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We aimed to compare the performance of three different individual ROC methods (one from each of the broad categories of
parametric, nonparametric and semiparametric analysis) for assessing continuous diagnostic tests: the binormal method as a
parametric method, an empirical approach as a nonparametric method, and a semiparametric method using generalized linear
models (GLM). We performed a simulation study with various sample sizes under normal, skewed, and monotone distributions.
In the simulations, we used estimates of the ROC curve parameters a and b, estimates of the area under the curve (AUC), the
standard errors and root mean square errors (RMSEs) of these estimates, and the 95% AUC confidence intervals for comparison.
The three methodologies were also applied to an acute coronary syndrome dataset in which serum myoglobin levels were used
as a biomarker for detecting acute coronary syndrome. The simulation and application studies suggest that the semiparametric
ROC analysis using GLM is a reliable method when the distributions of the diagnostic test results are skewed and that it provides
a smooth ROC curve for obtaining a unique cutoff value. A sample size of 50 is sufficient for applying the semiparametric ROC
method.

1. Introduction

Receiver operating characteristic (ROC) curve analysis is
used in many scientific fields to determine the accuracy of
a diagnostic test, for example, in signal detection theory and
medicine [1–7]. An ROC curve is a plot of the false positive
rates against the true positive rates for various cutoff values
of the diagnostic test result. The most commonly used value
to summarize the accuracy is the area under the ROC curve
(AUC). The AUC can take values between 0 and 1, and
greater AUC values denote better accuracy [6].

The result of a diagnostic test may be binary, ordinal,
or continuous. Most medical diagnostic tests, such as
biomarkers for myocardial injury or cancer, have continuous
test results [5, 8]. The most common ROC analyses are
nonparametric. The nonparametric ROC methods do not
require any assumptions about the diagnostic test result

distributions and do not provide a smooth ROC curve.
However, parametric methods assume that some function of
the diagnostic test measurements are normally distributed
in both the diseased and nondiseased populations but with
different means. It is possible to obtain a smooth ROC
curve using the parametric ROC methods. For comparison,
we chose the empirical ROC method [9, 10] an example
from the nonparametric category and the binormal ROC
method, which has been popularized by Metz and other
researchers [11–13], as an example from the parametric
category. The empirical and binormal ROC methods are
included in most major statistical packages and are the most
popular methods within the nonparametric and parametric
categories, respectively. The third alternative to these two
traditional ROC categories is semiparametric ROC analysis.
Semiparametric ROC methods do not make any distribu-
tional assumptions about the results of the diagnostic test
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and also yield a smooth ROC curve. The main difference
between the semiparametric and nonparametric methods
is that semiparametric methods can estimate ROC curve
parameters without making any assumptions about the dis-
tribution of the diagnostic test results. Many semiparametric
ROC approaches have been developed. For example, Gang
et al. [14] developed a semiparametric ROC method using
a nonparametric approach for the test result distribution of
the nondiseased group and a parametric methodology for the
test results of the diseased group. Cai and Moskowitz [15]
proposed using two methods, profile likelihood and pseudo-
maximum likelihood, to estimate the ROC curve parameters.
In addition to these semiparametric approaches, Wan and
Zhang [16] used a kernel distribution function estimator. In
their study, Pepe’s [17] application of the generalized linear
model (GLM) to ROC curves was used as a semiparametric
ROC method because of its highly efficient estimators. In
this approach, inferences are made using binary regression
techniques applied to indicator variables constructed from
paired test results (one component from a diseased subject
and the other from a nondiseased subject). ROC curve
parameter estimates can be easily obtained using the GLM
binary regression framework, and the effects of covariates
can be evaluated. Thus, we chose the semiparametric method
for our comparison.

In this study, our specific objectives were to compare the
performance of three different individual ROC methods for
assessing a continuous diagnostic and to determine which
method is efficient under which conditions. To achieve these
goals, we generated simulated random datasets of various
sample sizes from normal, skewed, and monotone distribu-
tions using the SAS/IML and SAS GENMOD procedure in
SAS 9.1. The three methods were also applied to an actual
acute coronary syndrome dataset. For comparison, we used
the estimates of the ROC curve parameters a and b, the AUC
estimates, the standard errors of these estimates, the 95%
AUC confidence intervals, and the root mean square errors
(RMSE) of AUC estimates.

