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One of the parameters that are usually stored for mammograms is the BI-RADS density, which gives an idea of the breast tissue
composition. In this work, we study the effect of BI-RADS density in our ongoing project for developing an image-based CAD
system to detectmasses inmammograms.This system consists of two stages. First, a blind feature extraction is performed for regions
of interest (ROIs), using Independent Component Analysis (ICA). Next, in the second stage, those features form the input vectors
to a classifier, neural network, or SVM classifier. To train and test our system, the Digital Database for Screening Mammography
(DDSM) was used. The results obtained show that the maximum variation in the performance of our system considering only
prototypes obtained frommammograms with a concrete value of density (both for training and test) is about 7%, yielding the best
values for density equal to 1, and the worst for density equal to 4, for both classifiers. Finally, with the overall results (i.e., using
prototypes from mammograms with all the possible values of densities), we obtained a difference in performance that is only 2%
lower than the maximum, also for both classifiers.

1. Introduction

Several factors can affect the composition of breast tissue.
The increase or decrease of the breast gland is part of
the normal physiological changes that occur in the breast
and usually occurs in both breasts simultaneously. These
changes may be caused by hormonal fluctuations (natural or
synthetic) including menarche, pregnancy, breastfeeding, or
menopause.The increase in glandularity also depends on the
woman’s genetic predisposition. In young women, normally,
the breast is composed mostly of glandular tissue and very
little fat. And although this composition varies depending
on age, it is possible to find older women with extremely
dense breasts, that is, consisting mostly of glandular tissue
and not fat.Weight gain or loss also increases or decreases the
fat content of the breast and therefore also affects the breast
glandularity [1].

The composition of breast tissue is defined by the BI-
RADS parameter called “density” [2], which can have four
possible values (1–4) explained in Table 1.

The degree of difficulty of analyzing a mammogram
depends on the nature of the breast tissue, as can be seen in
Figure 1. In these two mammograms, the different nature of
the tissue predominant in each one is clearly distinguishable.
As can be seen, it is very easy to locate the lesion in the figure
on the left, which corresponds to a 71-years-old woman and
has a density equal to 1, whereas it is much more difficult to
analyze and locate the lesion in themammogramon the right,
corresponding to a 41-years-old woman with a density equal
to 4. This example suggests that the density may be a factor
limiting the sensitivity which can be reached when analyzing
a mammography (both for radiologists or CAD systems).
Several analyses can be found showing that the majority
of cancer cases discarded in screening mammographies
correspond to densemammary gland (density equal to 3 or 4)
[3–5].We can also find in the literature works as [6], in which
the impact of BI-RADS density on CAD systems is studied,
in particular on the SecondLook CAD system (version 4.0)
developed by the company iCAD. Finally, there are other
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Table 1: Meaning of the BI-RADS density.

BI-RADS density
Density value Description
1 Breast tissue mainly fatty
2 Scattered fibroglandular densities
3 Breast tissue heterogeneously dense
4 Breast tissue extremely dense

studies such as [7] that incorporate the information provided
by this parameter for the development of their algorithms
to detect masses in mammograms. In this work, we studied
how BI-RADS density affects our mass detection system,
which consists of two stages. In the first one, a blind feature
extraction is performed over ROIs, using ICA as the main
technique. Next, in the second stage, those features are used
as inputs to a neural classifier which determines whether the
ROI includes a mass. The system is described in detail in the
next two sections.

The rest of our paper is organized as follows. Section 2
describes the general methods used for the generation of pro-
totypes, feature extraction, and classification. Next, Section 3
includes a description of the system structure and operation,
and also of the experiments devised. In Section 4, the most
significant obtained results are described, while Section 5
presents the main conclusions of the work.

2. Methods

In this section, we present the techniques used in this study
for the generation and selection of prototypes, for feature
extraction tasks, and for classification.We are going to review
these methods in the following subsections.

