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This paper generalises the work done in Currie and Love (2010), where we studied the effect of
applying two Crum-type transformations to a weighted second-order difference equation with
various combinations of Dirichlet, non-Dirichlet, and affine λ-dependent boundary conditions at
the end points, where λ is the eigenparameter. We now consider general λ-dependent boundary
conditions. In particular we show, using one of the Crum-type transformations, that it is possible
to go up and down a hierarchy of boundary value problems keeping the form of the second-
order difference equation constant but possibly increasing or decreasing the dependence on λ of
the boundary conditions at each step. In addition, we show that the transformed boundary value
problem either gains or loses an eigenvalue, or the number of eigenvalues remains the same as we
step up or down the hierarchy.

1. Introduction

Our interest in this topic arose from the work done on transformations and factorisations
of continuous Sturm-Liouville boundary value problems by Binding et al. [1] and Browne
and Nillsen [2], notably. We make use of analogous ideas to those discussed in [3–5] to
study difference equations in order to contribute to the development of the theory of discrete
spectral problems.

Numerous efforts to develop hierarchies exist in the literature, however, they are not
specifically aimed at difference equations per se and generally not for three-term recurrence
relations. Ding et al., [6], derived a hierarchy of nonlinear differential-difference equations
by starting with a two-parameter discrete spectral problem, as did Luo and Fan [7], whose
hierarchy possessed bi-Hamiltonian structures. Clarkson et al.’s, [8], interest in hierarchies
lay in the derivation of infinite sequences of systems of difference equations by using
the Bäcklund transformation for the equations in the second Painleve’ equation hierarchy.
Wu and Geng, [9], showed early on that the hierarchy of differential-difference equations
possesses Hamiltonian structures while a Darboux transformation for the discrete spectral
problem is shown to exist.
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In this paper, we consider a weighted second-order difference equation of the form

c(n)y(n + 1) − b(n)y(n) + c(n − 1)y(n − 1) = −c(n)λy(n), (1.1)

where c(n) > 0 represents a weight function and b(n) a potential function.
Our aim is to extend the results obtained in [10, 11] by establishing a hierarchy

of difference boundary value problems. A key tool in our analysis will be the Crum-type
transformation (2.1). In [10], it was shown that (2.1) leaves the form of the difference
equation (1.1) unchanged. For us, the effect of (2.1) on the boundary conditions will be
crucial. We consider λ (eigenparameter)-dependent boundary conditions at the end points. In
particular, the eigenparameter dependence at the initial end point will be given by a positive
Nevanlinna function, N(λ) say, and at the terminal end point by a negative Nevanlinna
function, M(λ) say. The case of N(λ) = M(λ) = 0 was covered in [10] and the the case of
N(λ) =M(λ) = constant was studied in [11]. Applying transformation (2.1) to the boundary
conditions results in a so-called transformed boundary value problem, where either the new
boundary conditions have more λ-dependence, less λ-dependence, or the same amount of
λ-dependence as the original boundary conditions. Consequently the transformed boundary
value problem has either one more eigenvalue, one less eigenvalue, or the same number of
eigenvalues as the original boundary value problem. Thus, it is possible to construct a chain,
or hierarchy, of difference boundary value problems where the successive links in the chain
are obtained by applying the variations of (2.1) given in this paper. For instance, it is possible
to go from a boundary value problem with λ-dependent boundary conditions to a boundary
value problem with λ-independent boundary conditions or vice versa simply by applying
the correct variation of (2.1) an appropriate number of times. Moreover, at each step, we can
precisely track the eigenvalues that have been lost or gained. Hence, this paper provides a
significant development in the theory of three-term difference boundary value problems in
regard to singularities and asymptotics in the hierarchy structure. For similar results in the
continuous case, see [12].

There is an obvious connection between the three-term difference equation and
orthogonal polynomials. In fact, the three-term recurrence relation satisfied by orthogonal
polynomials is perhaps the most important information for the constructive and computa-
tional use of orthogonal polynomials [13].

Difference equations and operators and results concerning their existence and
construction of their solutions have been discussed in [14, 15]. Difference equations arise
in numerous settings and have applications in diverse areas such as quantum field theory,
combinatorics, mathematical physics and biology, dynamical systems, economics, statistics,
electrical circuit analysis, computer visualization, and many other fields. They are especially
useful where recursive computations are required. In particular see [16] [9, Introduction]
for three physical applications of the difference equation (1.1), namely, the vibrating string,
electrical network theory and Markov processes, in birth and death processes and random
walks.

It should be noted that G. Teschl’s work, [17, Chapter 11], on spectral and inverse
spectral theory of Jacobi operators, provides an alternative factorisation, to that of [10], of a
second-order difference equation, where the factors are adjoints of one another.

This paper is structured as follows.
In Section 2, all the necsessary results from [10] are recalled, in particular how (1.1)

transforms under (2.1). In addition, we also recap some important properties of Nevanlinna
functions.
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The focus of Section 3 is to show exactly the effect that (2.1) has on boundary
conditions of the form

y(−1) =N(λ)y(0), y(m − 1) =M(λ)y(m). (1.2)

We give explicitly the new boundary conditions which are obeyed, from which it can be seen
whether the λ-dependence has increased, decreased, or remained the same.

