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As both fluid flow measurement techniques and computer simulation methods continue to improve, there is a growing need
for numerical simulation approaches that can assimilate experimental data into the simulation in a flexible and mathematically
consistent manner. The problem of interest here is the simulation of blood flow in the left ventricle with the assimilation of
experimental data provided by ultrasound imaging of microbubbles in the blood. The weighted least-squares finite element
method is used because it allows data to be assimilated in a very flexible manner so that accurate measurements are more closely
matched with the numerical solution than less accurate data. This approach is applied to two different test problems: a flexible flap
that is displaced by a jet of fluid and blood flow in the porcine left ventricle. By adjusting how closely the simulation matches the
experimental data, one can observe potential inaccuracies in the model because the simulation without experimental data differs
significantly from the simulation with the data. Additionally, the assimilation of experimental data can help the simulation capture
certain small effects that are present in the experiment, but not modeled directly in the simulation.

1. Introduction

The physics of blood flow in the left ventricle of the heart has
traditionally been studied using either experimental mea-
surement of flow properties (e.g., ultrasound or magnetic
resonance imaging) or computational fluid dynamic models.
Experimental approaches are generally limited to obtaining
flow information at only few spatial locations and using
time-averaged properties. Computational models require
assumptions along the mathematical domain boundaries,
and they include numerical approximation error and model
error. In many cases, however, it is desirable to have the
more comprehensive spatial and temporal data provided
by computational fluid dynamics combined with the data
provided by experimental measurement. The weighted least-
square finite element method (WLSFEM) is a computational
modeling approach that allows experimental data to be
assimilated into the model in a flexible framework so that
the numerical approximation matches the more accurate
experimental data while, at the same time, not being
contaminated by errors in the noisier experimental data. The

application of this method to the simulation of blood flow in
the left ventricle is examined here.

One approach that we have used previously for obtain-
ing experimental blood flow data in the left ventricle is
echocardiographic particle imaging velocimetry (echo PIV)
[1–7]. For this approach, microbubbles are introduced into
the blood, and they are imaged using 2D brightness (B)-
mode ultrasound scans. These images are acquired at a
rate of approximately 60 frames/sec, and the microbubble
concentration is kept low enough that individual bubbles can
be tracked between frames. Using cross-correlation analysis,
the particle displacement between two images in sequence
can be calculated, and, after dividing by the time span
between images, PIV software can calculate the two velocity
components tangential to the imaging plane. Echo PIV has
been used as a research tool for nearly a decade, and it has
been validated by multiple research groups [1, 7]. The flow
velocity data provided by echo PIV is useful, but there is a
strong interest in using the data to determine addition flow
property information such as pressure gradients and viscous
energy loses. The problem is that the calculation of these,
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or almost any other additional flow property, requires full
3-dimensional velocity data. The data from echo PIV are
limited to a single 2D plane. As a result, 2D ultrasound scans
provide only 2 components of a 3D velocity field.

A complementary approach to echo PIV that could allow
the approximation of all 3 components of the 3D velocity
field is to use computational fluid dynamics to simulate
blood flow in the left ventricle. A number of computational
models have been developed specifically to model blood flow
in the heart (c.f., [8, 9] and references therein). Many of these
models also predict the motion of the heart wall and simulate
the blood-tissue interaction (e.g., [10–12]). The enforcement
of boundary conditions with most computational fluid
dynamics approaches, such as the finite element or finite
volume methods, is achieved by strongly enforcing the
velocity (i.e., exactly matching the experimental velocity
data) at nodes within the discretization mesh or grid [13, 14].
There are two problems with strong enforcement of the
experimental data at the nodes: (1) the experimental data
might not be known at the exact location of the nodal
mesh points so some type of interpolation is required, and
(2) the errors in the experimental data will be propagated
throughout the 3D domain and contaminate the numerical
approximation at all nodes throughout the computational
domain [15]. What is needed is a computational fluid
dynamics approach that can assimilate velocity data any-
where in the domain, not just at computational nodes, and
an approach that can weakly enforce the experimental data
with a weighting that is varied depending upon the accuracy
of the experimental data.

