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Parallel imaging is a rapid magnetic resonance imaging technique. For the ill-conditioned problem, noise and aliasing artifacts
are amplified during the reconstruction process and are serious especially for high accelerating imaging. In this paper, a sparse
constrained reconstruction problem is proposed for parallel imaging, and an effective solution based on the variable splitting
method is contrived. First-order and second-order norm optimization problems are first split, and then they are transferred to
unconstrained minimization problem by the augmented Lagrangian method. At last, first-order norm and second-order norm
optimization problems are alternatively resolved by different methods. With a discrepancy principle as the stopping criterion,
analysis of simulated and actual parallel magnetic resonance image reconstruction is presented and discussed. Compared with
the routine parallel imaging reconstruction methods, the results show that the noise and aliasing artifacts in the reconstructed
image are evidently reduced at large acceleration factors.

1. Introduction

Parallel imaging is a robust method for accelerating the
acquisition of magnetic resonance imaging (MRI) data,
which exploits spatial sensitivity of an array of receiver coils
to reduce the number of the required Fourier encoding
steps. However, these reduced amounts of MR data lead to
aliased images by the routine reconstruction method. Over
the past few years, a number of parallel MRI techniques
have been proposed for reconstructing MR image from
these undersampled data in either 𝑘-space or image domain
[1]. Sensitivity encoding (SENSE) [2] and generalized auto-
calibrating partially parallel acquisitions (GRAPPA) [3] are
two methods most commonly used on clinical scanners
today.

As the amount of data acquired in parallel MRI is less,
which depends on the acceleration factor (AF), the quality
of the reconstructed image is poorer. Therefore, the AF is
usually lower when parallel imaging technique is used to
speed up MRI in clinic. Based on SENSE method, the image
reconstruction for parallel imaging is performed by solving a
linear system that explicitly depends on the sensitivity maps

of the receiver coils, and some prior information may be
used to stabilize the reconstruction process. Regularization
is an attractive means of restoring stability in the reconstruc-
tion mechanism, where prior information can be effectively
incorporated [4].TheTikhonov regularization is a commonly
usedmethodwhere a low-resolution prior image is applied in
the reconstruction; that is, a quadraticminimization problem
and its numerical algorithm are simple, such as the linear
conjugate gradient (CG) method. However, the disadvantage
of Tikhonov regularization method is that it biases the
estimated reconstructed image towards the prior image [5].
More recently, total variationmethods have been investigated
for MR image reconstruction. The advantage of this type
of regularization is that it biases the reconstructed image
towards a piecewise smooth image, instead of a globally
smooth image, thereby better preserving image edges [6].
With the advent of compressed sensing (CS) theory, sparsity-
promoting regularization criteria have gained popularity in
MRI, which is known as sparseMRI or CS-MRI [7].The basic
assumption underlying CS-MRI is that many MR images
are inherently sparse in some transform domain and then
can be reconstructed with high accuracy from significantly
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undersampled 𝑘-space data. Certainly, the CS framework is
apt for pMRI with undersampled MR data [8].

This paper investigates the problem of sparse constrained
reconstruction from highly undersampled MR data for par-
allel MRI. Based on sparseMRI theory, we use the finite
difference as the sparsity project domain, and sparsity prop-
erty of anisotropic total variation (TV) of MR image is used
as the prior information for stabilizing the reconstruction
process. As a result, a nonlinear optimization problem is con-
structed for reconstructing the parallel MR image. However,
as there exists both first-order norm (known as ℓ1-norm)
and second-order norm (ℓ2-norm) minimization problems,
the solution to the constructed optimization problem is
commonly difficult. In the paper, the ℓ1-norm minimization
problem for sparse representation of MR image and ℓ2-norm
minimization problem, which are subject to data consistency
based on SENSE method, are firstly split by variable split-
ting method, and then the split constrained minimization
problem is converted to an unconstrained minimization
problem by the augmented Lagrangian (AL) method. At last,
the Lagrangian multiplier method and alternating direction
method (ADM) are used to solve the split minimization
problem by the different numerical algorithms. In order to
evaluate the effectiveness and robustness of the proposed
algorithm, the image reconstruction problem from highly
undersampled parallel MR data is exploited.