Lastly, in Section 4, we compare the spectrum of the original boundary value problem
with that of the transformed boundary value problem and show under which conditions the
transformed boundary value problem has one more eigenvalue, one less eigenvalue, or the
same number of eigenvalues as the original boundary value problem.

2. Preliminaries

In [10], we considered (1.1) for n = 0, . . . , m−1, where the values of y(−1) and y(m) are given
by boundary conditions, that is, y(n) is defined for n = −1, . . . , m.

Let the mapping y �→ w be defined by

w(n) := y(n) − y(n − 1)
z(n)

z(n − 1)
, n = 0, . . . , m, (2.1)

where, throughout this paper, z(n) is a solution to (1.1) for λ = λ0 such that z(n) > 0 for
all n = −1, . . . , m. Whether or not z(n) obeys the various given boundary conditions (to be
specified later) is of vital importance in obtaining the results that follow.

From [10], we have the following theorem.

Theorem 2.1. Under the mapping (2.1), (1.1) transforms to

cw(n)w(n + 1) − bw(n)w(n) + cw(n − 1)w(n − 1) = −λcw(n)w(n), (2.2)

where for n = 0, . . . , m

cw(n) =
c(n − 1)z(n − 1)

z(n)
,

bw(n) =
[
c(n − 1)z(n − 1)

c(n)z(n)
+

z(n)
z(n − 1)

]
c(n − 1)z(n − 1)

z(n)
.

(2.3)

We now recall some properties of Nevanlinna functions.
(I) The inverse of a positive Nevanlinna function is a negative Nevanlinna function,

that is

1
N(λ)

= −B(λ), (2.4)

where N(λ), B(λ) are positive Nevanlinna functions. This follows directly from the fact that
I(z) ≥ 0 if and only if I(−1/z) ≥ 0.



4 Boundary Value Problems

(II) If

N(λ) = b −
s∑
j=1

cj

λ − dj
, cj > 0, b /= 0, (2.5)

then

1
N(λ)

= β −
s∑
j=1

σj

λ − δj
, σj > 0, β /= 0. (2.6)

This follows by (I) together with the fact that since N(λ) has s zeros 1/N(λ) has s poles. Also
N(λ) → b as λ → ±∞ so 1/N(λ) → 1/b := β as λ → ±∞. Thus, if N(λ) is a positive
Nevanlinna function of the form (2.5), then for b /= 0, 1/N(λ) is a negative Nevanlinna
function of the same form.

(III) If

N(λ) = aλ + b −
s∑
j=1

cj

λ − dj
, aj , cj > 0, (2.7)

then

1
N(λ)

= −
s+1∑
j=1

σj

λ − δj
, σj > 0, (2.8)

since N(λ) has s + 1 zeros so 1/N(λ) has s + 1 poles and N(λ) → aλ + b → ±∞ as λ → ±∞
so 1/N(λ) → 1/(aλ + b) → 0 as λ → ±∞.

For the remainder of the paper, N�
s,j(λ) will denote a Nevanlinna function where

s is the number of terms in the sum;
j indicates the value of n at which the boundary condition is imposed and

� =

⎧⎨
⎩
± if the coefficient of λ is positive or negative respectively,

0 if the coefficient of λ is zero.
(2.9)

3. General λ-Dependent Boundary Conditions

In this section, we show how y obeying general λ-dependent boundary conditions
transforms, under (2.1), to w obeying various types of λ-dependent boundary conditions.
The exact form of these boundary conditions is obtained by considering the number of zeros
and poles (singularities) of the various Nevanlinna functions under discussion and these
correlations are illustrated in the different graphs depicted in this section.
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Lemma 3.1. If y obeys the boundary condition

y(−1) =

[
b −

s∑
k=1

ck
λ − dk

]
y(0) := R0

s,−1(λ)y(0), (3.1)

then the domain ofw(n)may be extended from n = 0, . . . , m to n = −1, . . . , m by forcing the condition

w(−1)
w(0)

= U, (3.2)

where

U =
bw(0) − λcw(0)

cw(−1)
− cw(0)
cw(−1)

b(0)/c(0) − λ − z(1)/z(0) − (c(−1)/c(0))R0
s,−1(λ)

1 − R0
s,−1(λ)(z(0)/z(−1))

(3.3)

with cw(−1) = c(−1).

Proof. The transformed equation (2.2), for n = 0, together with (3.2) gives

cw(0)w(1) + cw(−1)Uw(0) = [bw(0) − λcw(0)]w(0). (3.4)

Also the mapping (2.1), together with (3.1), yields

w(0) = y(0)
[

1 − R0
s,−1(λ)

z(0)
z(−1)

]
. (3.5)

Substituting (3.5) into (3.4), we obtain

cw(0)w(1) + cw(−1)U
[

1 − R0
s,−1(λ)

z(0)
z(−1)

]
y(0) = [bw(0) − λcw(0)]

[
1 − R0

s,−1(λ)
z(0)
z(−1)

]
y(0).

(3.6)

Now (2.1), with n = 1, gives

w(1) = y(1) − y(0)z(1)
z(0)

(3.7)

which when substituted into (3.6) and dividing through by cw(0) results in

y(1) − y(0)z(1)
z(0)

+
cw(−1)
cw(0)

U

[
1 − R0

s,−1(λ)
z(0)
z(−1)

]
y(0) =

[
bw(0)
cw(0)

− λ
][

1 − R0
s,−1(λ)

z(0)
z(−1)

]
y(0).

