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Phonocardiography has shown a great potential for developing low-cost computer-aided diagnosis systems for cardiovascular
monitoring. So far, most of the work reported regarding cardiosignal analysis using multifractals is oriented towards heartbeat
dynamics. This paper represents a step towards automatic detection of one of the most common pathological syndromes, so-
called mitral valve prolapse (MVP), using phonocardiograms and multifractal analysis. Subtle features characteristic for MVP in
phonocardiograms may be difficult to detect. The approach for revealing such features should be locally based rather than globally
based. Nevertheless, if their appearances are specific and frequent, they can affect a multifractal spectrum. This has been the case
in our experiment with the click syndrome. Totally, 117 pediatric phonocardiographic recordings (PCGs), 8 seconds long each,
obtained from 117 patients were used for PMV automatic detection. We propose a two-step algorithm to distinguish PCGs that
belong to children with healthy hearts and children with prolapsed mitral valves (PMVs). Obtained results show high accuracy of
the method.We achieved 96.91% accuracy on the dataset (97 recordings). Additionally, 90% accuracy is achieved for the evaluation
dataset (20 recordings). Content of the datasets is confirmed by the echocardiographic screening.

1. Introduction

Cost effectiveness in cardiovascular monitoring represents
one of the great challenges [1]. Besides traditional ausculta-
tion, phonocardiography has become a valuable diagnostic
tool. It has shown a great potential for developing low-cost
computer-aided diagnosis (CAD) systems [2–4]. Efficient
phonocardiography analysis can decrease the necessity for
more complex methods.

Phonocardiograms (PCGs) represent digital records of
heart sounds that are believed to yield valuable clinical
information. One of the major concerns regarding phono-
cardiograms is recognizing and understanding such relevant
information. So far, very little work has been reported on
automatic detection of relevant clinical information and
diagnosis through phonocardiography.

This paper represents a step towards automatic detection
of one of the most common pathological syndromes, so-
calledmitral valve prolapse (MVP), using phonocardiograms
and multifractal analysis. Even though the examination of
existing pathological syndromes is possible by observing and
listening to the PCGs, it is believed that automatic detection
of a possible abnormality is of great importance. It is also
important to draw attention of a physician or an examiner
to such cardiac events.

Characteristic midsystolic click with possible late systolic
murmur represents a typical auscultatory finding whenMVP
is diagnosed [5–10]. In phonocardiography, this property is
described in terms of the pathological functionality of mitral
valve leaflets. Time domain visual analysis of such clicks is
a demanding and an error-prone process. The process of
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examination of each beat separately within a PCG record is
also time consuming.

The dynamics of nonstationary medical signals, such as
cardiosignals, may be analyzed by different signal processing
tools, where fractals, multifractals, and wavelets are of par-
ticular interest [11–16]. The nature of self-similarity enables
finding features on one scale which resemble the features
from another scale, despite the complexity of the analyzed
object or system dynamics.

So far, the multifractal analysis shows to be suitable for
investigating heartbeat dynamics [15]. Multifractal behaviour
of the cardiovascular system is investigated through analysis
of Hölder exponents and fractal behavior using different
approaches, such as detrended fluctuation analysis (DFA) and
self-affine fractal variability analysis of heartbeat dynamics
[17, 18], local variability analysis [19, 20], analysis of healthy
and pathological dynamics from the aspect of respiratory rate
variability [21] and brain activity in healthy patients [21, 22],
analysis of Hölder exponents using laser Doppler flowmetry
technique [23], analysis of progressive central hypovolemia
influence [24, 25], estimation of heart rate variability (HRV)
large deviations [26], and arrhythmia [27].Many variations of
cardiosignals are examined using multifractality, age-related
changes [28, 29], as well as changes in heart dynamics: before
and after particular treatment [30], for different human races
[31], body positions [23], and during wake and sleep phases
[32, 33]. Heartbeat dynamics is compared between a group
of healthy patients and a group of patients with heart failures
[17].The records of the heart failure group show a loss ofmul-
tifractality and narrowing of the multifractal spectra. Long-
range multiscale properties are investigated for congestive
heart failure (CHF) disease and primary autonomic failure
(PAF) disease. Differences in singularity spectra of the heart
rate signals are shown for healthy, CHF, and PAF group [34].