2. Materials and Methods

Let Y denote a random variable representing a continuous
diagnostic test result. The diagnosis according to any cutoff

value c is positive if Y ≥ c and negative if Y < c. Let D0

and D1 denote the nondiseased and diseased populations,
respectively. The true and false positive rates at the cutoff
value c, TP(c), and FP(c) are

TP(c) = P(Y ≥ c | D1),

FP(c) = P(Y ≥ c | D0).
(1)

The ROC curve is denoted by

ROC(t) = 1− F1
(
F−1

0 (1− t)), (2)

where TP(c) = F1(c), FP(c) = F0(c), and t is the all possible
FP rates according to the varying c values in (−∞,∞) [5].

2.1. Parametric ROC. In this study, the binormal method was
used for the parametric ROC analysis. The main assumption
of this method is that the results of the continuous diagnostic
test in the diseased (Y1) and nondiseased (Y0) populations
are normally distributed with different means:

Y1 ∼ N
(
μ1, σ2

1

)
, Y0 ∼ N

(
μ0, σ2

0

)
. (3)

The ROC curve is modeled by the following function:

ROC(t) = Φ
(
a + bΦ−1(t)

)
, (4)

where Φ is the cumulative normal distribution function, and

a = μ1 − μ0

σ1
, b = σ0

σ1
, (5)

see [11–13].
The AUC equals the probability that a randomly selected

diseased subject has diagnostic higher than a randomly
selected nondiseased subject:

AUC = Φ
(

a√
1 + b2

)
, (6)

where φ is the normal probability density function [5, 12,

13]. Thus, the estimates of a, b, and AUC (denoted by â, b̂,
and AÛC, resp.) are computed using μ̂1, μ̂0, σ̂1, and σ̂0. The

respective variances of â and b̂ are

V(â) = n1
(
â2 + 2

)
+ 2n0b̂2

2n0n1
,

V
(
b̂
)
= (n1 + n0)b̂2

2n0n1
,

(7)

where n1 and n0 are the numbers of diseased and nondiseased
study subjects, respectively. The variance of AÛC can be
derived using the delta method [6].

2.2. Nonparametric ROC. In our study, the empirical
method was used for the nonparametric ROC analysis. This
method is popular because it does not make any distribu-
tional assumptions about the diagnostic test measurements.
In this approach, the possible diagnostic test results for each
cutoff value c are considered, and the corresponding true and
false positive rates are calculated by

TP(c) = s1(c)
n1

,

FP(c) = s0(c)
n0

,

(8)

where s1(c) is the number of subjects with test results greater
than or equal to c(Y ≥ c) among the diseased subjects and
s0(c) is the number of subjects with test results greater than
or equal c(Y ≥ c) among the nondiseased subjects. The ROC
curve is subsequently created by connecting these points with
a straight line [9, 10]. The AUC of the nonparametric ROC
curve is obtained using trapezoidal rule and is estimated by

AÛC = 1
n1n0

n1∑

i=1

n0∑

j=1

ψ
(
Yi1,Yj0

)
, (9)
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where

ψ
(
Yi1,Yj0

)
=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1 if Yi1 > Yj0

1
2

if Yi1 = Yj0

0 if Yi1 < Yj0

(10)

and Yi1 and Yj0 are the diagnostic test results for the diseased
and nondiseased individuals, respectively. The variance
of the estimated AUC is computed using Mann-Whitney
Statistic [10]:

V
(
AÛC

)
=
AÛC

(
1− AÛC

)
+ (n1 − 1)

(
Q1 − AÛC2

)

n1n0

+
(n0 − 1)

(
Q2 − AÛC2

)

n1n0
.