(3.8)
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This may be rewritten as

y(1) − y(0)
{
z(1)
z(0)

−
[
cw(−1)
cw(0)

U − bw(0)
cw(0)

][
1 − R0

s,−1(λ)
z(0)
z(−1)

]}
= −λ

[
1 − R0

s,−1(λ)
z(0)
z(−1)

]
y(0).

(3.9)

Using (1.1), with n = 0, together with (3.1), gives

y(1) −
[
b(0)
c(0)

− c(−1)
c(0)

R0
s,−1(λ)

]
y(0) = −λy(0). (3.10)

Subtracting (3.10) from (3.9) results in

y(0)
[
b(0)
c(0)

− c(−1)
c(0)

R0
s,−1(λ) −

z(1)
z(0)

+
[
cw(−1)
cw(0)

U − bw(0)
cw(0)

][
1 − R0

s,−1(λ)
z(0)
z(−1)

]]

= y(0)
(
−λ
[

1 − R0
s,−1(λ)

z(0)
z(−1)

]
+ λ
)
.

(3.11)

Rearranging the above equation and dividing through by [1−R0
s,−1(λ)(z(0)/z(−1))](cw(−1)/

cw(0)) yields

(cw(0)/cw(−1))
[
b(0)/c(0) − (c(−1)/c(0))R0

s,−1(λ) − z(1)/z(0) − λ
]

1 − R0
s,−1(λ)(z(0)/z(−1))

+U − bw(0)
cw(−1)

= −λ cw(0)
cw(−1)

(3.12)

and hence

U =
bw(0) − λcw(0)

cw(−1)
− cw(0)
cw(−1)

b(0)/c(0) − λ − z(1)/z(0) − (c(−1)/c(0))R0
s,−1(λ)

1 − R0
s,−1(λ)(z(0)/z(−1))

. (3.13)

Thus w obeys the equation on the extended domain.

The remainder of this section illustrates why it is so important to distinguish between
the two cases of z obeying or not obeying the boundary conditions.
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Theorem 3.2. Consider y(n) obeying the boundary condition (3.1) where R0
s,−1(λ) is a positive

Nevanlinna function, that is, ck > 0 for k = 1, . . . , s. Under the mapping (2.1), y obeying (3.1)
transforms to w obeying (3.2) as follows.

(A) If z does not obey (3.1) then w obeys

(i)

w(−1) = Uw(0) =

[
β −

s∑
t=1

γt
λ − qt

]
w(0) := T0

s,−1(λ)w(0), b = 0, (3.14)

(ii)

w(−1) = Uw(0) =

[
αλ + β −

s∑
t=1

γt
λ − qt

]
w(0) := T+

s,−1(λ)w(0),

z(−1)
z(0)

> b > 0.

(3.15)

(B) If z does obey (3.1) for λ = λ0 then w obeys

(i)

w(−1) = Uw(0) =

[
β̃ −

s−1∑
t=1

γ̃t
λ − vt

]
w(0) := T̃0

s−1,−1(λ)w(0), b = 0, (3.16)

(ii)

w(−1) = Uw(0) =

[
α̃λ + β̃ −

s−1∑
t=1

γ̃t
λ − vt

]
w(0) := T̃+

s−1,−1(λ)w(0),

z(−1)
z(0)

> b > 0,

(3.17)

where γt, γ̃t, α, α̃ > 0, that is, T0
s,−1(λ), T

+
s,−1(λ), T̃

0
s−1,−1(λ), T̃

+
s−1,−1(λ) are positive

Nevanlinna functions.

In (A) and (B), b < 0 is not possible.
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Proof. The fact that w(−1) = Uw(0) is by construction, see Lemma 3.1. We now examine the
form of U in Lemma 3.1. Let Γ1 := bw(0)/cw(−1), Γ2 := cw(0)/cw(−1), Γ3 := b(0)/c(0) −
z(1)/z(0) and Γ4 := c(−1)/c(0) then

w(−1)
w(0)

= U = Γ1 − λΓ2 − Γ2
Γ3 − λ − Γ4R

0
s,−1(λ)

1 − (z(0)/z(−1))R0
s,−1(λ)

= Γ1 − λΓ2 − Γ2

[
Γ4
z(−1)
z(0)

+
Γ3 − λ − Γ4(z(−1)/z(0))
1 − (z(0)/z(−1))R0

s,−1(λ)

]

= Γ1 − λΓ2 − Γ2Γ4
z(−1)
z(0)

+ Γ2
(z(−1)/z(0))[λ − Γ3 + Γ4(z(−1)/z(0))]

(z(−1)/z(0)) − R0
s,−1(λ)

.

(3.18)

But

Γ3 − Γ4
z(−1)
z(0)

=
b(0)
c(0)

− z(1)
z(0)

− c(−1)
c(0)

= λ0 (3.19)

thus

w(−1)
w(0)

= U = Γ1 − λΓ2 − Γ2Γ4
z(−1)
z(0)

+ Γ2
(z(−1)/z(0))(λ − λ0)

(z(−1)/z(0)) − R0
s,−1(λ)

. (3.20)

Now (λ − λ0)/[(z(−1)/z(0)) − R0
s,−1(λ)] has the expansion

f(λ) −
p∑
t=1

rt
λ − qt

, (3.21)

where rt > 0 and the qt’s correspond to where z(−1)/z(0) = R0
s,−1(λ), that is, the singularities

of (3.20).
Since R0

s,−1(λ) is a positive Nevanlinna function it has a graph of the form shown in
Figure 1.