2. Theory

2.1. The MR Signal Model in Parallel Imaging. As a fast
imaging method, parallel imaging technique is also known
as multiple coils MRI, which uses an array of RF receiver
surface coils to acquiremultiple sets of undersampled 𝑘-space
data simultaneously. Let ⇀𝑟 denote the two-dimension spatial
coordinates (𝑥, 𝑦) and 𝑠𝑙(

⇀
𝑟 ) the demodulation information

associated with the 𝑙th coil, then the MR signal associated
with the 𝑙th coil is the following general forward model:

𝑐𝑙 (
⇀
𝑟 ) = ∫ 𝑠𝑙 (

⇀
𝑟 )𝑓 (

⇀
𝑟 ) 𝑒
−𝑖
⇀
𝑘 ⋅
⇀
𝑟
𝑑
⇀
𝑟 , 𝑙 = 1, . . . , 𝐿. (1)

Here, 𝑓(⇀𝑟 ) denotes the object’s transverse magnetization
signal and forms MR image. Let 𝑦-ordinates denote the
gradient encoding direction, consideration of MR signal
sampled on Cartesian coordinates, and then the discrete
MR signal is obtained as follows (2) in accelerating parallel
imaging:

𝐼𝑙 (𝑥, 𝑦) =

𝑁𝐴−1

∑

𝑛=0

𝑠𝑙 (𝑥, 𝑦 + 𝑛𝑀)𝑓 (𝑥, 𝑦 + 𝑛𝑀) , (2)

where𝑁𝐴 is the number of aliased pixels; 𝑅 is known as AF;
𝑀 = 𝑁𝑦/𝑅; 𝑥 = 0, . . . , 𝑁𝑥; 𝑦 = 0, . . . , 𝑁𝑦/𝑅; 𝑁𝑥, 𝑁𝑦 is
the discrete pixels number, respectively, along the 𝑥-direction
and 𝑦-direction when data are full sampled.

2.2. The Model of Image Reconstruction in Parallel Imaging.
Considering of noisy samples of MR signal, the discrete
model for parallel imaging is given as

𝑦 = 𝐹𝑆𝑓 + 𝜀, (3)

where 𝑓 is a 𝑁 × 1 column vector containing the samples
of the unknown image to be reconstructed, 𝑦 and 𝜀 are ML
× 1 column vectors corresponding to the data samples from
𝐿 coils and noise, respectively. 𝑆 is NL × 𝑁 matrix given by
𝑆 = [𝑠

𝐻

1
, . . . , 𝑠

𝐻

𝐿
], 𝑠𝑙 is 𝑁 × 𝑁 diagonal matrix corresponding

to the sensitivity map of the 𝑙th coil, and 1 ≤ 𝑙 ≤ 𝐿, (⋅)𝐻
represents the Hermitian-transpose. 𝐹 is ML × NL matrix
given by 𝐹 = 𝐼𝐿⊗Fu, Fu is𝑀×𝑁 Fourier encodingmatrix, 𝐼𝐿
is the identity matrix of size 𝐿, and ⊗ denotes the Kronecker
product. In order to speed up parallel imaging, 𝑘-space MR
data may be undersampled to reduce the total scan time, so
𝑀 ≤ 𝑁.

Given an estimate of the sensitivity maps 𝑆, the image
reconstruction problem for parallel imaging is to find 𝑓 from
data 𝑦. Based on SENSE method, the MR image may be
reconstructed using the least-squares estimation as

�̂� = (𝑆
𝐻
𝐹
𝐻
Ψ
−1
𝐹𝑆)
−1

𝐹
𝐻
𝑆
𝐻
Ψ
−1
𝑦, (4)

where Ψ denotes the 𝐿 × 𝐿 receiver noise matrix, it
describes the levels and correlation of noise in the receiver
channels. Because of the coil configurations and the coil
sensitivity error, the measurement matrix FS is commonly
non-orthogonal as 𝑆−1𝐹−1𝐹𝑆 ̸= 𝐼. The linear system as (3)
is ill-posed. Using inversion matrix method as (4), noise
derived from measurement data may be amplified if the
small eigenvalues exist in matrix 𝐹𝑆, which might result in
the instability of reconstruction process. As noise in MRI
measurements is Gaussian distribution, a natural approach is
to estimate 𝑓 by minimizing a regularized least-squares cost
function:

�̂� = arg min {Φ (𝑓) =
𝐹𝑆𝑓 − 𝑦

2 + 𝜇𝑅 (𝑓)} ,
(5)

where 𝑅(𝑓) denotes the regularization term, and ||||2 is ℓ2-
norm, which represents the data-consistent term. 𝜇 is the so-
called regularization parameter to balance the regularization
term and data-fidelity term.

