefit from cardiac resynchronization therapy (CRT). In a previous work, we used Factor
Analysis of Dynamic Structures (FADS) to analyze the contribution and spatial distribution of the 3 most significant factors (3-
MSF) present in a dynamic series of equilibrium radionuclide angiography images. In this work, a probability density function
model of the 3-MSF extracted from FADS for a control group is presented; also an index, based on the likelihood between the
control group’s contraction model and a sample of normal subjects is proposed. This normality index was compared with those
computed for two cardiopathic populations, satisfying the clinical criteria to be considered as candidates for a CRT. The proposed
normality index provides a measure, consistent with the phase analysis currently used in clinical environment, sensitive enough to
show contraction differences between normal and abnormal groups, which suggests that it can be related to the degree of severity
in the ventricular contraction dyssynchrony, and therefore shows promise as a follow-up procedure for patients under CRT.

1. Introduction

Heart failure (HF) is defined as a complex clinical syndrome
that can result from any structural or functional cardiac
disorder and that impairs the ability of the ventricle to fill
or eject blood [1]. According to a 44-year followup of the
National Heart, Lung, and Blood Institute’s Framingham
Heart Study, approximately 5.7 million patients have an HF
diagnosis in the United States. After HF is diagnosed the
survival rate is lower in men than in women, less than 15
percent of women survive more than 8–12 years and the one-
year mortality rate reaches 20% [2].

Ventricular dyssynchrony has also been associated with
increased mortality in HF patients [3, 4]. Dyssynchronous
contraction can be palliated by electrically activating in
a synchronized form the right and left ventricles with a

multisite pacemaker device. This kind of treatment is called
cardiac resynchronization therapy (CRT). Several clinical
studies have shown that CRT contributes to an increase
in the life expectancy of subjects diagnosed with cardiac
failure, specifically of the type where the left ventricle ejection
fraction is under 35%or classified in levels III or IV, according
to the New York Heart Association [5–7] criteria. In a meta-
analysis of several CRT trials, evidence showed that HF
hospitalizations were reduced by 32% and that all-cause
mortality decreased by 25% after approximately 3 months
of therapy [8]. In a randomized controlled trial comparing
optimal medical therapy alone with optimal medical therapy
plus CRT (without a defibrillator), CRT significantly reduced
the combined risk of death by any cause and decreased the
unplanned hospital admission for a major cardiovascular
event by 37% [9].
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Figure 1: Schematic ERNA image acquisition. (a) Detector in the left anterior oblique (LAO) position to visualize the best RV and LV
definition. (b) Several EKG-gated temporal frames corresponding to different phases of cardiac cycle are acquired in the LAO position.
The ERNA images are obtained from summation of individual frames.
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Figure 2: Parametric Fourier phase image and the phase image
histogram for both ventricles (RV and LV). Indices like mean, stan-
dard deviation, andmode, computed from the statistical distribution
of the phase angles, have been proposed to evaluate contraction
abnormality patterns.

However, 20% to 30%of patients havingHFdonot benefit
from resynchronization therapy, probably due to several
causes [10].

(i) The established criteria to select candidates for CRT
are limited.

(ii) The stimulation leads are not properly placed.
(iii) There is excessive fibrous tissue at the stimulus loca-

tion.

This has led to the definition of several indexes, extracted
from imaging modalities, to measure the cavities mechanical

contraction, and that allow the proper identification of
candidates to undergo CRT [11]. The quantification of
peak systolic velocity and myocardial deformation from
echocardiographic images has been proposed as representa-
tive indexes to evaluate ventricular dyssynchrony. However,
studies carried out in multiple health centers have shown
that it has a very low sensitivity to discriminate subjects
who respond to CRT from those who do not [12]. Recent
studies have reported indices, extracted from MRI, which
can contribute to the solution of this problem, but the use of
this imaging modality is restricted, depending on the type of
resynchronization device that has been implanted [11, 13–16].

Radionuclide-based imaging is another alternative to
evaluate ventricular contraction synchrony [17]. The equilib-
rium radionuclide angiography (ERNA) is a set of images that
represent the spatial distribution of a radiotracer and relates
pixel’s intensity to ventricular volume. The general setup for
ERNA image acquisition (see Figure 1) consists in locating
the detector of the gamma camera in the left anterior oblique
view (LAO) with patient at rest in supine position after
the injection of red blood cells marked with Tc-99m. Syn-
chronized acquisition of images with the electrocardiogram
(EKG) allows the accumulation of radioactivity in several R-R
intervals, to construct the image set that represents a specific
instant of the cardiac cycle [18, 19].