Clearly, the gradient of R0
s,−1(λ) at qt is positive for all t, that is,

∂

∂λ
R0
s,−1(λ)

∣∣∣
qt
> 0, t = 1, . . . , p. (3.22)
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R0
s,−1(λ)

z(−1)
z(0)

b

q1 q2 q3

d1 d2 d3

λ

Figure 1: R0
s,−1(λ).

If z does not obey (3.1), then the zeros of

λ − λ0

(z(−1)/z(0)) − R0
s,−1(λ)

(3.23)

are the poles of R0
s,−1(λ), that is, the dk’s and λ = λ0 where dk /=λ0 for k = 1, . . . , s. It is evident,

from Figure 1, that the number of qt’s is equal to the number of dk’s, thus in (3.21), p = s.
We now examine the form of f(λ) in (3.21). As λ → ±∞ it follows that R0

s,−1(λ) → b.
Thus

λ − λ0

(z(−1)/z(0)) − R0
s,−1(λ)

−→ λ − λ0

(z(−1)/z(0)) − b . (3.24)

Therefore

f(λ) =
λ − λ0

(z(−1)/z(0)) − b . (3.25)

Hence, substituting into (3.20) gives

w(−1)
w(0)

= U = Γ1 − λΓ2 − Γ2Γ4
z(−1)
z(0)

+ Γ2
z(−1)
z(0)

[
f(λ) −

s∑
t=1

rt
λ − qt

]

= Γ1 − λΓ2 − Γ2Γ4
z(−1)
z(0)

+ Γ2
z(−1)
z(0)

[
λ − λ0

(z(−1)/z(0)) − b −
s∑
t=1

rt
λ − qt

]

= Γ1 − Γ2Γ4
z(−1)
z(0)

− λ0Γ2

1 − b(z(0)/z(−1))
+ λ
[
−Γ2 +

Γ2

1 − b(z(0)/z(−1))

]

− Γ2
z(−1)
z(0)

s∑
t=1

rt
λ − qt

.

(3.26)
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Let

β := Γ1 − Γ2Γ4
z(−1)
z(0)

− λ0Γ2

1 − b(z(0)/z(−1))
,

α := −Γ2 +
Γ2

1 − b(z(0)/z(−1))
=

Γ2b

(z(−1)/z(0)) − b ,

γt := Γ2
z(−1)
z(0)

rt.

(3.27)

Then since Γ2 > 0, z(−1)/z(0) > 0 and rt > 0 we have that γt > 0 and clearly if b = 0 then α = 0
giving (3.14), that is,

w(−1) = Uw(0) =

[
β −

s∑
t=1

γt
λ − qt

]
w(0) := T0

s,−1(λ)w(0). (3.28)

If b /= 0 then we want α > 0 so that we have a positive Nevanlinna function, that is

Γ2b

(z(−1)/z(0)) − b > 0 (3.29)

which means that either,

Γ2b > 0,
z(−1)
z(0)

− b > 0, (3.30)

giving that, since Γ2 > 0,

b > 0,
z(−1)
z(0)

> b, (3.31)

which is as shown in Figure 1, or,

Γ2b < 0,
z(−1)
z(0)

− b < 0, (3.32)

giving that

b < 0,
z(−1)
z(0)

< b, (3.33)

but this means that z(−1)/z(0) < 0 which is not possible.
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Thus, α > 0 for z(−1)/z(0) > b > 0, that is, given b, the ratio z(−1)/z(0) must be chosen
suitably to ensure that T+

s,−1(λ) is a positive Nevanlinna function as required. Hence we obtain
(3.15), that is

w(−1) = Uw(0) =

[
αλ + β −

s∑
t=1

γt
λ − qt

]
w(0) := T+

s,−1(λ)w(0). (3.34)

If z obeys (3.1), for λ = λ0, then z(−1)/z(0) = R0
s,−1(λ0). Thus in Figure 1, one of the qt’s

t = 1, . . . , s is equal to λ0 and since λ0 is less than the least eigenvalue of the boundary value
problem (1.1), (3.1) together with a boundary condition at m − 1 (specified later) it follows
that q1 = λ0, as λ0 < dk for all k = 1, . . . , s.