In an earlier paper, we developed the WLSFEM for
the assimilation of data when solving partial differential
equations, including the steady Navier-Stokes equations [15].
This paper extends that work in a number of different ways
so that the method can be applied to the simulation of blood
flow in the left ventricle using echo PIV data. The greatest
change is caused by the fact that we now have a moving
fluid domain so a pseudosolid domain mapping technique
is developed to handle the deforming fluid mesh. The math-
ematical approach that we have developed and the numerical
implementation are described in the next section. This
approach is then applied to two different example problems:
a moving flap problem and blood flow in the left ventricle.

2. Methods

The physical phenomena of interest here are typically
modeled by partial differential equations. In particular,
incompressible, Newtonian fluids are modeled by the Navier-
Stokes equations, which are generally considered appropriate
for modeling blood flow in the heart [16, 17] and are given
by:

√
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(
∂v
∂t

+ v · ∇v
)
= −∇p +

1√
Re
∇2v,

∇ · v = 0,

(1)

where v is the dimensionless velocity, p is the dimensionless
pressure, and Re is the Reynolds number. It should be noted

that the Reynolds number is not written only on the viscous
or convective terms, as it normally is, but the equation is
instead scaled so that the Reynolds number appears on both
terms. The Navier-Stokes equation is generally considered
appropriate for modeling blood flow in the heart [16, 17].
The WLSFEM begins by defining new variables so that all
second-order equations can be rewritten as systems of first-
order equations. There are a number of different options
available for rewriting the Navier-Stokes equations as a
first-order system, and this choice can significantly impact
the properties of the resulting discrete approximation [18–
20]. For the particular problems of interest here, accurate
mass conservation is of importance, so a modified vorticity
approach is used [21]. This approach begins by defining a
new variable, called the vorticity, by

ω = −∇× v, (2)

and another new variable, r, by
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which is often referred to as the gradient of the total pressure.
Using these two new variables, the Navier-Stokes equations
(1) can be rewritten as the following system of first-order
equations:

∇× v + ω = 0,

∇ · v = 0,

1√
Re
∇× ω − r−

√
Re
(

v × ω +
∂v

∂t

)
= 0,

∇ · ω = 0,

∇× r = 0,

∇ · r−
√

Re(ω · ω)− Re(v · r) = 0.

(4)

In the least-squares finite element method, this system of
equations is cast as an optimization problem based on the
functional:
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where ‖ · ‖2
0,Ω is the L2-norm on the 3D fluid domain

and (w/h) ‖ · ‖2
0,Γ is the weighted L2-norm along the 2D



Computational and Mathematical Methods in Medicine 3

boundary surfaces (Γ) or 2D surfaces, where PIV data is
given (ΓPIV). The PIV plane is simply a 2-dimensional cross-
section that is typically somewhat near the middle of the 3-
dimensional domain (ΓPIV), where as the other boundaries
(Γ) are all on the surface of the 3-dimensional domain.
The weighted L2-norm, used along the boundary surfaces,
is an approximation of the H1/2-norm that deemphasizes
oscillatory components (i.e., noisy components) relative to
the H1/2-norm [22]. The functions g1, g2, and gPIV are the
given boundary or PIV data, that is, to be weakly matched by
the numerical approximation of the solution. For example,
g1 is set to the surface displacement rate along no-slip
boundaries. The function g2 is only set along boundaries
where the normal vorticity is known, such as along walls.
It is also straightforward to enforce this data strongly on
the finite element space so that it is matched exactly by the
approximate solution, but that is not an optimal strategy
if the data contains errors, which is generally true for
experimental data. Finally, the PIV data, gPIV, can be either
2- or 3-dimensional data, but the PIV method is typically
limited to providing 2-dimensional data, so that is the focus
here. The spatial location of the PIV data does not need to be
the same as the computational mesh node locations. The data
can be located anywhere within the computational domain.