2.1. Data and Prototype Creation. In the literature, one can
find various proposals focused on the detection and segmen-
tation of masses on mammograms, such as those reviewed
in [8], but it is usually difficult to compare the results of
different studies addressing both the detection and diagnosis
of masses. The main problem is the use of proprietary
databases of small size, or, if using a public database, the use of
selected, unspecified cases. Horsch [9] analyzes recent studies
in mammography CAD and concludes that, in view of the
observed variability in the datasets used, currently the only
mammography database that is public and sufficiently large
to allow a meaningful and reproducible evaluation of a CAD
system is the Digital Database for Screening Mammography
(DDSM) [10].

The DDSM is a resource available to the mammographic
image analysis research community and contains a total of
2,620 cases. Each case provides four screening views: medio-
lateral oblique (MLO) and craniocaudal (CC) projections of
left and right breasts. Therefore, the database has a total of
10,480 images. Cases are categorized in four major groups:
normal, cancer, benign, and benign without callback. All cases
in the DDSM were reported by experienced radiologists
providing various BI-RADS parameters (density, assessment,

and subtlety), BI-RADS abnormality description, and proven
pathology. For each abnormality identified (within which
masses are included), the radiologists draw free form digital
curves defining ground truth regions. We consider these
regions to define squared “regions of interest” (ROIs) that
will be used as prototypes of mass. Apart from the previous
data, each DDSM case includes additional information such
as patient age, date of study, and digitization or digitizer’s
brand, though we have not used it in this work.

The DDSM database contains 2,582 images that con-
tain an abnormality identified as mass, whether benign or
malignant. Some of them were located on the border of
the mammograms and could not be used (see the following
paragraph, dedicated to ROIs). Consequently, only 2,324
prototypes could be considered, namely, those which might
be taken centered in a square without stretching. Some mass
prototype examples are shown in Figure 2.

Regions of Interest. Ground truth regions for abnormalities
are defined in the database by a chain code which generates a
free hand closed curve. We use the chain code to determine
the smallest square region of the mammogram that includes
the manually defined region. Therefore, if the mass is located
near one edge of the mammogram, this procedure may not
be able to obtain a squared region from the image, and the
mass is discarded as a valid prototype. Figure 3 shows an
example of the ground truth region coded by the radiologist
(solid line) and the area to be used as ROI (purple box).
On the other hand, the prototypes of normal tissue were
selected randomly from the normal mammograms. This
normal tissue prototypes were caught originally with sizes
randomly ranging from the smallest to the largest of the sizes
found in the DDSM for masses.

The generated regions have different sizes but the selected
image feature extractor needs to operate on regions with the
same size, so we need to reduce the size of the selected regions
to common sizes. The reduction of ROIs to a common size
has demonstrated to preserve mass malignancy information
[11–13]. To determine the optimum region size, we considered
two sizes for the experiments: 32 × 32, 64 × 64 pixels.
The process of resizing was carried out using the bilinear
interpolation algorithmprovided by theOpenCV library [14].

2.2. Feature Extraction. As we commented above, we used
Independent Component Analysis (ICA) [15] as blind feature
extraction method. The objective of the method is to obtain
an appropriate functions basis, derived from prototype ROIs
(including masses and normal tissue), so that we can rep-
resent the texture and characteristics of each ROI from the
breast images as an expansion in this basis (Figure 4), where
the coefficients of this expansion (s

𝑖
) are the input vectors to

the classifiers (i.e., the “features” describing the ROIs).
The added value of our approach, compared to other

methods that use some generic functions, is that our basis
should be more specific for our problem, since it is obtained
using a selection of the images to be classified.