Very little research is reported in the literature regarding
phonocardio diagnostics from the multifractal viewpoint.
Multifractality in heartbeat dynamics can be considered
through acoustic heartbeats. Both global and local (inter-
beat) techniques are introduced in heartbeat dynamics for
detection of abnormalities [35]. Although the global-based
concept, such as Legendremultifractal spectrum, seems to be
blind to subtle features in case of large heart rate deviations
[26], we show in this paper that this is not the case with
detection of PCG records of patients with PMV in a dataset
consisting of records from both healthy patients and patients
with PMV.

We propose a novel approach for distinguishing PCGs
that belong to patients with PMVs and healthy patients, based
on a multifractal analysis. Multifractal analysis is used in a
global manner (without click event segmentation in the time
domain).

The paper is organized as follows. In Section 2, the dataset
acquisition procedure is shortly explained. Section 3 gives
the fundamental background of PMV and phonocardiogram
morphology in patients with PMV. Furthermore, it provides
an introduction to the fundamentals of multifractals and
their suitability for medical signal analysis. In Section 4, we
propose an algorithm for distinguishing records with PMV

Figure 1: The equipment for acquisition of phonocardiograms.

and healthy records using phonocardiography. Obtained
results are presented in Section 5. Finally, we give conclusions
based on the proposed algorithm.

2. Data Acquisition

In the study, 117 children (7–19 years old) contributed to
acquisition of 117 recordings. There were 54 male and 63
female patients (𝑀 = 54, 𝐹 = 63). No multiple-day
recordings weremade. From this dataset, 97 recordings (𝑀 =

45, 𝐹 = 52) are used for setting of the parameters of
the classifier. The rest of the recordings are included in the
validation study.

Auscultation and phonocardiogram acquisitionwere per-
formed at the Health Center “Zvezdara”, Belgrade, Serbia,
using an electronic stethoscope (3M Littman 4100WS elec-
tronic stethoscope, Figure 1). All patients were in a sit-
ting position during standard auscultative examination in
the morning session (09–12 h AM). Data acquisition starts
when a physician determines that the child is calm. During
the recording of a PCG, patients did not perform any
physical activity (or intellectual activity such as reading).
Phonocardiogram acquisition was made by an expert in the
standard cardiology protocol. Low-quality recordings (due to
patient movement or similar reasons) have been rejected as
nonrelevant. Only healthy children and children with PMVs
were selected for generating the dataset used in this paper.
Besides the PMV, children with other cardiac diseases like
acute infection, anemia, or tachycardia are excluded from the
experiment. Such recordings are not a part of the analyzed
dataset.

The recordings were carefully examined by the pediatric
cardiology expert. An additional examination (echocardio-
graphic confirmation) was made at the University Children
Hospital, Belgrade, Serbia, for the patients in the test dataset
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(97 recordings).The test PCGdatasetwas further divided into
two groups:

(i) healthy group (children with healthy hearts) and
(ii) PMV group (children with PMVs).

Echocardiography was used in order to confirm content
validity of the groups. There are 49 children in Healthy and
48 children in PMV group.

Each phonocardiographic recording lasts for 8 seconds.
PCGs were recorded with a sampling frequency of 8 kHz,
with 16 bit amplitude resolution. The recordings were con-
verted to wav format and downsampled to 1 kHz for further
analysis.

3. Background

3.1. Prolapsed Mitral Valve (PMV) or Mitral Valve Prolapse
(MVP) Is Also Known as Systolic Click Syndrome. It is a
common valvular disorder and is often benign. However,
it is also assumed as a disease which may cause serious
cardiac disorders [5, 6]. There is no accordance regarding the
prevalence ofMVP: as reported in [5] the occurrence ofMVP
ranges from 5% to 15% and even up to 35%, while in [6] MVP
is around 2-3%.

Various symptoms, including electrocardiographic
(ECG) repolarisation, have been associated with PMV. A
physician is most likely to use his stethoscope for initial
PMV detection by auscultation (and phonocardiography).
Auscultation still represents an important tool in pediatric
cardiology. The misperception of a wide range of nonspecific
symptoms led to the practice of acquiring screening
echocardiograms from patients [6].