ERNA images are processed by adjusting the first har-
monic component of the Fourier Transform (FT) of each
pixel’s temporal intensity evolution (time-activity curve
(TAC)). From these components, phase angles, which are
representative of the TAC behavior, are extracted and a map
(phase image) of the ventricular contraction sequence is
constructed [20]. Several indices, taken from the statistical
distribution of the phase angles, have been proposed to
detect contraction abnormality patterns [21–23]. Figure 2
shows an example of the phase image corresponding to
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an abnormal contraction pattern (with intraventricular and
interventricular dyssynchrony), together with the right (RV)
and left (LV) ventricle histograms. The modes and standard
deviations of these distributions are measured and used as
clinical indices to identify abnormalities.

The standard deviation of the pixels’ phase angles mea-
sured in each ventricular Region of Interest (ROI) represents
intraventricular dyssynchrony and the difference between
the means of the phase angles of both ventricular ROI
represents interventricular dyssynchrony [24]. Several stud-
ies have reported an improvement of interventricular and
intraventricular dyssynchrony after CRT, using the Fourier
phase analysis of ERNA images [25–29]. Dauphin et al. [30]
showed that interventricular dyssynchrony was identified as
an independent predictive factor of good clinical response
with a practical cut-off value of 25.5∘, a sensitivity of 91.4%,
and a specificity of 84.4%. However, Fourier phase analysis
based only on one FT harmonic has its limitations, since
it assumes periodic TACs and a smooth transition between
the first and last frame of the dynamic images series. These
drawbacks are more prominent in the regions with severe
contraction pattern abnormalities.

Factor Analysis of Dynamic Structures (FADS) has also
been proposed as a valuable tool to detect abnormalities in
ventricular cavities’ movement [31, 32]. It is applied to ERNA
images to extract those TACs associated to the physiological
behavior of a specific region and assumes that there are
pixel clusters with the same temporal evolution which define
their morphology. Therefore, FADS determines the TACs
(coefficients) of pixel groups with the same behavior, in
addition to their geometry and spatial location (factors)
[33, 34]. In a previous work carried out by our group,
we analyzed the contribution and spatial distribution of
the most significant factors present in a dynamic series of
ERNA images and we proposed an alternative method to
reconstruct the phase image. In [35], we reported that more
than 90% of the information contained in an image series
is represented by the three most significant factors (3-MSF)
and that the third factor increases considerably whenever an
abnormality of the contraction pattern is observed. Also, a
detailed analysis of the scatter plots of the 3-MSF showed the
importance of the third factor to adequately separate regions
having an abnormal contraction pattern. Therefore, the need
to propose an index to quantify contraction abnormality,
using the representative information extracted from dynamic
image series, becomes evident.

In this work, a probability density function model of
the 3-MSF, extracted from FADS for a control group, is
presented; also a reference normality index, based on the
likelihood between the control group’s contraction model
and a sample of normal subjects, is proposed. The index
was then statistically compared with those computed for two
populations of patients satisfying the clinical criteria to be
considered as candidates for a CRT: a group with complete
left bundle branch block (LBBB) and a group with dilated
cardiomyopathy (DCM).

The paper is structured as follows: in the Methodology
section we describe the proposed model to characterize a
normal contraction pattern (Sections 2.1 and 2.2); the defined

index to quantify the degree of normality with respect to
a reference population (Section 2.3); the populations con-
sidered to test the proposed index (Sections 2.4 and 2.5)
as well as the statistics employed (Section 2.6). The Results
section describes the findings of the proposed normality
index tested in different cardiopathies and compared to the
clinical standard provided by Fourier phase analysis. These
are analyzed and interpreted in the Discussion section, to
finally conclude at the corresponding section.