Independent Component Analysis. Independent Component
Analysis (ICA) defines a generative model of the observed
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Figure 1: The left image shows the RCC view (right craniocaudal) of the case 1468 in USF’s DDSM database that corresponds to a woman of
71 years, to which the radiologist assigned a density equal to 1.The right image shows the RMLO view (right mediolateral oblique) of the case
1985 in the same database corresponding to a woman of 41 years, and density equal to 4.
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Figure 2: Examples of masses for each combination of shape and margins. Each ROI image has been resized to a common size of 128 × 128
pixels. Case name and view are located at the bottom of each ROI.

multivariate data, typically given as a sample database. In this
model, it is assumed that the data are linear combinations
of some unknown latent variables, and the system by which
are combined is also unknown. It is assumed that the latent
variables are non-Gaussian and mutually independent, and
they are called independent components of the observed
data. These independent components, also called sources or

factors, can be determined by ICA. ICA is related to Principal
Component Analysis (PCA) [16] since, before applying the
ICA method itself, it is advisable to make a dimension
reduction or feature extraction of the original input vectors
which can be done using PCA. The data analyzed by ICA
can come frommany different types of fields including digital
images. In many cases, the data comes from a set of parallel
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Figure 3: Ground truth region was defined by radiologist (red
solid line) and was considered ROI (purple box) on a DDSM
mammogram.

signals or time series, being used in this case the term “Blind
Source Separation” (BSS) to define these problems.

In that sense, if we suppose that we have n signals, the
objective is to expand the signals registered by the sensors
(x
𝑖
) as a linear combination of n sources (s

𝑗
), in principle

unknown as follows:

x
𝑖
=

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
s
𝑗
. (1)

The goal of ICA is to estimate the mixing matrix A = (𝑎
𝑖𝑗
),

in addition to the sources s
𝑗
. One can use this technique for

feature extraction since the components ofX can be regarded
as the characteristics representing the objects (patterns) [15].

2.3. Classification Algorithm. In our system, the classification
algorithm has the task of learning from data. An excessively
complex model will usually lead to poorly generalizable
results. It is advisable to use at least two independent sets of
patterns in the learning process: one for training and another
for testing. In the present work, we use three independent sets
of patterns: one for training, one to avoid overtraining (vali-
dation set), and another for testing [17]. For the classification,
we have used Multilayer Perceptron (MLP) [18] and SVM
classifiers [19]. We have chosen these two techniques because
they are widely used in classification and detection of breast
cancer, as can be seen in the works listed in several reviews as
[9] and in [20]. Also, to do a more rigorous study as is shown
in [21], we could have tested with other techniques and other
quality metrics that are also widely used in classification and
regression problems, although theymay not be as common in
works found on detection and classification of breast cancer.

2.3.1. Neural Networks. We implement MLP with a single
hidden layer, and a variant of the Back-Propagation algorithm

termed Resilient Back-Propagation (Rprop) [22] to adjust the
weights. This last is a local adaptive learning scheme per-
forming supervised batch-learning in amultilayer perceptron
which converges faster than the standard BP algorithm. The
basic principle of Rprop is to eliminate the negative effect of
the size of the partial derivative on the update process. As
a consequence, only the sign of the derivative is considered
in indicating the direction of the weight update [22]. The
function library of the Stuttgart Neural Network Simulator
environment [23] was used to generate and train the NN
classifiers. To avoid local minimum during the training
process, each setting was repeated four times, changing the
initial weights in the net at random. Furthermore, the number
of neurons in the hidden layer was allowed to vary between
50 and 650 in steps of 50.

2.3.2. Support Vector Machines. As with MLP, the goal of
using an SVM is to find a model (based on the training
prototypes) which is able to predict the class membership
of the test subset’s prototypes based on the value of their
characteristics. Given a labeled training set of the form
(x
𝑖
, y
𝑖
), 𝑖 = 1, . . . , 𝑙 where x

𝑖
∈ R𝑛 and y ∈ {1, −1}𝑙, the

SVM algorithm involves solving the following optimization
problem:

min
w∈R𝑑,𝑏,𝜉𝑖∈R+

‖w‖2 + 𝐶
𝑙

∑

𝑖=1

𝜉
𝑖

subject to 𝑦
𝑖
(w𝑇𝜙 (x

𝑖
) + 𝑏) ≥ 1 − 𝜉

𝑖
,

𝜉
𝑖
≥ 0.

(2)

In this algorithm, the training vectors x
𝑖
are projected

onto a higher-dimensional space than the original. The final
dimension of this space depends on the complexity of the
input space. Then the SVM finds a linear separation in terms
of a hyperplane with a maximal (and hence optimal) margin
of separation between classes in this higher dimensional
space.