In phonocardiography, PMV is usually manifested via a
midsystolic click, as an isolated cardiac event or just before
the systolic murmur (heart noise) appearance. The click
syndrome is sometimes difficult to notice in the systole, and
its detection depends on the skills of the physician [7]. Systole
is defined as an interval between two fundamental heart
sounds, S1 and S2 (i.e., tic-tac), visualized in a quasiperiodic
phonocardiogram. An example of a PCG signal recorded on
a patient with PMV is shown in Figure 2, where large ampli-
tudes correspond to S1 and S2 sounds. S1 sounds are found
after an electrocardiogram’s R waves. Fluctuation in between
such large peaks (heart beats) does appear to be interesting.
A click as a singularity may be found difficult to follow in
intervals between S1s and S2s (i.e., within systoles). This click
existence is not always apparent to an average eye/ear.

There is a possibility of fault prognosis provided by
phonocardiography, leading to misleading conclusions
whether the signal corresponds to a healthy patient or a
patient with PMV. Searching for specific cardiac events
and features associated with PMV diagnosis in PCGs is
an error-prone task. Such cardiac events within PCGs are
crucial, indicating that findings may not be benign.

In early research of PMV treatment, in the 1970s, echocar-
diography was seen as an excellent method for diagnosing
PMV. Echocardiography as a specific, noninvasive technique,
can provide visualization of both mitral valve leaflets [8, 9].
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Figure 2: Phonocardiogram that corresponds to a child with
prolapsed mitral valve (PMV).

Clinical features of theMVP,which can be associatedwith the
click (click andmurmur), as previously noted, are relatedwith
echocardiographically documented findings [10]. Bearing in
mind the availability of appropriate equipment, the reliability
of PMV detection is expected to increase. This paper deals
with the global difference between a Healthy group and a
PMV group of PCG recordings, due to the fact that the
difference between these two groups is not often obvious.

3.2. Multifractals in Medical Signal Analysis. Self-similarity
behaviour is an interesting property, found in many natural
objects and phenomena. For instance, the structure of river
networks, a cloud, the nervous system of humans, the
structure of a tree, cauliflower, and so forth, have self-similar
property: by observing such structures in different scales
(almost) the same shape arises. Such objects (structures)
are known as fractals, because they can be characterized
by noninteger (fractional) dimension 𝐷

𝐹
[11]. The fractal

dimension numerically describes how the irregular structure
of objects and/or phenomena is replicated in an iterative way
from small to large scales or vice versa and can be used for
objective comparison and/or classification of different com-
plex structures. The fractal dimension 𝐷

𝐹
can be estimated

in different ways. One simple but efficient method is known
as the box-counting method. This method involves the use
of 𝑛-dimensional grid of nonoverlapping boxes of the side
length 𝜀within the space occupied by observed structure and
counts the number of boxes,𝑁(𝜀), covering the structure.The
grid dimension equals 𝑛 = 𝐸 + 1, where 𝐸 is an appropriate
Euclidean dimension: 𝐸 = 1, 2 or 3, for line, surface, or
volume, respectively. If boxes of recursively different sizes are
used for covering fractal object, the limiting value of N(𝜀),
when 𝜀 tends to zero, follows the power law:

𝑁(𝜀) ∼ 𝜀
𝐷𝐹 , (1)

that establishes the fractal dimension to be estimated [11, 12].
For artificially generated fractals, generated by using some
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predetermined rules, fractal dimension is scale invariant, that
is, it has the same value regardless of the observation scale.
Such objects are known as monofractals [12, 13]. Conversely,
natural fractals are characterized by fractal dimension which
varies depending on the scale. Such objects are referred to as
multifractals.