2. Materials and Methods

2.1. Factor Analysis of Dynamic Structures (FADS). Let
XTAC(𝑝, 𝑞) = X[(𝑖, 𝑗), 𝑘] be a bidimensional array
(Figure 3(c)), whose indices represent the (𝑖, 𝑗)th pixel
value of the 𝑘th frame of the acquired image series. Each
frame size is 𝑀 × 𝑀 pixels (𝑝 = (𝑖 − 1) × 𝑀 + 𝑗, 𝑞 = 𝑘)

as shown in Figure 3(a). XTAC(𝑝, 𝑞) represents the time-
series generated for each pixel on the image set, known as
time-activity curves (TAC) (Figure 3(b)).

Let Q be a linear transformation that decorrelates the
ERNA image set (XTAC), so that

F=X
𝑚
Q,

Q=VD,
(1)

where F are the factors of XTAC(𝑝, 𝑞) (Figure 3(c)), X𝑚 is
XTAC(𝑝, 𝑞) with the mean-value removed; V is the eigenvec-
tor set of the autocorrelationmatrix ofX

𝑚
andD is the scaled

diagonal matrix of the eigenvalues set of the autocorrelation
matrix of X

𝑚
. The contribution of each factor is determined

by the corresponding eigenvalue magnitude.

2.2. Normal Contraction Pattern Model. The three most
significant factors (3-MSF) of the ERNA studies, obtained for
a population of normal subjects, were analyzed; the spatial
distribution of those factors can be observed in Figure 4.
Every point in the factorial 3D space is associated to the
projection of a given pixel in the ERNA image, into each of
the main eigenvectors V.

The probability density function (PDF) of those factors
was modeled by a linear combination of 𝑅 Gaussian den-
sity functions (Gaussian mixture), defined by the following
expression [36]:

𝑝 (𝑓) =

𝑅

∑
𝑟=1

𝑤
𝑟
𝑁(𝑓 | 𝜇

𝑟
, Σ
𝑟
) , (2)

where 𝑓 is observed variable, 𝑤
𝑟
is relative weight of the

𝑟th gaussian function of the mixture, and 𝑁(𝜇
𝑟
, Σ
𝑟
) is the

multivariate Gaussian PDF with 𝜇
𝑟
and Σ

𝑟
parameters

𝑅

∑
𝑟=1

𝑤
𝑟
= 1, 0 ≤ 𝑤

𝑟
≤ 1. (3)

To estimate the mixture parameters {𝑤
𝑟
, 𝜇
𝑟
𝑦 Σ
𝑟
} for

𝑟 = 1, . . . , 𝑅, the expectation maximization algorithm, that
maximizes the mixture model likelihood, was used [37].
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Figure 3: (a) ERNA study consisting of a 𝑘-images series, with frames having 𝑖 × 𝑗 pixels. (b) Time-activity curve extracted from a particular
Region of Interest (ROI 1). (c) Bi-dimensional array constructed from the image series.

Six data groups were assembled, with 10 subjects each,
randomly selected from a total of 23 control subjects,
following a standard bootstrap resampling procedure. The
PDF of the 3-MSF was modeled for each group, using the
procedure described above. The number of components of
the Gaussian mixture was determined considering the bayes
information criterion (BIC) [38, 39].Themodels’ parameters,
BIC, and likelihood were calculated using the R package (R
Foundation, http://www.r-project.org/) [40].

2.3. Normality Index. Considering that the likelihood esti-
mated on a data sample (𝑓

𝑠
) represents the probability that

those observations are well described by the assumed model
(Gaussian mixture with w, 𝜇, and Σ parameters), in this
work we propose a normality index based on this probability.
Assuming statistical independence between observations, the
average log-likelihood of a sample set with respect to the ref-
erence (healthy) population can be defined as a comparative
index (𝐼

𝑁
) of a normal contraction pattern as follows:

𝐼
𝑁
=

1

‖𝑆‖
∑
𝑠∈𝑆

log(
𝑅

∑
𝑟=1

𝑤
𝑟
𝑁(𝑓
𝑠
| 𝜇
𝑟
, Σ
𝑟
)) , (4)

where 𝑆 is the observations’ set, that in our case corresponds
to the ventricular region TACs for each subject.

The normality index (𝐼
𝑁
) for a group of eight normal sub-

jects (not considered for the mixture parameters estimation)
was measured and statistically compared with the indices
obtained for LBBB and DCM subjects.