Now

λ − λ0

(z(−1)/z(0)) − R0
s,−1(λ)

=
λ − λ0

R0
s,−1(λ0) − R0

s,−1(λ)
=

1(
R0
s,−1(λ0) − R0

s,−1(λ)
)
/(λ − λ0)

(3.35)

and as λ → λ0

1(
R0
s,−1(λ0) − R0

s,−1(λ)
)
/(λ − λ0)

−→ − ∂
∂λ

R0
s,−1(λ)

∣∣∣
λ0
< 0. (3.36)

Thus λ = λ0 = q1 is a removable singularity. Alternatively,

λ − λ0

R0
s,−1(λ0) − R0

s,−1(λ)
=

λ − λ0

b −
∑s

k=1(ck/(λ0 − dk)) − b +
∑s

k=1(ck/(λ − dk))

=
−1∑s

k=1(ck/((λ0 − dk)(λ − dk)))
,

(3.37)

which illustrates that the singularity at λ = λ0 = q1 is removable.
We now have that the number of nonremovable singularities, qt, in (3.20) is one less

than the number of dk’s k = 1, . . . , s, see Figure 1. Thus (3.21) becomes

f(λ) −
s∑
t=2

rt
λ − qt

, rt > 0 (3.38)

which may be rewritten as

f(λ) −
s−1∑
t=1

r̃t
λ − vt

, r̃t > 0, (3.39)

where vn = qn+1, r̃n = rn+1 for n = 1, . . . , s − 1.
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We now examine the form of f(λ) in (3.39). As λ → ±∞, we have that, as before,
R0
s,−1(λ) → b. Thus

f(λ) =
λ − λ0

R0
s,−1(λ0) − b

. (3.40)

Hence, from (3.20),

w(−1)
w(0)

= U = Γ1 − λΓ2 − Γ2Γ4R
0
s,−1(λ0) + Γ2R

0
s,−1(λ0)

[
f(λ) −

s−1∑
t=1

r̃t
λ − vt

]

= Γ1 − λΓ2 − Γ2Γ4R
0
s,−1(λ0) + Γ2R

0
s,−1(λ0)

[
λ − λ0

R0
s,−1(λ0) − b

−
s−1∑
t=1

r̃t
λ − vt

]

= Γ1 − Γ2Γ4R
0
s,−1(λ0) −

λ0Γ2

1 − b
(

1/R0
s,−1(λ0)

) + λ

⎡
⎢⎣−Γ2 +

Γ2

1 − b
(

1/R0
s,−1(λ0)

)
⎤
⎥⎦

− Γ2R
0
s,−1(λ0)

s−1∑
t=1

r̃t
λ − vt

.

(3.41)

Let

β̃ := Γ1 − Γ2Γ4R
0
s,−1(λ0) −

λ0Γ2

1 − b
(

1/R0
s,−1(λ0)

) ,

α̃ := −Γ2 +
Γ2

1 − b
(

1/R0
s,−1(λ0)

) =
Γ2b

R0
s,−1(λ0) − b

,

γ̃t := Γ2R
0
s,−1(λ0)r̃t.

(3.42)

Then since Γ2 > 0, R0
s,−1(λ0) > 0 and r̃t > 0 we have that γ̃t > 0 and clearly if b = 0 then α̃ = 0

giving (3.16), that is,

w(−1) = Uw(0) =

[
β̃ −

s−1∑
t=1

γ̃t
λ − vt

]
w(0) := T̃0

s−1,−1(λ)w(0). (3.43)

If b /= 0 then we need α̃ > 0 so that we have a positive Nevanlinna function, that is

Γ2b

R0
s,−1(λ0) − b

> 0 (3.44)
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which means that either

Γ2b > 0, R0
s,−1(λ0) − b > 0, (3.45)

giving that, since Γ2 > 0,

b > 0, R0
s,−1(λ0) =

z(−1)
z(0)

> b, (3.46)

which is as shown in Figure 1, or,

Γ2b < 0, R0
s,−1(λ0) − b < 0, (3.47)

giving that

b < 0, R0
s,−1(λ0) < b, (3.48)

but this means that R0
s,−1(λ0) = z(−1)/z(0) < 0 which is not possible.

Thus, α̃ > 0 for R0
s,−1(λ0) > b > 0, that is, given b, the ratio z(−1)/z(0) = R0

s,−1(λ0) must

be chosen suitably to ensure that T̃+
s−1,−1(λ) is a positive Nevanlinna function as required.

Hence, we obtain (3.17), that is,

w(−1) = Uw(0) =

[
α̃λ + β̃ −

s−1∑
t=1

γ̃t
λ − vt

]
w(0) := T̃+

s−1,−1(λ)w(0). (3.49)

In the theorem below, we increase the λ dependence by introducing a nonzero λ term
in the original boundary condition. As in Theorem 3.2, the λ dependence of the transformed
boundary condition depends on whether or not z obeys the given boundary condition. In
addition, to ensure that the λ dependence of the transformed boundary condition is given
by a positive Nevanlinna function it is necessary that the transformed boundary condition
is imposed at 0 and 1 as opposed to −1 and 0. Thus the interval under consideration shrinks
by one unit at the initial end point. By routine calculation it can be shown that the form of
the λ dependence of the transformed boundary condition, if imposed at −1 and 0, is neither a
positive Nevalinna function nor a negative Nevanlinna function.

Theorem 3.3. Consider y(n) obeying the boundary condition

y(−1) =

[
aλ + b −

s∑
k=1

ck
λ − dk

]
y(0) := R+

s,−1(λ)y(0), (3.50)

where R+
s,−1(λ) is a positive Nevanlinna function, that is, a > 0 and ck > 0 for k = 1, . . . , s. Under the

mapping (2.1), y obeying (3.50) transforms to w obeying the following.
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(1) If z does not obey (3.50) then w obeys

w(0) =

[
β̂ −

s+1∑
t=1

γ̂t

λ − δ̂t

]
w(1) := T̂0

s+1,0(λ)w(1). (3.51)

(2) If z does obey (3.50), for λ = λ0, then w obeys

w(0) =

[
β −

s∑
t=1

γt

λ − δt

]
w(1) := T

0
s,0(λ)w(1), (3.52)

where γ̂t, γ t > 0.