Multifractals are derived as an extension of fractals that
is appropriate for situations where a unique dimension is
not enough. They were introduced by Mandelbrot in the
1980s for the purpose of measuring turbulent flow velocity
[11]. In analysis of the regularity of a flow with velocity
v, irregularities are concluded to be found. These events
such as rapid singularity changes occur in different instants
(from the Lebesgue measure in R3 space viewpoint). Hölder
exponent h (𝑥

0
) is assigned to each signal point 𝑥

0
.Therefore,

each exponent value, h, corresponds to an appropriate set
of points, 𝑆

ℎ
. Multifractality can be seen as a wide range of

Hölder exponents. Mapping, h→ 𝐷
ℎ
, defines a multifractal

spectrumof a signal, in away that for each fixed value h (set of
points 𝑆

ℎ
), the Hausdorff dimension𝐷

ℎ
is calculated. Hölder

exponent, h, is a measure of irregularity of a function 𝑔 at
observed point (a local feature). There exists a polynomial of
order n, 𝑃

𝑛
(x), and such a constant K, so

𝑔 (𝑥) − 𝑃𝑛 (𝑥 − 𝑥0)
 ≤ 𝐾

𝑥 − 𝑥0


ℎ (2)

stands for all the points 𝑥 in the neighborhood of 𝑥
0
. The

spectrum is calculated using multifractal formalism:

𝐷
ℎ
= inf
𝑞
(𝑞 ⋅ ℎ − 𝜏 (𝑞) + 𝑘) , (3)

where 𝑞 is a real parameter used to describe the singularity
of structure and determines the multifractal dimensions 𝐷

ℎ
,

𝜏(q) is a nonlinear function, and 𝑘 is a constant. For 𝑞 > 1

strongly singular structures are emphasized, for 𝑞 < 1 less
singular structures are emphasized, while for 𝑞 = 1,𝐷

ℎ
equals

information dimension.
There is yet another approach for introduction of mul-

tifractality. Fractal dimension, 𝑓
ℎ
, can be defined for a set

of Hölder exponents of points that are within the range [h,
ℎ + Δℎ]. Such set may be considered monofractal. Legendre
transform can be used for the relation between function 𝜏(q)
and a multifractal dimension, 𝑓

ℎ
:

𝜏 (𝑞) = 𝑞 ⋅ ℎ (𝑞) − 𝑓
ℎ
, ℎ (𝑞) ≅ 𝛼 (𝑞) =

𝑑𝜏 (𝑞)

𝑑𝑞
. (4)

Parameter𝛼 represents an approximation of theHölder expo-
nent, h, where maximum of spectrum (h, 𝑓

ℎ
) corresponds to

the Hausdorff dimension, 𝐷
ℎ
[13]. In order to point out the

multifractal formalism and thus to explain the alpha (𝛼) as
an approximation of Hölder exponent, we have introduced
the expression (4).

In general, multifractality is verified in the literature as
effective concept in analysis of medical signals and images
[13, 15, 16]. Legendre singularity spectrum can be calculated
for different values of 𝛼 and shows a global aspect of the
content in a medical signal. It results in a smooth concave
(decaying) function of Hölder exponent, f (𝛼), that gives a
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Figure 3: An illustration of the box-counting technique as a basis
for the histogram method: (a) 𝜀

1
= 1/12, (b) 𝜀

2
= 1/24.

general information about behavior of the analyzed set of
points. A simple and efficient method for estimating the
multifractal spectrum is the histogram method (and it is
based on the box-counting method) [16].

Figure 3 gives an illustration of the box-counting tech-
nique as a basis for the histogram method. It is applied to a
given structure S (e.g., to a part of the PMV record, Figure 2),
which is then divided into the nonoverlapping boxes 𝐵

𝑖
of

size 𝜀 so that 𝑆 = ∪
𝑖
𝐵
𝑖
. Each box 𝐵

𝑖
is characterized by

measure 𝜇(𝐵
𝑖
) (here the signal level is used as a measure 𝜇,

Figure 3(a)). The coarse Hölder exponent of the subset 𝐵
𝑖
,

corresponding to given measure 𝜇, is calculated as

𝛼
𝑖
=
ln (𝜇 (𝐵

𝑖
))

ln (𝜀)
. (5)

By changing the box size, Figure 3(b), the value of the coarse
Hölder exponent changes as well. In the limiting procedure,
as box size tends to zero, Hölder exponent 𝛼 at a specific loca-
tion, within the observed signal (structure), becomes more
precise. The Hölder exponent describes the local regularity
of structure 𝑆. Finally, the distribution of 𝛼 exponents, f (𝛼),
that is, the multifractal spectrum (Legendre spectrum) is
determined. The multifractal spectrum describes the global
regularity of observed structure. In this paper, the estimation
of Legendre spectrum (based on the box-counting technique)
is performed using FracLab software [36].
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4. Healthy versus PMV Phonocardiograms-
Multifractal Explanation

4.1. Initial Examination. We considered 97 PCG records that
belong either to healthy patients or patients with PMV, where
diagnoses are confirmed by the analysis of phonocardiograms
and echocardiograms (echos). There are 49 recordings from
49 healthy children and 48 recordings from 48 children with
PMV.