(11)

Q1 and Q2 are defined as

Q1 = 1
n0n

2
1

∑

Y

n
=y
0 ×

⎡

⎢
⎣
(
n
>y
1

)2
+ n

>y
1 × n=y1 +

(
n
=y
1

)2

3

⎤

⎥
⎦,

Q2 = 1
n2

0n1

∑

Y

n
=y
1 ×

⎡

⎢
⎣
(
n
<y
0

)2
+ n

<y
0 × n=y0 +

(
n
=y
0

)2

3

⎤

⎥
⎦,

(12)

where n
=y
0 is the number of true negative subjects with test

results equal to y, n
=y
1 is the number of true positive subjects

with test results equal to y, n
<y
0 is the number of true negative

subjects with test results less than y, and n
>y
1 is the number

of true positive subjects with test results greater than y [10].

2.3. Semiparametric ROC. The semiparametric methods of
ROC curve interpretation were represented by Pepe’s [17]
generalized linear model (GLM). Like the nonparametric
method, this approach does not need to make any distribu-
tional assumptions about the diagnostic test results; similar
to the parametric method, it estimates the parameters a and
b and the corresponding AUC. Therefore, this method can be
described as a semiparametric ROC analysis. To implement
the semiparametric ROC approach using the GLM, a binary
indicator variable is defined by

Uij = I
⌊
Yi1 ≥ Yj0

⌋
, i = 1, . . . ,n1, j = 1, . . . ,n0 (13)

for all n1 × n0 possible pairs of diagnostic test results. Next,
the false-positives rates t j are calculated for all of the possible
pairs using the test results of the nondiseased subjects. That
is, for any pair (Yi1,Yj0), t j is obtained by

t j = FP
(
Yj0

)
t j ∈ T =

{
1
n0

, . . . ,
n0

n0

}
. (14)

The ROC curve is constructed parametrically as

g
(

ROCβ(t)
)
=

K∑

k=1

βkhk(t), (15)

where g is the specified link function, h1, . . . ,hK are basis
functions, and β1, . . . ,βK are unknown parameters.

Applying GLM procedures, a linear model can be derived
by using the expectation of the binary variable Uij and the
function t j . This model is defined as

g
(
E
(
Uij

))
=

K∑

k=1

βkhk
(
t j
)
. (16)

If the probit link function Φ−1 is used, and h1(t j) = 1 and
h2(t j) = Φ−1(t j), the linear model is denoted by

E
(
Uij

)
= Φ

(
β1 + β2Φ

−1
(
t j
))

, (17)

see [17]. We used probit link fuction as above because
our aim is to construct the ROC model parametrically as
parametric method, but then we estimate the parameters
without making any assumption about diagnostic test results

to make the comparisons. The parameter estimates β̂1

and β̂2 are calculated using the generalized linear model
binary regression framework and can be used for â and

b̂, respectively. The AUC for the semiparametric model is

estimated using β̂1 and β̂2:

AÛC = Φ

⎛

⎜
⎜
⎝

β̂1√

1 + β̂2
2

⎞

⎟
⎟
⎠. (18)

The variances of β̂1, β̂2 and AÛC are computed using
bootstrap techniques [17, 18].

2.4. Simulation Algorithm. To compare the performances of
the parametric, nonparametric, and semiparametric ROC
methods, we generated continuous datasets from the normal,
lognormal, and uniform distributions and applied the
following simulation steps.

(1) The normally distributed diagnostic test results were
generated from the normal distributions of both the diseased
and nondiseased subjects (specifically Y1 ∼ N(a/b, 1/b)
and Y0 ∼ N(0, 1), where a = 1.400, b = 0.900), and
the corresponding AUC ∼= 0.850. Next, the three ROC
methods were applied to this dataset, and the parameter
estimates and AUCs (with their standard errors, RMSEs, and
95% confidence intervals) obtained from the methods were
recorded.

(2) To represent diagnostic test results from a skewed
distribution, a dataset was generated from the lognormal
distribution for both the diseased and nondiseased subjects:
Y1∼Lognormal (L = a/b, S = 1/b) and Y0∼Lognormal
(L = 0, S = 1), where L and S are the location and scale
parameters of the lognormal distribution and where a =
1.400 and b = 0.900 when the corresponding AUC ∼= 0.850.
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As in step 1, the methods were applied to this dataset, and the
parameter estimates and AUCs (with their standard errors,
RMSEs, and 95% confidence intervals) were recorded.