The boundary functional weights, wΓ and wPIV, should
be chosen so that the weight value is larger in regions where
the given data, g, is known more accurately and smaller in
the regions where the data contains more noise. Along the
heart walls, for example, we know that the fluid velocity is
equal to the velocity of the wall, but the wall location is not
known precisely so there is still some error. In the problems
of interest here, the PIV data typically contains larger errors
than the boundary data, so we would expect wΓ > wPIV,
which would result in an approximate solution that more
closely matches the boundary data than the PIV data. In [15]
it was shown that the boundary functional weight should be
chosen by

w ≈ 1
σ2

, (6)

where σ is the standard deviation in the given data. To sim-
plify this process, we typically set the boundary functional
weight to 1.0 for the most accurate boundary data, and then
the other boundary functional weights are set relative to
the most accurate data. The vorticity is typically determined
from the velocity data, and boundary conditions on the
vorticity are weighted consistently with the accuracy of the
velocity data.

When modeling blood flow in the left ventricle, or any
fluid-structure interaction problem, the shape of the fluid
domain is continuously changing. There are a number of
numerical strategies for addressing the changing domain
shape, including the generation of a new mesh every time
step or grid mapping using equations such as the Winslow
generator [23, 24]. Another straightforward method is to
solve a compressible elasticity problem over the fluid domain
and use the solution from the elasticity problem to move
the nodes of the finite element mesh. This approach is often
referred to as a pseudosolid domain mapping technique

[25, 26]. The linear, compressible elasticity equation can be
written as

λ∇(∇ · u) +∇2u = 0, (7)

where u is the displacement and λ, which is typically set to
1.0, is a Lamé coefficient related to Poisson’s ratio. Similar
to the Navier-Stokes equation, this equation also must be
rewritten as a first-order system of equations by defining a
matrix of new variables, U , equal to the gradient of u. The
full first-order system is

U −∇u = 0,
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∇×U = 0,

n = 0, (8)

where tr(U) is the trace of U . The equations in the first-order
system are combined into the functional
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where gu is the given boundary displacement. It is important
to note that moving the finite element mesh can create an
additional, artificial convection that must be subtracted from
the actual convective velocity in the Navier-Stokes equation
[25].

The WLSFEM has a number of computational and al-
gorithmic advantages for the problem of solving the Navier-
Stokes equations and pseudosolid domain mapping equa-
tions with assimilated data:

(i) it provides tremendous flexibility in handling the
additional conditions imposed by the experimental
data, including the ability to weight data based on the
accuracy of the experimental data, that is, accurate
data can be weighted and matched more closely by
the CFD solution while less accurate data is only
loosely matched by the CFD approximation;

(ii) the mathematical framework of least-squares mini-
mization leads to symmetric positive definite matri-
ces, which generally allows for efficient algebraic
multigrid solvers [27];

(iii) the functional itself provides a natural sharp local
error estimator, which could enable effective adaptive
refinement [28, 29].

To solve the least-squares problem, the equations in the
functional (G) are first linearized so that the solution can
be found using a Gauss-Newton approach. The least-squares
weak form is converted into a linear system of equations by
choosing a finite element basis. All the results presented here
utilized a triquadratic finite element basis. The WLSFEM
allows the solution spaces for the variables to be chosen
independently, and there is no restrictive stability condition
(i.e., inf-sup condition) to satisfy [30]. As a result, all
variables in the reformulation of the Navier-Stokes equations
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or the linear elasticity equation can be approximated with the
same basis.

All simulations were performed using the ParaFOS code,
written by the authors. The code imports hexahedral meshes
from the Cubit mesh generation package (Sandia National
Laboratory). The finite element meshes are then partitioned
using the Metis graph partitioning library [31]. The software
is designed to run on distributed memory clusters using
the MPI library for communication. The linear matrix
problem generated during each Gauss-Newton step is solved
using the hypre library of solvers (from the Center for
Applied Scientific Computing, Lawrence Livermore National
Laboratory, see [32]). Specifically, the BoomerAMG parallel
algebraic multigrid solver is used as a preconditioner for a
conjugate gradient iteration.