2.4. Studied Populations. Three subject groups were consid-
ered in this study: 15 subjects with LBBB; 13 patients with
DCM and 31 normal subjects (23 as a control population for
the training stage and 8 to define the normality index); all
individuals gave their informed consent to participate in the
study. The specific characteristics for these populations are
shown in Table 1.

LBBB occurs whenever the electric impulse traveling
from auricles to ventricles is interrupted, thus causing a QRS
complex duration longer than 0.12 s. This delay provokes
interventricular contraction asynchrony which can progress
to eventually become cardiac insufficiency [41]. The LBBB
studied population consisted of 15 asymptomatic subjects (8
males, 7 females), having a left ventricle ejection fraction
(EF) greater than 45%, as determined by ERNA according to
the New York Heart Association (NYHA) criteria [42]; the
subjects did not present cardiovascular symptoms anddid not
have a previous history of myocardial infarct and/or cardiac
insufficiency.
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Figure 4: Scatter plot of the 3-MSF (F1, F2, and F3) calculated for a subject with a normal contraction pattern (right ventricle in magenta,
left ventricle in black).

Table 1: Characteristics of the studied populations.

Control LBBB DCM
(𝑛 = 23) (𝑛 = 15) (𝑛 = 13)

Age (years) 28 ± 5 59.90 ± 9.09 45.6 ± 16.5

LVEF 60 ± 5.84 59.5 ± 9.4 22.2 ± 6.7

SAH 𝑛 (%) 0 11 (73.3) 3 (20)
Diabetes mellitus 𝑛 (%) 0 1 (6.6) 2 (13.3)
Dyslipidemia 𝑛 (%) 0 3 (20) 4 (26.6)
Smokers 𝑛 (%) 0 2 (13.3) 7 (46.7)
LVEF: left ventricle ejection fraction, SAH: systemic arterial hypertension,
LBBB: left bundle branch block, DCM: idiopathic dilated cardiomyopathy.

Subjects with idiopathic DCM and cardiac insufficiency
present left ventricle (LV) or right ventricle (RV) dilatation
of unknown causes, inter- and intraventricular abnormal
contractility; they must reunite all of the criteria to be
considered as CRT candidates [41–44].TheDCMpopulation
consisted of 13 subjects, with EF of 22.2 ± 6.7%, as determined
by ERNA, andwith an averageQRS duration of 0.160 ± 0.26 s;
they also presented a class III or IV cardiac insufficiency,
according to the NYHA [42].

The control population consisted of 23 volunteers (18
males, 5 females) having an EF of 60 ± 5.84%; with a
low probability of coronary arterial disease and without a
history of myocardial acute infarct. This group presented an

EKG without abnormality and their cardiac function was
considered normal, after a thorough clinical evaluation.

2.5. ERNA Images Acquisition. The same General Electric
milleniumMPR/MPS gamma camera was used for all ERNA
image acquisition. It has a single head with 64 photomul-
tiplier tubes and it is equipped with a low energy, high
resolution parallel-hole collimator; the calibration of the
energy peak was centered at 140KeV and the detector’s
uniformity was guaranteed at less than 5% [45]. Images were
digitized at a 64 × 64 pixels resolution and 1.33 zoom factors.

Erythrocytes were marked applying an in vivo/in vitro
modified technique with 740 to 925MBq of Tc-99m, using
an UltraTag Kit [46, 47]. EKG was continuously monitored
to synchronize images acquisition with the R wave. To
eliminate ventricular extrasystoles during acquisition, a beat
acceptance window was defined at ±20% of the average heart
rate. Images were taken in an anterior left oblique projection,
in order to simultaneously attain the best definition of left
and right ventricles. A total of 16 frames were obtained with
a density of 300 Kcounts per frame.

For each subject, an image corresponding to the end of
diastole was selected and manually segmented by an expert,
to define the ventricular area. This segmentation defines a
mask that is used to automatically extract the ventricular
regions from the other frames.
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Figure 5: Schematic representation of the proposed methodology. (a). The normal contraction pattern was modeled as a linear combination
of Gaussian density functions. The relative weights (𝑤), means (𝜇) and covariance matrices (Σ) of the Gaussian mixture were estimated
maximizing the mixture model likelihood of the probability density functions of the 3 most significant factors (F1, F2, and F3) computed
from the Factor Analysis of Dynamic Structures (FADS) and following a standard bootstrap resampling procedure with a set of 23 control
subjects. (b) Considering that the likelihood estimated on a data sample represents the probability that those observations are well described
by the assumed model with 𝑤, 𝜇, and Σ parameters, we propose indices based on this probability. A normality index (𝐼

𝑁

) for a group of
normal subjects (not considered for the mixture parameters estimation) was measured, and statistically compared with the indices obtained
for LBBB and DCM populations.