Proof. Since w(0) and w(1) are defined we do not need to extend the domain in order to
impose the boundary conditions (3.51) or (3.52).

The mapping (2.1), at n = 0, together with (3.50) gives

w(0) = y(0)
[

1 − R+
s,−1(λ)

z(0)
z(−1)

]
. (3.53)

Also (2.1), at n = 1, is

w(1) = y(1) − y(0)z(1)
z(0)

. (3.54)

Substituting in for y(1) from (1.1), with n = 1, and using (3.50), we obtain that

w(1) = y(0)
[
b(0)
c(0)

− z(1)
z(0)

− λ − c(−1)
c(0)

R+
s,−1(λ)

]
. (3.55)

From (3.53) and (3.55), it now follows that

w(0)
w(1)

=
1 − R+

s,−1(λ)(z(0)/z(−1))

b(0)/c(0) − z(1)/z(0) − λ − (c(−1)/c(0))R+
s,−1(λ)

. (3.56)

As in Theorem 3.2, let Γ3 = b(0)/c(0) − z(1)/z(0) and Γ4 = c(−1)/c(0). Then (3.56) becomes

w(0)
w(1)

=
1 − R+

s,−1(λ)(z(0)/z(−1))

Γ3 − λ − Γ4R
+
s,−1(λ)

=
z(0)/z(−1)(

Γ3 − λ − Γ4R
+
s,−1(λ)

)
/
(
(z(−1)/z(0)) − R+

s,−1(λ)
)

=
z(0)/z(−1)

Γ4 − (−Γ3 + λ + Γ4(z(−1)/z(0)))/
(
(z(−1)/z(0)) − R+

s,−1(λ)
) .

(3.57)
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R+
s,−1(λ)

z(−1)
z(0)

q̂1 q̂2 q̂3

q̂4

d1 d2 d3

aλ + b

λ

Figure 2: R+
s,−1(λ).

From Theorem 3.2, we have that Γ3 − Γ4(z(−1)/z(0)) = λ0 so

w(0)
w(1)

=
z(0)
z(−1)

⎡
⎢⎣ 1

Γ4 − (λ − λ0)/
(
(z(−1)/z(0)) − R+

s,−1(λ)
)
⎤
⎥⎦. (3.58)

Also, as in Theorem 3.2,

λ − λ0

(z(−1)/z(0)) − R+
s,−1(λ)

, (3.59)

has the expansion

f̂(λ) −
p∑
t=1

r̂t
λ − q̂t

, r̂t > 0, (3.60)

where q̂t corresponds to z(−1)/z(0) = R+
s,−1(λ), that is, the singularities of (3.59). NowR+

s,−1(λ)
is a positive Nevanlinna function with graph given in Figure 2.

Clearly, the gradient of R+
s,−1(λ) at q̂(t) is positive for all t = 1, . . . , p, that is,

∂

∂λ
R+
s,−1(λ)

∣∣∣
q̂t
> 0, t = 1, . . . , p. (3.61)
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If z does not obey (3.50) then the zeros of

λ − λ0

(z(−1)/z(0)) − R+
s,−1(λ)

(3.62)

are the poles of R+
s,−1(λ), that is, the dk’s and λ = λ0 where dk /=λ0 for k = 1, . . . , s. It is evident,

from Figure 2, that the number of q̂t’s is one more than the number of dk’s, thus in (3.60),
p = s + 1.

We now examine the form of f̂(λ) in (3.60). As λ → ±∞ it follows that R+
s,−1(λ) →

aλ + b, thus

λ − λ0

(z(−1)/z(0)) − R+
s,−1(λ)

−→ λ − λ0

(z(−1)/z(0)) − (aλ + b)
−→ − 1

a
. (3.63)

Hence, f̂(λ) = −1/a.
Using (3.58) we now obtain

w(0)
w(1)

=
z(0)
z(−1)

⎡
⎢⎣ 1

Γ4 −
(
f̂(λ) −

∑s+1
t=1
(
r̂t/
(
λ − q̂t

)))
⎤
⎥⎦

=
z(0)
z(−1)

[
1

Γ4 + 1/a +
∑s+1

t=1
(
r̂t/
(
λ − q̂t

))
]

=
1

(z(−1)/z(0))Γ4 + (z(−1)/z(0))(1/a) +
∑s+1

t=1
(
r̂t(z(−1)/z(0))/

(
λ − q̂t

)) .

(3.64)

Note that r̂tz(−1)/z(0) > 0. Let

Δ :=
z(−1)
z(0)

Γ4 +
z(−1)
z(0)

1
a
, (3.65)

then

w(0)
w(1)

=
1

Δ −
∑s+1

t=1
(
−r̂t(z(−1)/z(0))/

(
λ − q̂t

)) . (3.66)



Boundary Value Problems 17

Now Δ/= 0 since if Δ = 0 then Γ = −1/a, that is, c(0)/c(−1) = −a but a > 0 and c(0)/c(−1) > 0
so this is not possible. Therefore by Section 2, Nevanlinna result (II), we have that

w(0) =

[
β̂ −

s+1∑
t=1

γ̂t

λ − δ̂t

]
w(1) := T̂0

s+1,0(λ)w(1), (3.67)

that is, (3.51) holds.
If z does obey (3.50) for λ = λ0 then z(−1)/z(0) = R+

s,−1(λ0). Thus, in Figure 2, one of
the q̂t’s, t = 1, . . . , p is equal to λ0 and since λ0 is less than the least eigenvalue of the boundary
value problem (1.1), (3.50) together with a boundary condition at m − 1 (specified later) it
follows that q̂1 = λ0, as λ0 < dk for all k = 1, . . . , s.