In Figure 4, we show curves of multifractal spectra
calculated for healthy children (49). One can notice the
multifractality of the PCGs.

Multifractality is also evident in the group of children
with PMVs. In order to compare the spectra between the
groups, Legendremultifractal spectra for PMVrecordings are
calculated under the same conditions as spectra of the healthy
patients. A certain number of PMVrecordingswere displayed
as points (as “monofractals,” Figure 5). Spectra calculation
under the same conditions is based on the use of predefined
parameters which are calculated for healthy patients. The
parameters are related to alpha values corresponding to
healthy recordings, calculated by [36]. Multifractal spectrum
curve, (𝛼, 𝑓(𝛼)), could not be displayed for a certain number
of PMV signals. This implies that previously calculated set of
values determined for the healthy patients do not correspond
to the abovementioned PMV recordings.

Since the spectra are calculated under the same condi-
tions that correspond to healthy recordings, the fact that only
PMV signals were displayed as points is used in the classifi-
cation algorithm. Each phonocardiogram that is displayed as
a point is automatically classified as a signal that belongs to
a patient with PMV. The rest of PMV signals (24 recordings)
were displayed as curves in themultifractal domain. Our goal
is to further examine their multifractal spectra in order to
make a distinction between them and Healthy group. The 73
signals from both groups are shown in Figure 6, where they
are presented by multifractal curves. The similarity between
the spectra in Figure 6 is expected since the distinction is
difficult to make by eye/ear.

4.1.1. Feature Analysis—Healthy versus PMV Classification.
Obtained multifractal spectra curves 𝐶

𝑗
, (𝑗 = 1, . . . , 73) are

sets of points (𝛼(𝑛
𝑗
), 𝑓(𝛼(𝑛

𝑗
))), 𝑛
𝑗
= 𝐿
𝑗
− 𝑁
𝑗
+ 1, . . . , 𝐿

𝑗
.

We examined several features of such sets: shapes of the
curves for Healthy and PMV group (width of a curve and
area under a curve), location of maxima, characteristics of
a curve shape for large alpha values, and so forth. Figure 7
shows an example of a multifractal spectrum curve with
tested characteristics: width (W), area (A), alpha value of the
maxima (𝛼MAX), and slope of the curve (𝜃).

Width of a spectrum is calculated as a difference between
alpha values in ending points of the curve as 𝑊 = 𝛼(𝐿) −

𝛼(𝐿−𝑁+1). AreaA is calculated among lines𝑓(𝛼) = 0.2, 𝛼 =

𝛼MAX and a multifractal spectrum curve. If a signal spectrum
is displayed as a single point, areaA andwidthW will be zero.
Figure 8 shows calculatedA andW values for 97 patients.The
relevance of these features for threshold settings may be seen
in their sorted presentation. By visual inspection, we notice a
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range of areas (and widths) where most of the signals (both
normal and PMV) concentrate.

In order to compare the similar multifractal spectra, in
the proposed approach we move the maxima of all the 𝑓(𝛼)
curves to the point (MaxPos, 1). The location of this point,
MaxPos, is calculated as an average of all maxima locations,
𝛼
𝑀𝐴𝑋

.This gives a better insight into the shape characteristics
of the curves. For the comparison of the multifractal curves,
the Legendre multifractal spectrum with maximum value 1 is
calculated for every signal.

In the analysis of multifractal spectra, we noticed that
relative changes of curve shapes on their right sides may
carry valuable clinical information in accordance with the
multifractal theory. Actually, we noticed that the slope angles
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Figure 9: Slopes of the curves in the right side of spectra for Healthy
and PMV group.

as features of the curves may be relevant (Figure 9).The slope
parameter for a curve 𝐶 is calculated as

𝜃 =

𝑓 (𝛼 (𝐿)) − 𝑓 (𝛼 (𝐿 − 3))


(𝛼 (𝐿) − 𝛼 (𝐿 − 3))
. (6)

The parameter 𝜃 is assumed to be significant, and it is used in
the classification procedure. When multifractal spectrum of
a signal is displayed as a point, the slope parameter has zero
value.