In the model, 𝐶 (𝐶 > 0) is a regularization or penalty
parameter to control the error, 𝑑 is the final dimension of
the projection space, w is the normal to the hyperplane (also
known as the weights vector), and 𝑏 is the bias.The parameter
𝜉 is introduced to allow the algorithm a degree of flexibility
in fitting the data, and 𝐾(x

𝑖
, x
𝑗
) ≡ 𝜙(x

𝑖
)
𝑇
𝜙(x
𝑗
) is a kernel

function to project the input data onto to a higher dimen-
sional space. We used the LibSVM [24] library with a radial
basis function (RBF: 𝐾(𝑥

𝑖
, 𝑥
𝑗
) = exp(−𝛾‖𝑥

𝑖
− 𝑥
𝑗
‖
2
), 𝛾 > 0)

as kernel function. To find the optimal configuration of the
parameters in the algorithm, 𝛾 was allowed to vary like 2−5 <
𝛾 < 2

3 in steps of 0.5 for the exponent, and the penalty
parameter 𝐶 between 2−5 and 210 also in steps of 0.5 for the
exponent.

3. Outline of the Process

In this section, we provide an overview of the structure of our
system, describing the main steps required to configure the
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Figure 4: Decomposition of the image using an ICA basis.
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Figure 5: Overview of the system proposed.

system to discriminate prototypes of masses from prototypes
of normal breast tissue.

3.1. System Description. We provide an overview of our
system’s structure, describing the main steps required to
configure the system in order to discriminate ROIs corre-
sponding to masses from ROIs corresponding to normal
tissue. In addition, we will present the experiments devised
to determine how the performance of these classifiers is
affected by the breast density, that is associated with each
mammography (and, therefore, with each ROI).

The main scheme that summarizes in a more graphical
form all phases of this work is represented in Figure 5. In
the first stage, the prototypes of masses are obtained as
was explained in Section 2.1. Then the FastICA algorithm
[25, 26] is applied to obtain the ICA basis (the ICA-based
feature extractor), with the log cosh function being used to

approximate the neg-entropy.These bases are generated with
different configurations, different numbers of components,
and using prototypes of different sizes. The second stage uses
this generated basis to obtain the training sets and to train and
test the classifiers. Finally, in the third stage, the test subset,
which contains input vectors not used in the optimization of
the classifiers, is used to provide performance results of our
system.

3.2. System Optimization. To determine the optimal config-
uration of the system, various ICA bases were generated to
extract different numbers of features (from 10 to 65 in steps
of 5) from the original patches, and operating on patches of
the different sizes noted above (32 × 32 and 64 × 64 pixels).

The training process consisted of two stages—first train-
ing the NN classifiers, and then the SVM classifiers. The
results thus obtained on the test subsets in a 10-fold cross
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Figure 6: Choosing the best configuration for the feature extractor.The top row shows the results when using anNN classifier, and the bottom
row shows the results for an SVM classifier. In both cases, prototypes of 32 × 32 are in the first column, and of 64 × 64 in the second column.

validation scheme are shown in Figure 6. This allowed us to
find the optimal configuration of the feature extractor.

The studywas donewith a total of 5052 prototypes: 1197 of
malignant masses, 1133 of benign masses, and 2722 of normal
tissue.

We found that the optimal ICA-based feature extractor
configuration for an NN classifier was a feature extractor
that operated on prototypes of 64 × 64 pixels, extracting
10 components (average success rate 86.33%), and for an
SVM classifier was a feature extractor that also operated on
prototypes of 64 × 64 pixels, extracting 15 components
(average success rate 88.41%). The results to be presented
in the following section were obtained using these optimal
configurations.

3.3. Experiments. To determine how the density associated
to each mammography (and, therefore, to each ROI) could
affect the performance of our system, we carried out five

experiments. In each of the experiments we made the same
tests, but with different sets of prototypes: first with all
the available prototypes (one experiment), and then with
prototypes obtained from mammograms with a given value
of density (four experiments).