(3) To represent diagnostic test results from a monotone
distribution, datasets for both the diseased and nondiseased
subjects were generated from the uniform distribution:

Y1 ∼ Uniform

(

l = 2(a/b)− (1/b)
√

12
2

,

r = 2(a/b) + (1/b)
√

12
2

)

,

Y0 ∼ Uniform
(
l = −√3, r = √3

)
,

(19)

where l is the left location parameter and r is the right
location parameter and where a = 1.400 and b = 0.900 when
the corresponding AUC ∼= 0.850. As in steps (1) and (2),
the methods were applied to this data set, and the parameter
estimates and AUCs (with their standard errors, RMSEs, and
95% confidence intervals) were recorded.

(4) The first three steps were independently replicated
1000 times. Thus, 1000 different parameter estimates and
AUCs with their standard errors, RMSEs, and 95% con-
fidence intervals were obtained for each method and each
diagnostic test result distribution.

(5) The means of the 1000 different parameter estimates
and AUCs with their standard errors, RMSEs, and 95%
confidence intervals were calculated.

The three ROC methods were compared by evaluating
how close the means of the parameter estimates were to the
values determined for a, b, and AUC.

The various sample sizes were determined to be 30(n1 =
15,n0 = 15), 50(n1 = 25, n0 = 25), 100(n1 = 50, n0 = 50),
and 200(n1 = 100, n0 = 100). The simulations and analyses
were performed using the SAS/IML and SAS GENMOD
procedures in SAS 9.1.

2.5. Application Data. The data set consisted of 62 patients
who had been diagnosed with non-ST elevation acute coro-
nary syndrome (NSTE-ACS) on the basis of an acute chest
pain episode and electrocardiographic changes manifested
by ST depressions or T wave inversions within 12 h of
the symptom onset. The levels of cardiac troponin-I (cTnI)
and the MB isoenzyme of creatine kinase (CK-MB) were
measured at the time of emergency department arrival. A
single test for myoglobin was obtained if the cTnI level
was elevated. A non-ACS group consisted of 20 subjects
who had atypical chest pain with normal cTnI and normal
CK-MB levels. Myoglobin levels were obtained from both
the NSTE-ACS and non-ACS groups. Figure 1 shows the
distribution plot of the myoglobin levels for the NSTE-
ACS and non-ACS groups. The parametric, nonparametric,
and semiparametric ROC analyses were applied to the data
set, with the myoglobin levels serving as a biomarker for
detecting ACS. Next, the results of the three ROC methods
were compared. The study was approved by the Eskisehir
Osmangazi University School of Medicine Ethics Committee,
and the data set was collected between October 4, 2004 and
September 4, 2005.

0 120 240 360 480 600 720

Myoglobin levels

Non-ACS subjects

NSTE-ACS subjects

Figure 1: The distribution plot of the myoglobin levels.

3. Results and Discussion

Table 1 shows the simulation results when the distributions
of the continuous diagnostic test measurements were normal
in both the diseased and nondiseased subjects. As the total
sample size increased (especially to over 50), both the para-
metric and semiparametric methods provided parameter
estimates with negligible bias and similar standard errors.
Additionally, the three methods had similar estimates with
negligible bias for the AUC. The standard errors, RMSE’s,
and 95% confidence intervals for the AUC’s of each method
are similar with negligible differences at larger sample sizes.

Table 2 shows the diagnostic test simulation results
when using a skewed distribution for the diseased and
nondiseased subjects. The parametric method yielded biased
parameters and AUC estimates at each sample size. However,
the semiparametric method provided parameter and AUC
estimates with a negligible bias when the sample size
increased. The nonparametric method produced negligible
AUC bias at each sample size. When the sample size increases,
the nonparametric and semiparametric AUC estimates and
their standard errors become similar. On the other hand,
nonparametric and semiparametric methods have similar
RMSE for the AUC estimates at each sample size. For small
sample sizes, the 95% AUC confidence intervals from the
nonparametric method have a narrower range than those of
the semiparametric method.