2.6. Statistical Analysis. The normality indices are expressed
as the mean value ± standard deviation. Indices measured
for the normal group were independently compared to those
obtained for LBBB and DCM populations, using a 𝑡-test for
independent samples and considering 𝑃 ≤ 0.01. The SPSS
version 10.0 software was used for all statistical analyses.

2.7. Summary. To summarize, the methodology is divided
in two stages: training to obtain the model’s parameters
(Figure 5(a)) and application of this model to populations’
comparison (Figure 5(b)).

3. Results

3.1. Factor Analysis. The information obtained for the 3-MSF
(F1, F2, and F3) of the left and right ventricular regions was
projected into scatter plots to observe differences between
populations and between ventricular regions. Figures 4, 6,
and 7 correspond to the Control, LBBB, and DCM popula-
tions, respectively.

The scatter plots obtained for the subjects studied show
that the information for the left and right ventricles is
overlapped in the control population (Figure 4), but also

in the F1 versus F2 projection for abnormal contraction
patterns (Figures 6(b) and 7(b)). However, in the presence
of interventricular asynchrony, as in the case of the LBBB
population, it was necessary to incorporate the F3 factor
information in the analysis, to appreciate a clear separation
between ventricular regions (Figures 6(a), 6(c), and 6(d)).
Also, for the DCM population, that presents inter- and
intraventricular asynchrony, the scatter plots that incorporate
the third factor information (F3) show this left and right
regions partition, although it was less evident than in the case
of LBBB subjects, probably explained by the difference in the
asynchrony type.

3.2. Model of the Factors’ Probability Density Function. Dif-
ferent models were obtained for the PDF of the 3-MSF for
six groups, with 10 subjects each, randomly selected from the
control population. Table 2 shows the characteristics of the
mixture of Gaussian functions that best adjusted each group.

For the control population, the minimum BIC and log-
likelihood values corresponded to model 5, so that it has the
highest probability of best describing the data corresponding
to the PDF of the F1, F2, F3 distribution of the normal
contraction pattern group. This model is characterized by
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Figure 6: Scatter plot of the 3-MSF (F1, F2, and F3) calculated for a subject with a LBBB (right ventricle in magenta, left ventricle in black).

Table 2: Characteristics of the models that best describe the
contraction pattern for the six defined groups.

Model Type Number of components BIC Log-likelihood
1 VVV 5 34258.15 16928.97
2 VVV 5 34094.83 16847.28
3 VEV 8 34502.55 16984.84
4 VEV 6 33676.04 16597.08
5 VVV 5 32863.10 16232.13
6 VEV 8 34502.55 16984.84
BIC: bayes Information criterion, Log-likelihood: logarithmof the likelihood
value, VEV: Ellipsoidal, same shape, variable orientation; VVV: Ellipsoidal,
varying volume, shape, and orientation.

having five Gaussian functions with variable volume, shape,
and orientation.Theweight parameters (𝑤), mean values (𝜇),
and covariance matrices (Σ) that describe the selected model
are shown in Table 3.

The level curves of the adjusted model were superim-
posed with the information of the 3-MSF for one subject
of each studied population. Figures 8, 9, and 10 show the
correspondence for the normal, LBBB, and DCM subjects,
respectively. The agreement between the model and the
cardiopathic subjects is poor, as may be expected.

In Table 4, the normality indices (𝐼
𝑁
) obtained for the

populations studied, compared with the defined normal con-
tractionmodel (see (4)), are presented. It can be observed that

whenever the likelihood value increases and becomes statis-
tically different from that calculated for the normal subjects,
the probability that the model explains the data decreases.
The calculated indices for the pathologic populations are
statistically different from the 𝐼

𝑁
of the normal population,

which suggests that the LBBB and DCM populations present
abnormalities in the ventricular contraction pattern. Addi-
tionally, the DCM population presents a larger difference
compared to the reference group; this was also corroborated
with the clinical characteristics of the evaluated subjects
and with the deterioration of their ventricular contraction
pattern.