Now (3.59) can be written as

λ − λ0

R+
s,−1(λ0) − R+

s,−1(λ)
=

1(
R+
s,−1(λ0) − R+

s,−1(λ)
)
/(λ − λ0)

(3.68)

and as λ → λ0

1(
R+
s,−1(λ0) − R+

s,−1(λ)
)
/(λ − λ0)

−→ − ∂
∂λ

R+
s,−1(λ)

∣∣∣
λ0
< 0. (3.69)

Thus λ = λ0 = q̂1 is a removable singularity. Alternatively, we could substitute in for R+
s,−1(λ)

and R+
s,−1(λ0) to illustrate that the singularity at λ = λ0 = q̂1 is removable, see Theorem 3.2.

Hence the number of nonremovable q̂t’s is the same as the number of dk’s, see Figure 2. So
(3.60) becomes

f̂(λ) −
s+1∑
t=2

r̂t
λ − q̂t

, r̂t > 0, (3.70)

which may be rewritten as

f̂(λ) −
s∑
t=1

rt
λ − qt

, rt > 0, (3.71)

where rn = r̂n+1 and qn = q̂n+1 for n = 1, . . . , s.
We now examine the form of f̂(λ) in (3.70). As λ → ±∞, we have that R+

s,−1(λ) →
aλ + b, thus

λ − λ0

R+
s,−1(λ0) − R+

s,−1(λ)
−→ λ − λ0

R+
s,−1(λ0) − (aλ + b)

−→ − 1
a
. (3.72)
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Hence, f̂(λ) = −1/a. So, from (3.58) with z(−1)/z(0) = R+
s,−1(λ0), we obtain

w(0)
w(1)

=
1

R+
s,−1(λ0)

[
Γ4 + 1/a +

∑s
t=1
(
rt/
(
λ − qt

))]

=
1

Δ −
∑s

t=1

(
−rtR+

s,−1(λ0)/
(
λ − qt

)) ,
(3.73)

where, as before,

Δ :=
z(−1)
z(0)

Γ4 +
z(−1)
z(0)

1
a
= R+

s,−1(λ0)Γ4 + R+
s,−1(λ0)

1
a
/= 0. (3.74)

Thus, by Section 2, Nevanlinna result (II), we have that

w(0) =

[
β −

s∑
t=1

γt

λ − δt

]
w(1) := T

0
s,0(λ)w(1), γ t > 0, (3.75)

that is, (3.52) holds.

In Theorem 3.4, we impose a boundary condition at the terminal end point and show
how it is transformed according to whether or not z obeys the given boundary condition.

Theorem 3.4. Consider y obeying the boundary condition at n = m given by

y(m − 1) = y(m)

[
gλ + h −

l∑
k=1

sk
λ − pk

]
:= y(m)R−l,m(λ), (3.76)

where R−
l,m

(λ) is a negative Nevanlinna function, that is, g < 0 and sk < 0 for k = 1, . . . , l. Under the
mapping (2.1), y obeying (3.76) transforms to w obeying the following.

(I) If z does not obey (3.76) then w obeys

w(m − 1) = w(m)

[
φλ + ϕ −

l+1∑
t=1

εt
λ − σt

]
:= w(m)T−l+1,m(λ). (3.77)

(II) If z does obey (3.76) then w obeys

w(m − 1) = w(m)

[
φ̃λ + ϕ̃ −

l∑
t=1

ε̃t
λ − σ̃t

]
:= w(m)T̃−l,m(λ), (3.78)

where φ, φ̃, εk, ε̃k < 0.
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Proof. Since w(m − 1) and w(m) are defined we do not need to extend the domain of w in
order to impose the boundary conditions (3.77) or (3.78).

The mapping (2.1), at n = m − 1, gives

w(m − 1) = y(m − 1) − y(m − 2)
z(m − 1)
z(m − 2)

. (3.79)

From (1.1), with n = m − 1, we can substitute in for y(m − 2) in the above equation to get

w(m − 1) = y(m − 1)
[

1 + λ
z(m − 1)c(m − 1)
z(m − 2)c(m − 2)

− z(m − 1)b(m − 1)
z(m − 2)c(m − 2)

]
+
z(m − 1)c(m − 1)
z(m − 2)c(m − 2)

y(m).

(3.80)

Using (3.76), we obtain

w(m − 1) = y(m)
{
R−l,m(λ)

[
1 + λ

z(m − 1)c(m − 1)
z(m − 2)c(m − 2)

− z(m − 1)b(m − 1)
z(m − 2)c(m − 2)

]
+
z(m − 1)c(m − 1)
z(m − 2)c(m − 2)

}
.