An open problem in most regularization image recon-
structions is how to best choose the regularization term. If
this term is not included, then the image estimate will suffer
from noise and aliasing artifacts for undersampled data. The
simplest choice is the Tikhonov regularization 𝑅(𝑓) = ||𝑓||

2

or 𝑅(𝑓) = ||𝑓 − 𝑓0||2, where 𝑓0 is a prior or reference
image. However, if the reference image is zero, then all pixel
values in estimation 𝑓 are diminished towards zero, possibly
reducing contrast. Another choice is a quadratic roughness
penalty function, by which it is convenient for minimization
and guarantees that the cost function (5) has a unique
minimization, but it has the drawback of smoothing image
edges. TV regularization reconstruction may overcome the
drawbacks mentioned above, but it is getting harder to be
minimized and can lead to the appearance of “blocky” texture
in images.



Computational and Mathematical Methods in Medicine 3

2.3. The Sparse Constrained Image Reconstruction in Parallel
Imaging. Based on CS-MRI theory, MR image on finite
difference domain is sparse, on which the sparse represen-
tation of MR images can be demonstrated by applying a
sparsifying transform to a fully sampled image. In this paper,
TV transform is used to transform the estimated MR image
to finite difference domain, and then the sparse constrained
minimization problem for parallel MR image reconstruction
is obtainedas

min
𝑓

∇𝑓
1 s.t. 𝐹𝑆𝑓 − 𝑦

2 < 𝜎, (6)

where ||||1 denotes ℓ1-norm, and 𝜎 represents any error, such
as noisy level derived from the data sampled process. ||∇𝑓||1
is called TV norm of an image, which is defined as a function
of the image gradient. ||∇𝑓||1 might be computed by discrete
isotropic TV or anisotropic TV as

∇𝑓
1 = ∑

𝑖

√(∇𝑥𝑓)
2

𝑖
+ (∇𝑦𝑓)

2

𝑖
,

∇𝑓
1 = ∑

𝑖

(
∇𝑥𝑓

 +

∇𝑦𝑓


) ,

(7)

where ∇𝑥𝑓 denotes the 𝑥-direction gradient of image 𝑓, and
∇𝑦𝑓 denotes the 𝑦-direction gradient. There are both ℓ1-
norm term and ℓ2-norm term in (6). The ℓ1-norm term in
(6) is based on the sparsity of MR image on finite difference
domain, while ℓ2-norm term is based on the data fidelity
of MR image reconstruction. Using the common numerical
algorithms such as CG or Newton method, it is difficult to
attain the stabilized solution to problem (6). Lustig et al.
researched sparseMRI and posed the detailed computation
method for sparse constrained inverse problem [8], where
nonlinear CG method was applied to solve the constrained
minimization problem as (6) when isotropic TV is applied to
compute TV. However, the reconstructed image obtained by
this method is dissatisfied according to our analysis.

According to the research product about ℓ1-norm mini-
mization problem [9–11], the variable split method is adopted
to split the ℓ1-norm term and ℓ2-norm term in (6) in our
research. Specifically, with an auxiliary variable 𝑤, let 𝑤 =

∇𝑓, then the constrained optimization problem is obtained,
which denoted as 𝑃 as follows:

𝑃 : min
𝑤,𝑓

‖𝑤‖1 s.t. 𝑤 = ∇𝑓,
𝐹𝑆𝑓 − 𝑦

2 < 𝜎. (8)

3. The Solution to Sparse Constrained Image
Reconstruction Based on Variable Splitting
Method for Parallel Imaging

3.1. The Unconstrained Parallel MR Image Reconstruction
Problem. In the augmented Lagrangian (AL) framework

(also known as the multiplier method [12]), an AL function
can be constructed for problem (8) as

min
𝑤,𝑓,𝛾1,𝛾2

Φ(𝑓,𝑤, 𝛾1, 𝛾2) = ‖𝑤‖1 + 𝛾
𝐻

1
(𝐹𝑆𝑓 − 𝑦)

+
𝜇1

2

𝐹𝑆𝑓 − 𝑦
2 + 𝛾

𝐻

2
(𝑤 − ∇𝑓)

+
𝜇2

2

𝑤 − ∇𝑓
2,

(9)

where 𝛾1, 𝛾2 represent the vector of Lagrange multipliers, and
𝜇1, 𝜇2 are the regularization parameters. The solution to (9)
may be in the following AL version:

(𝑓
𝑘+1

, 𝑤
𝑘+1

) ← arg min
𝑓,𝑤

Φ(𝑓,𝑤, 𝛾
𝑘

1
, 𝛾
𝑘

2
) ,

𝛾
𝑘+1

1
← 𝛾
𝑘

1
− 𝜆𝜇1 (𝐹𝑆𝑓

𝑘+1
− 𝑦) ,

𝛾
𝑘+1

2
← 𝛾
𝑘

2
− 𝜆𝜇2 (𝑤

𝑘+1
− ∇𝑓
𝑘+1

) ,

(10)

where 𝜆 ∈ (0, 2) guarantees convergence, as long as the
subproblem is solved to an increasingly high accuracy at
every iteration.