For each of the experiments, a 30-fold cross validation
scheme was used. In this process, 30 partitions of the data
set are generated randomly, and, iteratively, one partition is
reserved for test, and the remaining 29 are used for training
and validation (80% of the prototypes for training and 20%
for validation). As a result we have 30 performance values that
can be studied statistically.

Finally, to analyze the performance and compare results,
ROC curves [27] have been generated for each experiment.
To this end, the threshold applied to the output neuron of the
classifier (in order to decide if the prototype being classified
is mass or normal tissue) is swept, and the ratios of true and
false positives are calculated.As a performance parameter, the
“area under curve” (AUC) was used.
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Figure 8: Results obtained over the test subsets, considering all the prototypes.

Regarding the prototypes, Table 2 shows the average
number of “normal breast tissue,” “benign mass,” and “malig-
nant mass” prototypes for each of the subsets (training,
validation, and test), and calculated over the 30 “trainings of
the classifier” that are made in the 30-fold cross validation
scheme.These average values are shown for the overall exper-
iment, and for the experiments with a given value of density.
In the process of selection of the prototypes, no account was
taken of the pathology of them. But, as can be seen, this
selection process yields always a balanced distribution of the
mean number of prototypes in each subset. On average, about
73% of malignant prototypes were included in the training
sets, 23% in the validation sets, and 3% in the test sets. For
the case of the benign prototypes, around 73% were included
in the training sets, a 23% in the validation sets, and 3% in
the test sets. And finally, in the case of normal prototypes,

about 73% were included in the training sets, 23% in the
sets of validation, and a 3% in the test sets. Therefore, if we
only consider the overall data, there seems to be no clear
trendwhich suggests that the prototypes selected in any of the
ranges of density have a greater or lesser likelihood of being
mass or normal tissue. However, when we analyze particular
density values, differences are observed in the number of
prototypes for each class that may be significant.

In Figure 7, it can be seen that the prototypes ofmalignant
and benign masses prototypes are quite different from the
number of prototypes of normal tissue in some cases. For a
density value equal to 3, this sum is always significantly lower
than the number of normal tissue prototypes. For example, in
the training subset this sum is equal to 475.2 and the number
of normal tissue prototypes is equal to 559.6.Therefore, there
is a difference of 15%. Moreover, this difference is much
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Figure 9: Results obtained over the test subsets, considering NN classifiers and the cases of density 1 and 4.
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Figure 10: Results obtained over the test subsets, considering SVM classifiers and the cases of density 1 and 4.

more significant for a density value equal to 4, where, for the
training subset, the sum of malignant and benign masses is
equal to 187.2 and the number of normal tissue prototypes
is 432.9, being, therefore, the difference equal to 57%. In
contrast, for density values equal to 1 and 2 these differences
are just only a 3% and 4%, respectively, favorable to the
number of mass prototypes.

4. Results

As we stated above, our main interest in this paper is to
evaluate the dependence presented by our system with the
composition of breast tissue, determined by the BI-RADS
density parameter. For this study,we have considered all those
prototypes of masses in the DDSM for which a square shape
could be obtained by determining the smallest squared region
that includes the complete area marked by the radiologist,

and always without resizing. As we commented before, the
distribution of prototypes is shown in Table 2 and in Figure 7.
We must point out that the relative number of prototypes of
each class is very different depending on the density value.
Particularly, for a density value of 4, the difference between
mass (malignant and benign) prototypes and normal tissue
prototypes is as high as 57%. This is a big handicap for the
training of the classifiers, as we explain below.

To determine the influence of the density parameter in the
performance of our system, we applied first a 30-fold cross
validation scheme to train and test the system with the whole
set of 5,052 prototypes. Next, a ROC analysis was performed
over each of the 30 test results, calculating the area under
curve (AUC) as a parameter to describe the performance over
each test set. Finally, the mean value of the 30 AUCs was
determined, to give a parameter that describes the overall
performance of the system with those prototypes.
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Table 2: Average number of prototypes of malignant (M) and benign (B) masses and normal tissue (N) divided into training, validation, and
test sets, distributed by density value.