4.2. Proposed Algorithm. We propose a two-step algorithm
for distinguishing healthy records from PMV ones, based on
the Legendre multifractal spectra. According to the feature
analysis of the curves, we noticed that the slope parameter
may be decisive. We also noticed that most of the spectra fall
within a narrow range of area values.

For obtained multifractal spectra curves, we apply a two-
step algorithm:

(1) dividing spectra into two sets based on area feature,
A, and

(2) differentiation in two classes (Healthy and PMV)
based on the slope parameters calculated for both
of the sets (obtained according to area values in the
previous step).

The first step in the classification is realized using the
threshold 𝐴 tr, for dividing curves into two sets. For 𝐴 >

𝐴 tr, curves that have large area values are selected. They
can possibly be considered as outliers when displaying the
spectra. Most of the curves are selected for 𝐴 ≤ 𝐴 tr.
We arbitrarily chose the first intersection of area trends in
Figure 7 for the threshold value𝐴 tr (0.55).The curves selected
for 𝐴 > 𝐴 tr and 𝐴 ≤ 𝐴 tr are represented in Figures 10 and 11,
respectively.
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Figure 11: Spectra selected for 𝐴 ≤ 𝐴 tr.

In the second step of the algorithm, parameter 𝜃 is
calculated for curves from both sets (shown in Figures 10 and
11). If 𝐴 > 𝐴 tr, the slope 𝜃 is compared with predefined slope
threshold 𝜃

𝑇1
. If slope value 𝜃 is less than the threshold value,

𝜃 < 𝜃
𝑇1
, (7)

recording is automatically classified as a recordingwith a click
syndrome (PMV class). This is shown in Figure 12.

If 𝐴 ≤ 𝐴 tr, the slope parameter 𝜃 is compared with the
predefined threshold 𝜃

𝑇2
. If slope parameter 𝜃 is less than the

threshold,

𝜃 < 𝜃
𝑇2
, (8)

recording is classified as PMV. Otherwise, it is classified as
an element of the Healthy class. In the case of 𝐴 ≤ 𝐴 tr, by
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Figure 12:The slope parameter differentiation for large-area spectra
(𝐴 > 𝐴 tr).

visual inspection, we also noticed thatmost of the curves have
𝛼MAX values lower than theMaxPos value. Spectra displayed
as points have higher values (𝛼MAX) than theMaxPos. In the
proposed algorithm, 𝛼MAX values (andMaxPos) are not used
for the classification.The relevance of 𝛼MAX parameter is still
questionable.

All threshold values (𝐴 tr, 𝜃𝑇1, 𝜃𝑇2) are chosen empirically,
by observing the spectra with respect to particular tolerance
(offset) when determining the value. Empirical lines of
separation are set by examination. Figures 12 and 13 represent
calculated slope parameters for the set of curves with large
area values (𝐴 > 𝐴 tr) and small area values (𝐴 ≤ 𝐴 tr),
respectively. In Figure 12, twelve values of slope parameters
are showed for 12 curves (𝐴 > 𝐴 tr), where four among them
belong to PMV class.

The slope parameter is relevant for the other group, as
well. In Figure 13, the rest of PCG signals (61 recordings)
are presented via slope values. We can freely add 24 PCG
recordings to this group of signals, since they were not
manifested asmultifractal curves (areaA and slope parameter
𝜃 have zero value; threshold 𝜃

𝑇2
is real positive constant).

5. Simulation Results

5.1. Results of the Proposed Algorithm. In the set of 97 PCG
recordings, we achieved an accuracy of 96.91%. Obtained
results of the simulation are shown in Table 1.

Even in the case of overlapping of the spectra curves,
the algorithm gives excellent results in differentiating PMV
recordings from healthy recordings. In Figure 14, three mis-
classified spectra are shown, and two correctly classified
spectra for each group. For the purpose of presentation, we
keep colors for signal differentiation (blue—for Healthy and
red—for PMV recordings).