The joint minimization of Φ with respect to 𝑓 and 𝑤

can be computationally challenging in (10). ADM [13] is
applied, which alternatively minimizesΦ with respect to one
variable at a time while holding others constant.This method
decouples the individual updates of 𝑓 and 𝑤 and simplifies
the optimization task. Specifically, at the 𝑘th iteration, we
perform the following individual minimizations, taking care
of using updated variables for subsequent minimizations and
the following algorithm:

𝑤
𝑘+1

← arg min
𝑤

Φ(𝑓
𝑘
, 𝑤, 𝛾
𝑘

2
, 𝜇2) ,

𝑓
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𝑘

1
, 𝜇1, 𝛾
𝑘

2
, 𝜇2) ,

𝛾
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1
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𝑘

1
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𝛾
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2
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𝑘

2
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𝑘+1
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𝑘+1

) .

(11)

3.2. The Solution to Minimization Problem with Respect to
𝑤. Holding variable 𝑓 constant, we get the minimization
problem with respect to 𝑤 in (9) at the 𝑘th iteration as

𝑤
𝑘+1

= arg min
𝑤

{‖𝑤‖1 + (𝛾
𝑘

2
)
𝐻

(𝑤 − ∇𝑓
𝑘
) +

𝜇2

2


𝑤 −∇𝑓

𝑘2
} .

(12)

Equation (12) is a ℓ1-norm minimization problem, the
solution of which can be estimated by shrinkage rule [14] as

𝑤
𝑘+1

= Shrink{∇𝑓𝑘 −
𝛾
𝑘

2

𝜇2

,
1

𝜇1 ∗ 𝜇2

}

≜ max{


∇𝑓
𝑘
−
𝛾
𝑘

2

𝜇2



−
1

𝜇1 ∗ 𝜇2

, 0} ⋅ sgn(∇𝑓𝑘 −
𝛾
𝑘

2

𝜇2

) .

(13)
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3.3. The Solution to Minimization Problem with Respect to
𝑓. Holding variable 𝑤 constant, we get the minimization
problem with respect to𝑓 at the 𝑘th iteration based on (9) as

𝑓
𝑘+1

= arg min
𝑓

{(𝛾
𝑘

1
)
𝐻

(𝐹𝑆𝑓 − 𝑦) +
𝜇1

2

𝐹𝑆𝑓 − 𝑦
2

+(𝛾
𝑘

2
)
𝐻

(𝑤
𝑘
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𝜇2

2


𝑤
𝑘
− ∇𝑓

2
} .

(14)

Ignorant of irrelevant constant, (14) can be written as (15)

𝑓
𝑘+1

= arg min
𝑓

{
𝜇1

2

𝐹𝑆𝑓 − 𝑦 − 𝜂1
2 +

𝜇2

2


𝑤
𝑘
− ∇𝑓 − 𝜂2

2
} ,

(15)

where 𝜂1 = 𝛾1/𝜇1, 𝜂2 = 𝛾2/𝜇2. Equation (15) is a ℓ2-norm
minimization problem, which can be solved by nonlinear
conjugate gradient (NCG) descent algorithmwith backtrack-
ing line search algorithm. During the iterative process, the
iterative step may be calculated by inexact line search or the
Barzilai and Borwein (BB) method [15].

3.4. The Solution to Sparse Constrained Image Reconstruction
for Parallel Imaging. Combining the results in Sections 3.1,
3.2, and 3.3, we now present the algorithm for solving the
unconstrained optimization problem (9) as follows.

(1) Initialize 𝑓0,𝑤0 and regularization parameters 𝜇1, 𝜇2.
(2) Precompute 𝐹𝐻𝑆𝐻𝑓, and let 𝜂0

1
= 𝜂
0

2
= 0, 𝑘 = 0.

Repeat the following.

(3) Obtain an update 𝑤𝑘+1 using an appropriate tech-
nique as described in Section 3.2.

(4) Update 𝑓
𝑘+1 using an appropriate technique as

described in Section 3.3 by NCG method, and the
inexact line research method is used to calculate the
iterative step.