The diagnostic test simulation results using a monotone
distribution for the diseased and nondiseased subjects are
shown in Table 3. These results indicate that the parametric
method gave parameter estimates with negligible bias for
each sample size. However, the semiparametric method
provided estimates for the a parameter with negligible bias
for smaller samples and larger bias for larger sample sizes.
Standard errors of the parameter estimates were similar at
larger sample size for the parametric and semiparametric
method. The parametric method provided less biased AUC
estimates at each sample size than did the semiparametric
and nonparametric methods. The AUC estimates of each
method had similar standard errors. However, the paramet-
ric method has smaller RMSE for the AUC estimates than
the other two ROC methods. Additionally, the parametric
method has narrower 95% AUC confidence intervals.

Table 4 indicates that the myoglobin levels are skewed
and nonnormally distributed for each group.

Table 5 shows the results of applying the three ROC
methods to the ACD data set. These results were similar to
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Table 1: Means of the parameter estimates and AUC’s with their standard errors, RMSE, and 95% confidence intervals (CI) obtained from
the parametric, semiparametric, and nonparametric ROC methods using various sample sizes from 1000 simulated data sets generated from
the normal distribution.

Parameters

a = 1.400, b = 0.900 and AUC = 0.850

n1 : n0 Methods â SE(â) b̂ SE(b̂) AÛC BIAS for AUC SE AÛC RMSE for AÛC 95% CI for AUC

P 1.465 0.451 0.939 0.242 0.844 0.006 0.067 0.069 0.713–0.976

15 : 15 S 1.578 0.507 1.170 0.302 0.822 0.028 0.072 0.075 0.681–0.963

N — — — — 0.849 0.001 0.070 0.071 0.712–0.986

P 1.432 0.341 0.911 0.182 0.847 0.003 0.052 0.053 0.745–0.949

25 : 25 S 1.446 0.356 1.007 0.202 0.834 0.016 0.052 0.058 0.731–0.937

N — — — — 0.850 0.000 0.054 0.054 0.743–0.956

P 1.429 0.240 0.914 0.129 0.850 0.000 0.037 0.037 0.778–0.922

50 : 50 S 1.430 0.245 0.966 0.137 0.843 0.007 0.037 0.039 0.771–0.915

N — — — — 0.852 0.002 0.038 0.038 0.776–0.927

P 1.411 0.168 0.905 0.091 0.850 0.000 0.026 0.027 0.799–0.901

100 : 100 S 1.409 0.170 0.932 0.093 0.846 0.004 0.026 0.027 0.795–0.897

N — — — — 0.851 0.001 0.027 0.027 0.797–0.904

P: parametric, S: semiparametric, N: nonparametric.

Table 2: Means of the parameter estimates and AUC’s with their standard errors, RMSE, and 95% confidence intervals (CIs) from the
parametric, semiparametric, and nonparametric ROC methods using various sample sizes from 1000 simulated datasets generated from the
lognormal distribution.

Parameters

a = 1.400, b = 0.900 and AUC = 0.850

n1 : n0 Methods â SE(â) b̂ SE(b̂) AÛC BIAS for AUC SE AÛC RMSE for AÛC 95% CI for AUC

P 0.729 0.303 0.236 0.061 0.754 0.096 0.088 0.113 0.581–0.928

15 : 15 S 1.600 0.511 1.176 0.304 0.822 0.028 0.224 0.079 0.383–1.261

N — — — — 0.848 0.002 0.070 0.073 0.712–0.986

P 0.693 0.230 0.216 0.043 0.746 0.104 0.067 0.116 0.610–0.882

25 : 25 S 1.461 0.358 1.020 0.204 0.835 0.015 0.109 0.059 0.622–1.048

N — — — — 0.851 0.001 0.054 0.056 0.745–0.957

P 0.646 0.159 0.196 0.028 0.734 0.116 0.050 0.127 0.635–0.832

50 : 50 S 1.420 0.243 0.955 0.135 0.843 0.007 0.058 0.038 0.728–0.957

N — — — — 0.851 0.001 0.038 0.038 0.776–0.926

P 0.601 0.111 0.183 0.018 0.721 0.129 0.036 0.133 0.650–0.792

100 : 100 S 1.406 0.169 0.930 0.093 0.846 0.004 0.037 0.026 0.773–0.920

N — — — — 0.851 0.001 0.027 0.026 0.797–0.904

P: parametric, S: semiparametric, N: nonparametric.

the results in Table 2. The ROC curves obtained from the
ACS dataset for each method are shown in Figure 2.