In the validation study, we analyzed additional 20 PCG
recordings that were not used for setting the thresholds (naive
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Table 1: Simulation results.

Class
Number of

recordings (with
echo confirmation)

Number of hits (the
proposed PCG-based

algorithm)
Accuracy

Healthy 49 48 97.96%
PMV 48 46 95.83%
Total 97 94 96.91%

dataset). Totally, 20 children (𝑀 = 9, 𝐹 = 11) contributed
to the realization of this dataset (one patient - one signal).
Their class (healthy or PMV) affiliation was not known to the
authors during testing the dataset. The results in validation
study will be explained in the following subsection.

5.2. Echocardiographic Confirmation and Validation Results.
The examination of recorded PCG dataset is followed by
echocardiographic examination at the University Children
Hospital in Belgrade. It is confirmed which of 117 recorded
phonocardiograms belong to which (Healthy or PMV) class.
Our analysis is performed only on these groups. In standard
phonocardiographic analysis, cardiology experts may have
uncertainties among such dataset which are resolved with the
echocardiographic study.

As previously mentioned, we tested 20 additional PCG
signals provided by the physician, using the proposed algo-
rithm (test) with the fixed thresholds. Our algorithm gave
satisfying results in comparison to the echocardiographic
study. The validation results are presented in Table 2. All 10
PMV recordings were predicted correctly as PMV. Two out
of 10 healthy recordings were misclassified.

The proposed procedure is shown to be efficient and sim-
ple. Even though the box-counting technique is sometimes
neglected because of masking the singularities, the proposed
algorithm has overcome this limitation.
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Figure 14: Examples of correctly classified spectra andmisclassified
spectra.

Table 2: Validation results.

Class
Number of recordings

(with echo
confirmation)

Number of hits (the
proposed PCG-based

algorithm)
Healthy 10 8
PMV 10 10
Total 20 18

The multifractal spectra calculation is also simpler for
realization than wavelet-based methods. Particular anomaly
is detected using characteristic features of the multifractal
spectra curves. Figure 9 points out the part where parameter
𝛼 is large. The click syndrome is expected to have an effect
on the right side of the spectra unlike the recordings from
the healthy group, where such clicks have not been found (or
where the particular behaviour in the systole is not a long-
term event).

Even though the whole recording was used, large ampli-
tudes in time domain that correspond to S1s (and S2s)
are not relevant in the proposed classification procedure,
which is based on multifractal analysis. The existence of
nonregular cardiac events (possible clicks) affects the right
side of multifractal spectra curves as opposed to the regular
heart sounds (S1s and S2s). Time localization of the clicks was
not a part of this analysis.

This and similar approaches can indicate signal irreg-
ularities to users of electronic stethoscopes without large
experience or skills in auscultation and phonocardiography.
In this way, the misinterpretation of phonocardiograms may
be significantly decreased.

6. Conclusion

We have been primarily focused on the criteria for obtaining
the clear distinction between patients with diagnosed PMV
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and healthy patients using phonocardiography. We have
tested 97 PCG recordings, where each record is 8 seconds
long, with downsampled frequency of 1 kHz. Echocardio-
graphic examination confirmed clinical findings in PCGs.
proposed algorithm achieves high accuracy (96.91%). In the
evaluation step of the study, we used additional 20 PCG
signals from another set of patients (20 children). Only two
signals weremisclassified according to the echocardiographic
examination.

At this point, the research about automatization of the
thresholds has not been finished. Nevertheless, there are clear
indications about the direction of future research, especially
with respect to robustness. We want to emphasize that
each record is obtained from a different patient and gives
a representation of a different “pumping machine” (heart)
function. Therefore, the features, thresholds, and generally
the algorithm can be considered robust for a large population.
An increase of the training dataset may set thresholds more
accurately.

Further research will be primarily oriented towards fur-
ther evaluation. This involves the use of additional classes
of signals (signals belonging neither to Healthy nor PMV
group). We believe that applying well-known signal pro-
cessing techniques may contribute to the development of
a cost-effective computer-aided diagnosis system based on
phonocardiograms. Decreasing the use of complex equip-
ment for screening by efficient low-cost approaches may be
of great importance. It is necessary to have large datasets of
phonocardiograms for this purposewith confirmeddiagnosis
and labeled cardiac events.
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