(5) Update the Lagrangian multiplier 𝛾1 by the following
function:

𝛾
𝑘+1

1
← 𝛾
𝑘

1
− 𝜆𝜇1 (𝐹𝑆𝑓

𝑘+1
− 𝑦) . (16)

(6) Update the Lagrangian multiplier 𝛾2 by the following
function:

𝛾
𝑘+1

2
← 𝛾
𝑘

2
− 𝜆𝜇2 (𝑤

𝑘+1
− ∇𝑓
𝑘+1
) . (17)

(7) Let 𝑘 = 𝑘 + 1.

Until some stop criterion is met.

4. Experiments

4.1. Data Simulation and Acquisition. In all our experiments,
we considers 𝑘-space MR data assigned on the Cartesian
grid, and the undersampling pattern is uniformity, so Fourier

encoding matrix corresponds to an undersampling version
of the DFT matrix. Two sets of parallel MR data are applied
to test the proposed algorithm. One set of data is acquired
from simulating parallel MRI system, and the other is actual
parallel MR data.

In order to construct the simulating multichannel MRI
receive system, we considered a noise-free 256 × 256 T1-
weighted MR image obtained from the BrainWeb database
[16] and then downsampled to 128 × 128. The simulating
system had four-channel linear phased-array coil wrapped
around the whole brain circumferentially. The coil sen-
sitivity maps were calculated using Biot-Savart’s law [17].
Multichannel images were then created by multiplying T1-
weighted MR image with the simulated sensitivity profiles.
At last, these images were Fourier transformed to gener-
ate the multichannel 𝑘-space data whose size was 128 ×

128 × 4. In the research, complex Gaussian noise would
be added to data set for simulating noisy parallel MR
data.

The actual fully sampled brain dataset was obtained from
PULSAR (a Matlab toolbox for parallel MRI) [18], which was
acquired using MR systems with eight-channel head array
andmultichannel receiver from a healthymale volunteerwith
fast spoiled gradient-echo sequence, TR/TE = 300/10ms,
matrix size = 256×256, tip angle = 15∘, and FOV= 22×22 cm.

To simulate the accelerating imaging procedure for par-
allel MRI, 𝑘-space dataset along phased encoding direction
might be uniformly decimated to produce undersampling
datasets. Additionally, central 12 phase-encoding lines were
preserved to be used for coil sensitivity estimation [19]. We
mainly researched parallelMR image reconstruction problem
when the undersampling rate (also known as AF) attained
its maximum value that was the number of receive coils
at theory. The size of undersampled data in simulated data
analysis is 128 × 32 × 4, while actual dataset is 256 × 32 × 8.
Meanwhile, for two sets of data, the full 𝑘-space data was
acquired and then sum-of-squares (SoS) reconstruction [20]
was used as a reference image.

Figure 1(a) shows the data collected from the simulating
parallel MRI, which will be applied to test the proposed
algorithm.

4.2. Calibration of Sensitivity Profiles. Calibration of the spa-
tial sensitivity functions of coil arrays is a crucial element in
parallelMRI. Accurate coil sensitivity information is required
for accurate spatial encoding in parallelMRI reconstructions,
and the choice of sensitivity calibration strategy is at least
as important as the choice of reconstruction strategy. The
most common approach has been tomeasure coil sensitivities
directly using one or more low-resolution images acquired
before or after accelerated data acquisition. However, since it
is difficult to ensure that the patient and coil array will be in
exactly the same positions during both calibration scans and
accelerated imaging, this approach can introduce sensitivity
miscalibration errors into parallel MRI reconstructions. Coil
sensitivity functions vary slowly as a function of spatial
position, and low-resolution in vivo images suffice to form
sensitivity references. Thus, valid coil sensitivities can be
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Figure 1: Simulated pMRI. (a) is the T1-weighted brain MR image, (b) is SoS of individual receiver coil sensitivity profiles calculated based
on Biot-Savart’s law, and (c) is SoS reconstruction from undersampled data when AF is 4.

determined from the fully sampled region of the central 𝑘-
space, so long as the range of spatial frequencies covered
in the central region contains the spatial frequency band of
the coil sensitivity functions [19]. In the paper, central 12
phase-encoding lines were Fourier transformed to produce
low-resolution 𝑓( ⃗𝑟), which was used to estimate the coil
sensitivity profiles. By (18), the magnetization distribution
low-resolution 𝑓(

⇀
𝑟 ) may be partly removed, and then the

encoding effects of relatively pure coil sensitivities are isolated
as

�̂�l (
⇀
𝑟 ) ≈

[𝑓 (
⇀
𝑟 ) 𝑠l (

⇀
𝑟 )]

low-resolution

√∑
𝑙


[𝑓 (

⇀
𝑟 ) 𝑠l (

⇀
𝑟 )]

low-resolution

2
, (18)

where the “low-resolution” superscript indicates that use of
only the central 𝑘-space positions results in a low-resolution
measurement of the full product of 𝑓(⇀𝑟 ) and 𝑠𝑙(

⇀
𝑟 ).