The semiparametric ROC method is alternative to the
traditional parametric and nonparametric ROC methods.
The parametric method has the restriction about the dis-
tribution of a diagnostic test which must be normal or a
transformation of the test must be normal. On the other
hand, the nonparametric method has a disadvantage that
it does not yield smooth curve, especially in small samples.
However, the semiparametric method has no assumption
about the distribution of a diagnostic test and also yield
smooth curve. In this case, the performances of the semi-
parametic method according to the other two methods

were investigated and compared in this study. This paper
argues that semiparametric ROC analysis using GLM is a
reliable method that can be used instead of parametric and
nonparametric ROC methods for continuous diagnostic test
results with skewed distributions and sample sizes greater
than 50. Additionally, the semiparametric ROC analysis
yields a smooth ROC curve, which is important when
determining a unique optimal cutoff value.

As shown in the results of the simulation and appli-
cation studies, the parametric method yielded unreliable,
biased, and inconsistent parameter and AUC estimates
when the distribution of the diagnostic test results was
skewed from normality. We can conclude that applying
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Table 3: Means of the parameter estimates and AUC’s with their standard errors, RMSE, and 95% confidence intervals (CI) obtained from
the parametric, semiparametric and nonparametric ROC methods using various sample sizes from 1000 simulated data sets generated from
the uniform distribution.

Parameters

a = 1.400, b = 0.900 and AUC = 0.850

n1 : n0 Methods â SE(â) b̂ SE(b̂) AÛC BIAS for AUC SE AÛC RMSE for AÛC 95% CI for AUC

P 1.434 0.440 0.906 0.234 0.847 0.003 0.067 0.067 0.715–0.978

15 : 15 S 1.402 0.474 1.130 0.292 0.810 0.040 0.068 0.084 0.677–0.943

N — — — — 0.837 0.013 0.073 0.077 0.694–0.980

P 1.418 0.338 0.907 0.181 0.847 0.003 0.052 0.050 0.745–0.950

25 : 25 S 1.373 0.353 1.060 0.212 0.820 0.030 0.053 0.062 0.716–0.923

N — — — — 0.835 0.015 0.057 0.056 0.723–0.947

P 1.413 0.238 0.902 0.128 0.850 0.000 0.037 0.036 0.777–0.922

50 : 50 S 1.357 0.242 0.992 0.140 0.829 0.021 0.038 0.045 0.755–0.902

N — — — — 0.835 0.015 0.040 0.044 0.756–0.915

P 1.402 0.167 0.908 0.090 0.850 0.000 0.026 0.024 0.798–0.901

100 : 100 S 1.350 0.169 0.967 0.097 0.832 0.018 0.027 0.033 0.780–0.885

N — — — — 0.834 0.016 0.029 0.032 0.778–0.891

P: parametric, S: semiparametric, N: nonparametric.

Table 4: The descriptive statistics and normality test results for the myoglobin levels in the ACS data set.

Groups n Mean SD Median Minimum Maximum
Shapiro-Wilk test

of normality

NSTE-ACS 62 178.03 194.27 104 20 800 P < 0.001

Non-ACS 20 54.75 64.29 33.95 11.60 304 P < 0.001

Table 5: The results of applying the parametric, semiparametric, and nonparametric ROC methods to the ACS data set.