For comparison purposes, in Table 4 the most clinically
used (mean, standard deviation, andmode) indices, extracted
from phase analysis, are included. It can be observed that
the standard deviation obtained from the traditional analysis
also shows statistical differences between the normal and
pathologic populations.

4. Discussion

Inter- and intraventricular contraction synchrony plays an
important role in the heart pump function.The deterioration
of contraction homogeneity can lead to a poor prognosis
of clinical evolution, while a restoration of the ventricular
contraction has proven to be of clinical benefit in patients
with heart failure. However, despite the fact that several
studies show that CRT can be of great benefit for severe
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Figure 7: Scatter plot of the 3-MSF (F1, F2, and F3) calculated for a subject with DCM (right ventricle in magenta, left ventricle in black).

cardiacmalfunction, still up to 30% of patients do not recover
after therapy. Several attempts have been made to improve
patient selection and to foresee the successfulness of car-
diac resynchronization therapy, depending on the particular
dyssynchrony. In a large study, Chung et al. [12] concluded
that echocardiographic measures of dyssynchrony are not
reliable for this purpose, due to reduced sensitivity and
specificity. Furthermore, a complete review by Pavlopoulos
and Nihoyannopoulos [10] suggests that an overall approach
must be taken to adequately select CRT candidates, where
global clinical criteria, in addition to electric and mechanical
dyssynchrony measures, must be considered. Van derWall et
al. [11] suggest that, despite the fact that several modalities
have been proposed for the noninvasive quantification of LV
dyssynchrony, there is no agreement on which technique best
predicts response to CRT and that nonechocardiographic
imaging techniques, such as ERNA, may provide valuable
information for the selection of CRT candidates. Also, Hen-
neman et al. [17] state that phase analysis based on SPECT
can lead to an adequate detection of LV dyssynchrony and
that nuclear imaging can provide valuable information for
the selection of CRT candidates. In summary, the established
clinical criteria to consider a subject as a CRT candidate
are insufficient to identify those patients that will benefit
the most from that treatment [10], justifying the need for
an alternative analysis techniques, as the one presented in
this work. This method considers information representative

of the ventricular contraction dynamics, which is included
in the three most significant factors extracted from FADS.
It is based on the characterization of a normal contraction
pattern, defined from a control population that is used
as a reference, against which a “normality index” can be
measured. The abnormality in the contraction pattern was
globally measured, for two pathologic populations.

An analysis of the 3-MSF scatter plots obtained for the
populations studied indicates that the third factor informa-
tion is necessary to separate left and right ventricular regions,
particularly for the abnormal contraction populations, as can
be observed in Figures 4, 6, and 7. These findings are in
agreement with previously published results [35]. The scatter
plots for the DCM patients show an increase in the data
number, as well as an overlap between ventricular cavities, as
compared to the LBBB population. This can be explained by
the fact that DCM is characterized by an important dilation
of the ventricles, together with an intrinsically heterogeneous
contraction.Therefore, an increase of the information volume
and cavities dispersion occurs [38]. Also, as it can be observed
in Figures 8, 9, and 10, the adjustment between the normal
contraction model and the cardiopathic ventricular behavior
is poor, as it was expected.

The comparison of the 3-MSF PDF obtained for the
normal population with respect to the behavior of LBBB
and DCM groups, using the proposed index, has the advan-
tage of not assuming a specific sequence for the normal
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Figure 8: Level curves of the Gaussian functions (in red) superimposed in the dispersion plots of F1, F2, and F3 for a normal subject. Right
(magenta) and left (black) ventricle regions are presented.

Table 3: Weight parameters (𝑤), mean values (𝜇), and covariances (Σ) for the model that best describes the PDF of the 3-MSF of the control
population.