4.3. Data Analysis. In the study of actual parallel MRI, the
standard reference image is the SoS reconstructed image of
full-sampled individual coil surface images, while the T1-
weighted brain image is the reference image in the simulating
study. The normalized mean squared error (NMSE) between
the reconstructed image and the reference image would be
calculated to quantitatively analyze the quality of recon-
structed image. NMSE is also known as artifact power (AP),
which suggests any error as both increased image artifacts
and noise. As shown in (19), a higher value of NMSE (or AP)
represents the reduced image quality as

NMSE =
∑⇀
𝑟
(

𝑓 (

⇀
𝑟 )

−

𝑓
reference

(
⇀
𝑟 )

)
2

∑
⃗𝑟


𝑓reference (⇀𝑟 )



2
, (19)

where 𝑓reference denotes the sensitivity reference image.
To pose the effectiveness of the proposed reconstruction

method as (9), the other parallel MR image reconstruction
methods known as generalized encoding matrix (GEM)
method [21], which is used in SENSE method, and CG
method [22] are comparatively analyzed. Additionally, the

stopping criterion for the iterative algorithms used in our
study is based on discrepancy principle as

norm (𝑓𝑗 − 𝑓𝑗−1)

norm (𝑓𝑗)
< tol, (20)

where description “norm” indicates Frobenius norm of
matrix, “tol” denotes the convergence tolerance, and sub-
scription “𝑗” indicates the iteration number during the
iterative process.

4.4. Results. We compared the proposed method to GEM
method, named the basic SENSE, and to CG method, by
which MR images may be reconstructed from undersampled
MR data. Figure 2 shows the reconstructed images from
noise-free simulating data when employing 4-fold acceler-
ating MRI, when AF is 4. Figure 3 shows the reconstructed
images from noisy 4-fold undersampled MR data, where the
added noise is zero-mean Gaussian noise. In Figures 2 and
3, the three images on the top are the reconstructed images
by the methods as mentioned above, and the images on
the bottom are the difference profiles between the top three
reconstructed images and reference image.

During the iterative process of reconstructing the images
as seen in Figures 2 and 3, we let the convergence toler-
ance 0.0001. When the proposed algorithm (described in
Section 3.4) is used to reconstruct the image in Figure 2, the
penalty parameters 𝜇1, 𝜇2 are 2−27, 2−33, respectively. The
number of iterations is 20 for resolving the minimization
problem with respect to 𝑓 by the NCG method referred
to in Section 3.3, and the total number of iterations for the
proposed algorithm is 411, namely, the valuable 𝑘 referred to
in Section 3.4. At the same time, the proposed algorithm is
used to reconstruct the images in Figure 3, and the penalty
parameters 𝜇1, 𝜇2 are 2

−26, 2−22, respectively, and the number
of iteration is 20 for resolving the minimization problem
with respect to 𝑓 by NCG method, and the total number of
iterations for the algorithm proposed is 198. Tables 1 and 2 are
the mean of NMSE, respectively, in Figures 2 and 3.

As shown in Figure 2, the proposed algorithm may
obviously restrain the aliasing artifacts resulted from under-
sampled MR data. As seen in Figure 3, noise derived from
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Figure 2: Reconstructed images from noise-free undersampling MR data for the simulated parallel MRI, where the undersampling rate is 4,
which is the maximum of AF at theory.The top three images are, respectively, reconstructed by GEMmethod, CGmethod, and the proposed
method as (9), which is solved by the algorithm referred to in Section 3.4. The bottom three images are the difference profiles between the
above three reconstructed images and the reference image.

Table 1: Mean of NMSE of reconstruction image (in Figure 2).

Reconstruction
method GEM CG Sparse constrained

reconstruction
Mean of NMSE 4.1985𝑒 − 004 2.8799𝑒 − 004 2.2580𝑒 − 004

Table 2: Mean of NMSE of reconstruction image (in Figure 3).

Reconstruction
method GEM CG Sparse constrained

reconstruction
Mean of NMSE 2.8860 12.5720 0.0248

measurement procedure is suppressed and result in the
convergence of iterative process by our proposed algorithm.