3. Results

To test the WLSFEM on problems with moving domains
and PIV data assimilation, two different test problems are
examined. The first problem is a flexible flap that is displaced
by a fluid jet, and optical PIV is used to obtain experimental
data. The second problem is a simulation of blood flow in
the left ventricle of a pig using echo PIV data. It is this
second problem that was the primary motivation for the
development of the numerical modeling approach described
here.

3.1. Moving Flap. The experimental apparatus consisted of a
cellulose acetate flap (taken from an overhead transparency)
that was fixed on one end and placed in a 15.4 cm cube
filled with water and contrast agent particles (Figure 1). A
centrifugal pump was used to generate a jet of water with
a diameter of 2.2 cm for a duration of 200 ms. Additional
details regarding the experimental setup can be found in
[33]. For the numerical simulation, the experimental system
was nondimensionalized and the simulation was run using a
Reynolds number of 1000 based on the inlet tube diameter,
which is small enough to ensure that no turbulent effects are
present.

A sample image from the moving flap experiment is
shown in Figure 1, and the velocity data obtained from PIV
data analysis is overlaid on the image. Because the experi-
ment used an optical PIV technique, the seeding particles can
be seen in the fluid. To simulate this model experiment, a
cubic domain was meshed using hexahedral finite elements,
and the flap in the no-flow or rest position was defined by a 2-
dimensional surface within the cubic volume. The location of
the flap at various time points during the experiment could
be determined from the experimental images that were used
for PIV analysis. The flap in each image was interpolated with
a 5th order polynomial, and these polynomials were used to
specify the displacement of the flap surface in the WLSFEM
simulation at each time step. As the flap surface moved, the
pseudosolid domain mapping technique was used to deform
the finite element mesh in response to the flap motion
(Figure 2). To clarify, the simulation did not model the solid
flap because experimental data was available for specifying

Flow

Figure 1: Image from the flap displacement PIV experiment. The
flap (grey) is displaced by a jet of fluid, and the flow velocity is
determined using PIV. The optical PIV particles appear as speckles,
and the velocities are shown using arrows.

the flap location, but the simulation did include the impact
of the flap on the fluid through the boundary conditions
on the fluid (i.e., the no-slip boundary condition on the
flap surface). The other boundary conditions used in the
simulation were no-slip boundary conditions on the walls of
the cubic domain except for the right surface of the domain,
which was set to a natural boundary condition because
the actual experimental system allowed outflow along this
surface. The inlet velocity was set to a paraboloid with a total
flow rate equal to the experimentally measured flow rate.

The WLSFEM algorithm was based on implicit time
stepping, so from a numerical stability standpoint, any time
step size could be used in the simulation. Here we used
the same time step size in the simulation as was available
from the PIV data, 20 msec. This means that PIV data was
available at every time point in the simulation. If a simulation
uses more time steps than are available from PIV data, then
some simulation time steps cannot use assimilated PIV data
or they must use interpolated PIV data. Based on error
estimated by the experimentalists and the PIV software, a
boundary functional weight of wPIV = 1.0 was used for
most simulations. This implies that the PIV data had a
standard error similar to that of the flap displacement rate
estimate and inflow velocity estimates. Figure 2 shows the
simulation prediction for the velocity along a single plane
in the 3-dimensional domain at two different time points.
Specifically, the visualized plane is the same plane as the PIV
data plane (recall the PIV data is typically restricted to a
single plane) so that the differences between the PIV data and
simulation prediction can clearly be seen. The simulation
prediction of the velocity field is similar to the original PIV
data, but it also contained less high-frequency variation (i.e.,
the simulation with the PIV data assimilated gave a smoother
velocity field).
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(a) (b)

Figure 2: WLSFEM simulation of the moving flap experiment at (a) 0.0 sec and (b) 0.2 sec. The finite element grid deforms in response to
the moving flap, and the PIV data is assimilated into the simulation with a boundary functional weight of 1.0.