n1 : n0 Methods â SE(â) b̂ SE(b̂) AÛC SE(AÛC) 95% CI for AUC

Parametric 0.635 0.249 0.331 0.060 0.727 0.049 0.630–0.823

62 : 20 Semiparametric 1.310 0.331 1.018 0.185 0.821 0.030 0.761–0.880

Nonparametric — — — — 0.845 0.044 0.759–0.930

the parametric ROC method has important restrictions.
However, the simulation studies showed that the parametric
ROC method can be used for diagnostic test results with
monotone distributions because the results were similar to
those obtained from the normally distributed diagnostic test
results. In addition, the nonparametric ROC analysis yielded
reliable, unbiased, and consistent estimates for the AUC.
However, the ROC curve obtained from the nonparametric
ROC analysis was not smooth. Consequently, the clinical
sensitivities and specificities of a diagnostic test would
vary significantly with small variations in the cutoff values.
Additionally, determining a unique optimal cutoff value for
a diagnostic test using a jagged ROC curve is notably difficult
in real clinical applications [7, 18]. A smooth nonparametric
estimation of the ROC curve can be achieved by applying
kernel smoothing, and it was demonstrated that the smooth
nonparametric ROC curve is superior to the jagged ROC
curve in terms of deficiency [19–21]. Although this estimator
is smooth and robust, the approach is not as efficient as other
nonparametric ROC methods [16].

Our study chose to use the semiparametric model using
GLM proposed by Pepe [17] and Alonzo and Pepe [18]
for comparison purposes because the estimator of this
method has a high statistical efficiency [15, 17, 18]. The
simulation and application studies demonstrated that the
semiparametric GLM method provided reliable, unbiased,
and consistent estimates for the parameters and AUC when
the sample size was over 50. Additionally, it yielded a smooth
ROC curve. This result was also confirmed by the application
study.

4. Conclusions

We propose using the semiparametric GLM ROC method
to assess the accuracy of a continuous diagnostic test if
the test results have a skewed distribution. The robust
estimators of this method provide a smooth ROC curve,
which is important when determining the optimal cutoff

value. The model also has the advantage of being easy to
implement in certain statistical packages. If the results of
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Figure 2: Parametric, semiparametric and nonparametric ROC
curves based on the ACS data.

a continuous diagnostic test have a rigorous normal or
monotone distribution in both the diseased and nondiseased
groups, however, the parametric method should be used.
Alternatively, the semiparametric ROC method can be used
for large sample sizes with normally distributed diagnostic
test results. The parametric method is unreliable under other
circumstances, even when the data are nearly normal. In
this situation, determining the optimal cutoff value is best
achieved using the semiparametric model because it has
a smooth ROC curve. When applying the semiparametric
ROC method, a total sample size 50 is adequate for obtaining
reliable unbiased estimates and a smooth ROC curve.

This study has some limitations. The main issue was that
the simulations were performed by using continuous diag-
nostic test results. However, comparisons can be extended
including ranked data as a diagnostic test. Campbell and
Ratnaparkhi [22] used Lomax distribution as a model for
rating data in ROC analysis. Metz et al. [23] proposed some
algorithms including truth-state runs in ranked data in ROC
analysis. These models may work well for the nonnormal
data. Future researches should take into account the models
for comparisons.

References

[1] D. M. Green and J. A. Swets, Signal Detection Theory and
Psychophysics, Wiley, New York, NY, USA, 1966.

[2] J. P. Egan, Signal Detection Theory and ROC Analysis, Aca-
demic Press, New York, NY, USA, 1975.

[3] L. B. Lusted, “Logical analysis in roentgen diagnosis,” Radiol-
ogy, vol. 74, pp. 178–193, 1960.

[4] J. A. Swets and R. M. Pickett, Evaluation of Diagnostic Systems:
Methods from Signal Detection Theory, Academic Press, New
York, NY, USA, 1982.

[5] M. S. Pepe, The Statistical Evaluation of Medical Tests for
Classification and Prediction, Oxford University Press, New
York, NY, USA, 2003.

[6] X. H. Zhou, N. A. Obuchowski, and D. K. McClish, Statistical
Methods in Diagnostic Medicine, John Wiley and Sons, New
York, NY, USA, 2002.

[7] K. H. Zou, A. J. O’Malley, and L. Mauri, “Receiver-operating
characteristic analysis for evaluating diagnostic tests and
predictive models,” Circulation, vol. 115, no. 5, pp. 654–657,
2007.