In analysis of actual parallel MR image reconstruction,
AF is set as 8, which is the maximum at theory for parallel
MRI system with 8-channel coil array. Figure 4 shows the
reconstructed image and the difference profiles between
reconstructed images and the reference image, and the mean
of NMSE is shown in Table 3.

In Figure 4, the left image on the top penal is the reference
image, and the left image on the bottom is the reconstructed
image by SoS method from 8-fold undersampled parallel MR
data. During iterative process of reconstructing the images

Table 3:Mean ofNMSEof reconstructions image from actual pMRI
data (AF = 8, in Figure 4).

Reconstruction
methods GEM CG Sparse constrained

reconstruction
NMSE 356.7079 343.1923 0.0095

in Figure 4, the convergence tolerance is 0.001. When the
proposed algorithm is used to reconstruct the image in Figure
4, the penalty parameters 𝜇1, 𝜇2 are 2

−20, 2−11, respectively.
The iterative number is 1 for resolving the minimization
problem with respect to 𝑓 by NCG method, and the total
iterative number of algorithm proposed is 37.

As shown in Figures 3 and 4, the proposed algorithm can
effectively reduce the aliasing artifacts and noise information.

5. Discussion

The quality of the reconstructed image for parallel imaging
may be affected by the undersampling rate, noise level, the
exact estimation of receiver coils sensitivity, 𝑘-space data
trajectory, and reconstruction method. We only researched
the image reconstruction from undersampled 𝑘-space data
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Figure 3: Reconstructed images from noisy undersampled MR data for the simulated parallel MRI, where the undersampling rate (named
AF) is 4.
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Figure 4: Reconstructed images from noisy undersamplingMR data for in vivo parallel MRI, where the undersampling rate is 8, which is the
maximum at theory. (a) is the reference image (SoS reconstruction of full-sampled coil images). (b), (c), and (d) are images reconstructed,
respectively, by GEMmethod, CGmethod, and the proposed method proposed as (9). (e) is the reconstructed image by SoS method. (f), (g),
and (h) are the difference profiles, respectively, between (b), (c), (d), and (a).
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acquired along the Cartesian trajectory. However, the pro-
posed algorithm is also fit to reconstruct MR image for
arbitrary trajectories.

There may be two approaches to improve the quality
of the reconstructed image based on SENSE method: one
approach is to improve the accuracy estimation of sensitivity,
another approach is to propose the effective reconstruction
algorithm. However, when AF is large, only by improving
the reliability of the coil sensitivity maps, the suppression
of aliasing artifact and noise in the reconstructed image is
indistinctive. In order to remarkably improve the quality
of the reconstructed image, the constrained reconstruction
is generally shown to be an effective method. The goal
of our proposed method is to improve the quality of the
reconstructed image, whenMRdata are highly undersampled
in parallel imaging. As the coil sensitivity profiles are already
obtained, the reconstruction problem in parallel imaging is
formulated as solving a set of linear equations based on
(3). These equations can be very ill conditioned depend-
ing on the coil configurations and sampling trajectories,
which further deteriorate the quality of the reconstructed
image, especially when high undersampling rate is used for
accelerating parallel imaging procedure. Therefore, the ill-
conditioned problem in parallel imaging has been partially
addressed by optimizing coil geometry, optimizing sampling
trajectory, or introducing regularizations. In this paper, the
ill-conditioned problem is partly reformed by adding the
constrained condition to stabilize the reconstruction process.
As anywhere noise exits, the reconstruction method for
parallel imaging should be proposed on full consideration
of both noise and aliasing artifacts suppressed problem.
Based on sparseMRI theory, as MR image is sparse on
finite difference domain, and a sparse constrained recon-
struction problem for parallel imaging is constructed in
the paper. Through the methods proposed and the experi-
ment presented, the following aspects could be taken into
account.

(1) Compare the proposed reconstruction method with
the other methods for parallel imaging. According to our
analysis results, the GEM algorithm for usual SENSEmethod
is usually suitable for noise-free data and the accelerating
imaging procedure at low AF. CG method can effectively
restrain aliasing artifacts in the reconstructed image and be
fast convergence on condition of noise-free undersampled
data. However, when MR image may be reconstructed from
the noisy and undersampled MR data, NMSE value between
the reconstructed image and reference image first rapidly
decreases and then gradually increases along with CG itera-
tive reconstruction process. As shown in Figure 3, the least
mean of NMSE between the reconstructed image by CG
method and the reference image was 0.0762 after 21 numbers
of CG iteration, but reached the convergence condition after
975 numbers of iteration. Similarly in Figure 4, the leastmean
of NMSE of the reconstructed image by CG method was
0.0623, but reached the convergence condition after 1020
number of iteration, and the least mean of NMSE was shown
in Table 3.