It is difficult to quantitatively compare the simulation
predictions with and without PIV data included, but one
measure is to calculate the magnitude of the velocity at
every node along a surface (in this case the PIV surface) and
sum those magnitudes. Figure 3 shows this “total velocity” at
every time step for different values of wPIV. A high velocity
burst is seen at the beginning when the pump is turned on,
then the total velocity decreases until the jet has expanded
into larger parts of the domain. When wPIV = 0.0, no PIV
data is included in the simulation, and the total velocity tends
to be the lowest at every time step. As wPIV is increased, the
total velocity along the PIV plane appears to converge to
slightly higher values. The reason for the increase in total
velocity as the boundary data weight is increased is that more
high-frequency variation from the PIV data appears in the
simulation result. If this same comparison is made for planes
other than the PIV plane, the results are qualitatively similar,
but the difference between the velocity with and without PIV
data is dampened the further the plane is from the PIV plane.
This is clearly a result of the fact that the further one is from
the PIV plane, the less the velocity is influenced by the PIV
data.

3.2. Left Ventricle. The PIV data for the left ventricle sim-
ulation was obtained in previous studies using an open-
chest pig [4, 34, 35]. The PIV data was obtained at a
higher temporal resolution (approximately 60 Hz) than the
simulation time step size (50 msec.), so only a subset of
the PIV data corresponding to the simulation time steps
was used. A typical ultrasound image from the experiment
is shown in Figure 4, and this image was obtained in the
late diastole phase (i.e., near the end of the filling phase).
The microbubbles in the blood appear as white spots in this
image, and the bubbles appear much larger than their actual
dimensions due to scattering. The ultrasound probe is placed
epicardially near the apex of the heart, and most of the left
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velocities are partially due to high-frequency noise in the PIV data.

ventricle is visible within the scanned region. The lack of data
from outside the scanned region is not a concern because the
WLSFEM can incorporate whatever data are available, and
it does not have a minimum quantity of data requirement.
The velocity data obtained from PIV analysis of the bubble
motion are shown in Figure 4(b). The inflow from the left
atrium is visible in the upper part of the domain, and a vortex
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Aorta
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Left atrium

Left ventricle
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Corresponding PIV data
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Figure 4: An ultrasound image showing microbubbles inside the left ventricle of the heart of a pig (left). The ultrasound probe is on the
external side of the heart wall near the apex. The PIV data corresponding to the bubble motion is shown on the right. The data clearly
contains some errors (e.g., the circled vector).

can be seen near the center of the domain. During systole, the
blood is ejected through the outflow tract and aorta, partially
captured in the upper left of the image domain.

The WLSFEM simulation of the left ventricle required
that the location of the heart walls be specified. The left
ventricle was assumed to have a half-ellipsoid geometry,
which is a common geometric approximation [36–38], and
the motion of the heart walls was based on the measured
ejection fraction of the heart and the motion observed in the
ultrasound scans. The motion of the walls in the simulation
is somewhat distorted by the fact that the upper surface
was not allowed to move so that the cross-sectional area
of the inlet (mitral valve) and outlet (aortic valve) could
be kept constant. This restriction could be relaxed in the
future as more experimental data becomes available. The
blood velocity along the inlet was specified based on the PIV
data, and the outlet flow rate was not specified (a natural
boundary condition was set on the outlet). Along the heart
walls, the velocity was set using a no-slip boundary condition
(i.e., the fluid velocity was set equal to the wall displacement
rate). The simulation was based on the dimensionless Navier-
Stokes equation, and the Reynolds number was set to 1000
based on data from the pig experiments.

The simulation begins at the start of diastole, the filling
of the ventricle, and the velocity along a single plane (the PIV
plane) during early diastole is shown in Figure 5. The heart
walls have only moved a small amount at this point in the
simulation, and most of the blood flow is still near the inlet
located on the right side of the upper surface. Simulations
were run with wPIV = 0.0 and wPIV = 2.0 to explore the
differences between including the PIV data and not including
the data. The weight of 2.0 implies that the PIV data is
actually more accurate than the velocity data along the walls,

which is inaccurate because the wall location is not accurately
known, and the inlet, which is also based on PIV data but is
farther from the ultrasound probe. For the early time point
shown in Figure 5, there are only small differences in the
simulation when the PIV data are included or not included.
It appears that the PIV data may have smaller velocities away
from the inlet, but these differences are still very small.