Function Weight (𝑤) Mean (𝜇) Covariance (Σ)

𝑁
1

0.154 [
[

[

0.336

−1.080

0.010

]
]

]

[
[

[

0.131 −0.077 −0.003

−0.077 0.387 0.027

−0.003 0.027 1.047

]
]

]

𝑁
2

0.443 [
[

[

1.661

−2.524

−0.036

]
]

]

[
[

[

0.179 −0.010 −0.108

−0.011 1.352 0.788

−0.101 0.788 2.818

]
]

]

𝑁
3

0.139 [
[

[

2.504

−1.096

−0.794

]
]

]

[
[

[

0.231 0.087 −0.168

0.087 0.567 0.516

−0.168 0.516 5.219

]
]

]

𝑁
4

0.169 [
[

[

0.759

−3.283

0.160

]
]

]

[
[

[

0.165 −0.425 −0.026

−0.425 1.763 0.290

−0.026 0.290 2.120

]
]

]

𝑁
5

0.094 [
[

[

2.710

−2.652

1.448

]
]

]

[
[

[

0.283 0.612 −0.533

0.612 2.479 −0.641

−0.533 −0.641 3.157

]
]

]

contraction pattern and does not depend on the size of the
ventricular cavities. It can be observed in Table 4 that the
DCMpopulation (inter- and intraventricular asynchrony and
EF < 35%) presents a larger and more significant difference
with respect to the normal population than the LBBB patients
(interventricular asynchrony and normal EF).These findings
are in agreement with those reported by Fauchier et al.
[26], which conclude that the DCM subjects with inter- and

intraventricular dyssynchrony have a greater probability of
presenting an adverse cardiac event. Compared to the Fourier
phase analysis, the proposed normality index is consistent
with the difference obtained with the standard deviation,
between normal and pathologic populations. This indicates
that the normality index proposed in this work allows
the evaluation of the degree of abnormality in ventricular
contraction.
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Figure 9: Level curves of the Gaussian functions (in red) superimposed in the dispersion plots of F1, F2, and F3 for a LBBB subject. Right
(magenta) and left (black) ventricle regions are presented.
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Figure 10: Level curves of the Gaussian functions (in red) superimposed in the dispersion plots of F1, F2, and F3 for a DCM subject. Right
(magenta) and left (black) ventricle regions are presented.

5. Conclusions

Due to the reduced sensitivity and specificity of echocardio-
graphicmeasures to adequately select CRT candidates, ERNA
extracted indices seem more reliable in detecting ventricular
dyssynchrony. In this work, the probability density function
that models a normal ventricular contraction pattern has
been defined and validated for a control population. It is
based on a thorough analysis of the three most signifi-
cant dynamic factors obtained from ERNA images in sev-
eral populations presenting different patterns of ventricular

synchrony. Furthermore, a metric to quantify differences
between pathologic populations and the reference normal
contraction pattern has been proposed; the validation of
this likelihood measure was carried out in patients with
complete left bundle branch blockage and dilated cardiomy-
opathy. Both populations presented statistically significant
differences in their contraction pattern, compared to the
reference model and these differences were more important
for the DCM population, due to inter- and intraventricular
dyssynchrony, as expected. Compared to the Fourier phase
analysis, and particularly with the standard deviation, the
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Table 4: Normality indices (see (4)) calculated for Normal, LBBB,
and DCM subjects.

Normal LBBB DCM
(𝑛 = 8) (𝑛 = 15) (𝑛 = 15)

FADS
𝐼
𝑁

1.17 ± 0.12 1.55 ± 0.05∗ 1.70 ± 0.07∗

Phase analysis
Mean 127.22 154.13∗ 156.12
(min, max) (117.51, 132.63) (141.79, 170.63) (128.94, 190.11)
Std. Dev. 12.72 19.36∗ 46.3405∗

(min, max) (11.19, 14.25) (18.27, 23.41) (34.35, 61.24)
Mode 126 150∗ 156
(min, max) (118.50, 130.50) (138, 180) (132, 198)
∗

𝑃 < 0.01 with respect to the control group.

proposed index also detects differences between normal and
pathologic groups. Furthermore, this index, together with
FADS, was sensitive enough to show contraction pattern
differences, which suggests that this analysis can be related
to the degree of severity in the ventricular contraction
dyssynchrony. Additionally, the use of this index may be
promising for the followup of patients under CRT.

In future work, other clinical information should be
incorporated, either extracted from EKG or from different
imaging modalities, to propose an integrated normality
index, to enhance patient selection for CRT. Also, longi-
tudinal studies through different stages of treatment will
be necessary to validate the index’s capacity to measure
asynchrony severity, particularly in patients that have been
submitted to cardiac resynchronization therapy.
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