[8] J. Zimmerman, R. Fromm, D. Meyer et al., “Diagnostic marker
cooperative study for the diagnosis of myocardial infarction,”
Circulation, vol. 99, no. 13, pp. 1671–1677, 1999.

[9] D. Bamber, “The area above the ordinal dominance graph and
the area below the receiver operating characteristic graph,”
Journal of Mathematical Psychology, vol. 12, no. 4, pp. 387–415,
1975.

[10] J. A. Hanley and B. J. McNeil, “The meaning and use of the
area under a receiver operating characteristic (ROC) curve,”
Radiology, vol. 143, no. 1, pp. 29–36, 1982.

[11] D. D. Dorfman and E. Alf, “Maximum likelihood estimation
of parameters of signal detection theory: a direct solution,”
Psychometrika, vol. 33, no. 1, pp. 117–124, 1968.

[12] D. K. McClish, “Analyzing a portion of the ROC curve,”
Medical Decision Making, vol. 9, no. 3, pp. 190–195, 1989.

[13] C. E. Metz, “Basic principles of ROC analysis,” Seminars in
Nuclear Medicine, vol. 8, no. 4, pp. 283–298, 1978.

[14] L. I. Gang, R. C. Tiwari, and M. T. Wells, “Semiparametric
inference for a quantile comparison function with applications
to receiver operating characteristic curves,” Biometrika, vol.
86, no. 3, pp. 487–502, 1999.

[15] T. Cai and C. S. Moskowitz, “Semi-parametric estimation of
the binormal ROC curve for a continuous diagnostic test,”
Biostatistics, vol. 5, no. 4, pp. 573–586, 2004.

[16] S. Wan and B. Zhang, “Smooth semiparametric receiver
operating characteristic curves for continuous diagnostic
tests,” Statistics in Medicine, vol. 26, no. 12, pp. 2565–2586,
2007.

[17] M. S. Pepe, “An interpretation for the ROC curve and
inference using GLM procedures,” Biometrics, vol. 56, no. 2,
pp. 352–359, 2000.

[18] T. A. Alonzo and M. S. Pepe, “Distribution-free ROC analysis
using binary regression techniques,” Biostatistics, vol. 3, no. 3,
pp. 421–432, 2002.

[19] K. H. Zou, W. J. Hall, and D. E. Shapiro, “Smooth non-
parametric receiver operating characteristic (ROC) curves for
continuous diagnostic tests,” Statistics in Medicine, vol. 16, no.
19, pp. 2143–2156, 1997.

[20] C. J. Lloyd, “Using smoothed receiver operating characteristic
curves to summarize and compare diagnostic systems,” Journal
of the American Statistical Association, vol. 93, no. 444, pp.
1356–1364, 1998.

[21] C. J. Lloyd and Z. Yong, “Kernel estimators of the ROC curve
are better than empirical,” Statistics and Probability Letters, vol.
44, no. 3, pp. 221–228, 1999.

[22] G. Campbell and M. V. Ratnaparkhi, “An application of lomax
distributions in receiver operating characteristic (ROC) curve
analysis,” Communications in Statistics, vol. 22, no. 6, pp.
1681–1697, 1993.

[23] C. E. Metz, B. A. Herman, and J. H. Shen, “Maximum
likelihood estimation of receiver operating characteristic
(ROC) curves from continuously-distributed data,” Statistics
in Medicine, vol. 17, no. 9, pp. 1033–1053, 1998.



Submit your manuscripts at
http://www.hindawi.com

Stem Cells
International

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

MEDIATORS
INFLAMMATION

of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Behavioural 
Neurology

Endocrinology
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Disease Markers

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

BioMed 
Research International

Oncology
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Oxidative Medicine and 
Cellular Longevity

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

PPAR Research

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Immunology Research
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Obesity
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Computational and  
Mathematical Methods 
in Medicine

Ophthalmology
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Diabetes Research
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Research and Treatment
AIDS

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Gastroenterology 
Research and Practice

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Parkinson’s 
Disease

Evidence-Based 
Complementary and 
Alternative Medicine

Volume 2014
Hindawi Publishing Corporation
http://www.hindawi.com