The PIV data has a larger impact on the simulation
at later time points. Figure 6 shows the simulation results
during late diastole when the left ventricle has stopped filling.
In the simulation without PIV data, Figure 6(a), there is
a very weak vortex in the upper center of the ventricle,
but the velocities are relatively slow in general. This vortex
has been identified as potentially important for the efficient
pumping of the heart [4, 39]. When PIV data are assimilated
into the simulation (Figure 6(b) with wPIV = 2.0), we
see a stronger vortex and more chaotic flows in general.
It appears that something may be missing from the pure
numerical model (no PIV data) that is causing a higher
velocity vortex. There are a number of possible reasons
for this, but we will only discuss what we believe are the
three most likely explanations. First, the simulation does
not include the mitral valve, and the drag force applied
to the blood by the valve flaps may cause a stronger
vortex than would be observed without the valve. This is a
very interesting result because it suggests that by properly
incorporating experimental data into a simulation, we can
potentially capture effects (like valves or body motion) that
are often neglected in simplified numerical models. A second
possibility is that the estimated Reynolds number is low and
the simulation should have been run at a higher Reynolds
number with greater inertial forces. Simulations run with
a Reynolds number of 2000 and no PIV data showed a
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Without PIV data

(a)

With PIV data

(b)

Figure 5: WLSFEM simulations of blood flow in the left ventricle at t = 0.1 sec (early diastole in our model). The left figure is the simulation
without PIV data (wPIV = 0.0), and the right figure incorporates the PIV data (wPIV = 2.0). The PIV data has very little impact on the
numerical simulation.

Without PIV data

(a)

With PIV data

(b)

Figure 6: WLSFEM simulation of flow in the left ventricle at t = 0.5 sec (late diastole in our model). The velocity in the left figure (a) is not
impacted by the PIV data, but the figure on the right includes assimilated PIV data (wPIV = 2.0). The PIV data have a clear impact on the
simulation and allow it to capture physics that may not be modeled correctly without the PIV data. For example, the simulation does not
capture the effects of the mitral valve.

slightly stronger vortex than Figure 6(a), but it was still not
as strong as the figure with PIV data, and it is impossible to
justify a doubling of the Reynolds number estimate. A third
possibility is that the idealized geometry of the left ventricle
(a half-ellipsoid) resulted in a somewhat inaccurate flow field
at later time points.

4. Conclusions

The challenge of assimilating experimental data into a
computational simulation is very widespread. The gen-
eral problem of interest here is solving the Navier-Stokes

equations on a moving domain with additional experimental
data provided by PIV experiments. In particular, the goal is
the simulation of blood flow in the left ventricle with the
assimilation and inclusion of 2-dimensional echo PIV data
obtained using microbubbles. The WLSFEM used here is
particularly well suited for this assimilation of data problem
because of the flexibility in incorporating experimental data
that are weighted based on accuracy. Accurate data can be
closely matched with the simulation result, and less accurate
data is not closely matched. The WLSFEM approach is
demonstrated on two different test problems: (1) a flap
that is displaced by a jet of fluid, and (2) blood flow in
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the left ventricle of the pig. By applying different weights
to the PIV data, one can observe quantitative differences
between the simulation without PIV data and the simulation
that matches the PIV data more or less accurately. These
comparisons can reveal inaccuracies in the model such as
inaccurate boundary conditions or missing physics. The
incorporation of PIV data can assist the simulation by
capturing some effects that are not directly modeled. For
example, in the left ventricle model presented here, the
mitral valve was not modeled directly, but the effects of the
valve on the blood flow could be partially captured by the
simulation through the incorporated PIV data. There are
other methods for incorporating experimental data into a
numerical simulation, but the WLSFEM method is a flexible
and efficient option for this class of problems.
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