Average distribution of prototypes by density value in the 30-fold cross validation study

Density Training Validation Test
M B N M B N M B N Total

1 158.2 132.9 280.0 50.8 43.0 89.3 7.0 6.0 12.7 780.0
2 402.9 349.4 720.0 129.0 111.9 232.0 18.0 15.7 32.4 2012.0
3 236.3 238.9 559.6 76.2 76.3 178.5 10.5 10.8 25.0 1412.0
4 78.9 108.3 432.9 25.5 34.8 139.7 3.6 4.8 19.4 848.0
Overall 876.3 829.5 1192.5 281.5 266.0 639.5 39.1 37.3 89.5 5052.0

Table 3: This table shows the average results obtained over the different test subsets (considering all the prototypes, or only for those with a
given density), as area under the ROC curve (AUC) for a confidence interval (CI) of 95%.

Mass-Normal tissue. Depending on density 30-fold cross validation test
SVM NN Description

AUC CI (95%) AUC CI (95%)
0.944 [0.939, 0.949] 0.943 [0.938, 0.948] Overall
0.964 [0.947, 0.980] 0.965 [0.948, 0.983] cases with density 1
0.959 [0.951, 0.967] 0.961 [0.954, 0.969] cases with density 2
0.927 [0.915, 0.939] 0.916 [0.902, 0.929] cases with density 3
0.897 [0.872, 0.922] 0.892 [0.871, 0.914] cases with density 4

This scheme was repeated later considering sets of proto-
types containing only a given value of the density parameter,
in order to compare the results. Those results are presented
in Table 3. The overall results are presented in Figure 8 for
both classifiers, and for cases with densities equal to 1 and 4 in
Figure 9 for a NN classifier and Figure 10 for a SVM classifier.

As we expected, the best results were obtained for a
density value equal to 1 (virtually fatty breasts with very little
breast tissue, usually corresponding to old women), and the
worst results for a density of 4 (very dense breasts, with much
breast tissue, usually corresponding to young women).These
results are consistent with other studies about the nature of
cancer cases that are discarded by radiologists in a larger
proportion [3–5].

Besides, it is important to remark that there are very
different distributions of prototypes for the different values
of density. While for a density of 1 the number of mass and
normal tissue prototypes is almost the same (a 3% difference
favorable to the number of mass prototypes), for a density
of 4 the difference is very important (a 57% favorable to the
number of normal tissue prototypes). This difference in the
number of prototypes of each class introduces a statistical bias
which could affect the training of the classifiers.

5. Conclusions

In this work, we have studied the influence of the BI-
RADS density parameter assigned to amammogram over the
performance of our system. As a result, we have concluded
that the performance is affected by that parameter, since
the AUC of the ROC curves decreases from 0.965 to 0.892
(−7.56%) for NN classifiers and 0.964 to 0.897 (−6.95%) for

SVM classifiers when we move from density 1 to density
4. However, taking into account that mammograms with
density 4 are more difficult to analyze than those with density
1 (density 4means very dense breasts withmuch breast tissue,
so it is difficult to find masses, while density 1 means that
very little breast tissue is present), and considering also the
difficulties during training due to the different number of
prototypes of both classes, we can conclude that our system
is rather robust and performs very well even in the worst
conditions.

Besides, it is important that the AUC for the global set
of prototypes is only 2.28% and 2.07%, respectively, for NN
and SVM classifiers, lower than the performance achieved
for density 1, which is the most favourable case, so the
performance of the system with the overall set is acceptable.

Finally, as the number of samples in the subsets of
prototypes with densities equal to 2 and 3 is significantly
higher than those in the subsets with densities equal to 1 and
4, we conclude that the variation of performance due to the
BI-RADS density of our system is limited to about 7% in both
cases.

On the other hand, it worth to remark the equality of
performance obtained with the two types of classifiers tested.
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