(2) Reconstruct MR image under the nonnegative con-
straint condition. In our proposed algorithm, the solution to
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Figure 5: Iteration convergence process of reconstructing MR
image for actual parallel MRI. The reconstruction method is the
proposed algorithm described in Section 3.4, and (15) and (21) are,
respectively, used for the subproblem with respect to 𝑓, where NCG
descent algorithm with backtracking line search algorithm is used
to solve (15) and (21).

subproblemwith respect to𝑓 as (15) is a quadratic minimiza-
tion problem, which may be the following subproblem on
condition of nonnegative constraint:

min
𝑓

{
𝜇1

2

𝐹𝑆𝑓 − 𝑦 − 𝜂1
2 +

𝜇2

2


𝑤
𝑘
− ∇𝑓 − 𝜂2

2
}

s.t. real (𝑓) > 0,
(21)

where real ( ) indicators the operator of getting the real of
complex 𝑓.

Figure 5 shows the iteration process during reconstruct-
ing MR image 𝑓 in analysis of actual parallel MRI, where
(15) and (21) are, respectively, used in the proposed algorithm
described in Section 3.4. As shown in Figure 5, when recon-
structing image under the nonnegative constraint condition,
the iteration process described in Section 3.4 might rapidly
converge, and the mean of NMSE was reduced between the
reconstructed image and the reference image.

(3) ReconstructMR image at the different AFs for parallel
imaging. Parallel MRI utilizes a radio frequency (RF) coil
array to simultaneously acquire data frommultiple receivers,
and acceleration is achieved by a reduced phase encoding
𝑘-space trajectory. The nature of the subsampled 𝑘-space
data requires the use of a reconstruction algorithm to restore
aliased images into full field-of-view (FOV) images. Table 4
is the mean NMSE of reconstructed image, respectively, by
GEMmethod, CGmethod and the proposed algorithm at the
different AFs.

As shown in Table 4, the proposed algorithm obviously
improves the quality of reconstructed images. Compared to
Table 3, AF is the main reason for affecting the quality of
reconstructed image, so aliasing artifacts suppression may be
chiefly considered for reconstruction method.

(4) The solution to the quadratic minimization problem
is as follows. The solution to subproblem with respect to 𝑓 as
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Table 4: The mean of NMSE of reconstructed image from actual
pMRI data (AF = 4).

reconstruction GEM CG reconstruction Sparse constrained
reconstruction

NMSE
(noise-free data) 0.7641 0.0024 0.0019

NMSE (noisy
data) 0.6698 85.2921 0.0049

(15) is a quadraticminimization problem,which can be solved
by the steepest descent method, the Newton method, or
CG method. However, when resolving the subproblem with
respect to 𝑓, theNewton method is inferior to the nonlinear
CG method by the data analysis results.

(5) Penalty parameters and iteration convergence prob-
lem for regularization reconstruction are as follows. Conver-
gence problem should be firstly considered for any iteration
algorithm. The proposed algorithm for reconstructing MR
image is an iterative solution course, and penalty parameters
𝜇1, 𝜇2 greatly affect the iterative convergence process. As
long as penalty parameters chosen are suitable, the proposed
algorithm can rapidly converge. Thereby, the penalty param-
eters 𝜇1, 𝜇2 are the key factors of optimization problem of
sparse constrained reconstruction as shown in (9), which is
a ℓ1-norm and ℓ2-norm minimization problem, named ℓ1-
ℓ2 optimization problem. The common L-curve method is
unable to determine the penalty parameters𝜇1, 𝜇2. According
to the quantitative index as NMSE between the reconstructed
image and the reference image,we explored the better suitable
penalty parameters within a determinate range. Specifically,
the ratio of 𝜇1 to 𝜇2 was fixed, and 𝜇1, 𝜇2 increased by power
of 2 in the range of 2−30 to 210. The penalty parameters 𝜇1, 𝜇2
would be selected in our research, when they were used to (9)
and then the least mean of NMSE between the reconstructed
image and the reference image can be obtained.

6. Conclusion

In order to improve the quality of the reconstructed image for
parallel imaging, a sparse constrained image reconstruction
algorithm based on variable splitting method is proposed.
Through the analysis of reconstructing full-FOV image from
simulating and actual parallel MR data, the proposed algo-
rithm can effectively suppress the aliasing artifacts in the
reconstructed image resulted from the undersampled MR
data, and also noise is obviously suppressed and the edge of
image is preserved.
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