(3.81)

But z obeys (1.1) at n = m − 1, for λ = λ0, so that (3.81) becomes

w(m − 1) = y(m)
z(m − 1)c(m − 1)
z(m − 2)c(m − 2)

{
R−l,m(λ)(λ − λ0) − R−l,m(λ)

z(m)
z(m − 1)

+ 1
}
. (3.82)

Also, for n = m, (2.1) together with (3.76) yields

w(m) = y(m)
[

1 − R−l,m(λ)
z(m)

z(m − 1)

]
. (3.83)

Therefore,

w(m − 1)
w(m)

=
z(m − 1)c(m − 1)
z(m − 2)c(m − 2)

[
(λ − λ0)R−l,m(λ)

1 − R−l,m(λ)(z(m)/z(m − 1))
+ 1

]
. (3.84)

Let Ω := (z(m − 1)c(m − 1))/(z(m − 2)c(m − 2)) > 0, then (3.84) may be rewritten as

w(m − 1)
w(m)

= Ω −Ω
[

λ − λ0

(z(m)/z(m − 1)) − 1/R−
l,m(λ)

]
. (3.85)
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1
R−
l,m

(λ)

z(m)
z(m − 1)

q1 q2 q3

p̃1 p̃2 p̃3
λ

Figure 3: 1/R−
l,m

(λ).

By Section 2, Nevanlinna result (I), since R−
l,m

(λ) is a negative Nevanlinna function it follows
that 1/R−

l,m
(λ) is a positive Nevanlinna function, which has the form

1
R−
l,m(λ)

= −
l+1∑
k=1

s̃k
λ − p̃k

, s̃k > 0, (3.86)

by Section 2, Nevanlinna result (III).
As before (λ − λ0)/((z(m)/z(m − 1)) − 1/R−

l,m
(λ)) has expansion

f(λ) −
p∑
t=1

rt
λ − qt

, rt > 0, (3.87)

where qt, t = 1, . . . , p, corresponds to the singularities of (3.85), that is, where z(m−1)/z(m) =
R−
l,m

(λ). The graph of 1/R−
l,m

(λ) is as shown in Figure 3.
As before, the gradient of 1/R−l,m(λ) at q(t) is positive for all t = 1, . . . , p, that is

∂

∂λ

1
R−
l,m(λ)

∣∣∣∣∣
qt

> 0, t = 1, . . . , p. (3.88)

If z does not obey (3.76) then the zeros of

λ − λ0

(z(m)/z(m − 1)) − 1/R−
l,m(λ)

(3.89)

are the poles of 1/R−l,m(λ), that is, the p̃k’s and λ = λ0 where p̃k /=λ0 for k = 1, . . . , l + 1.
Clearly, from Figure 3, the number of qt’s is the same as the the number of p̃k’s, thus in (3.87),
p = l + 1.
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Next, we examine the form of f(λ) in (3.87). As λ → ±∞ it follows that 1/R−l,m(λ) →
1/(gλ + h) → 0. Thus

λ − λ0

(z(m)/z(m − 1)) − 1/R−
l,m(λ)

−→ (λ − λ0)
z(m − 1)
z(m)

. (3.90)

Therefore, f(λ) = (λ − λ0)(z(m − 1)/z(m)). Hence,

w(m − 1)
w(m)

= Ω −Ω
[
f(λ) −

l+1∑
t=1

rt
λ − qt

]

= Ω −Ω
[
(λ − λ0)

z(m − 1)
z(m)

−
l+1∑
t=1

rt
λ − qt

]

= φλ + ϕ −
l+1∑
t=1

εt
λ − σt

:= T−l+1,m(λ),

(3.91)

where ϕ := Ω + Ω(z(m − 1)/z(m))λ0, φ := −Ω(z(m − 1)/z(m)) < 0, εt := −Ωrt < 0 and σt := qt
for t = 1, . . . , l + 1, which is precisely (3.77).

If z does obey (3.76) for λ = λ0 then z(m− 1)/z(m) = R−
l,m

(λ0). Thus in Figure 3, one of
the qt’s, t = 1, . . . , p is equal to λ0 and since λ0 is less than the least eigenvalue of the boundary
value problem (1.1), (3.76) together with a boundary condition at −1 (as given in Theorems
3.2 or 3.3) it follows that q1 = λ0, as λ0 < p̃k for all k = 1, . . . , l + 1.

Now

λ − λ0

(z(m)/z(m − 1)) − 1/R−l,m(λ)
=

λ − λ0

1/R−l,m(λ0) − 1/R−l,m(λ)

=
R−
l,m(λ0)R−l,m(λ)(

R−
l,m(λ) − R

−
l,m(λ0)

)
/(λ − λ0)

(3.92)

and as λ → λ0

R−
l,m(λ0)R−l,m(λ)(

R−
l,m(λ) − R

−
l,m(λ0)

)
/(λ − λ0)

−→
R−
l,m(λ0)

2

(∂/∂λ)R−l,m(λ)
∣∣∣
λ0

> 0. (3.93)

Thus λ = λ0 = q1 is a removable singularity. Again, alternatively, we could have substituted
in for R−l,m(λ) and R−l,m(λ0) to illustrate that the singularity at λ = λ0 = q1 is removable, see
Theorem 3.2. Hence the number of nonremovable qt’s is one less than the number of p̃k’s, see
Figure 3.
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So (3.87) becomes

f(λ) −
l+1∑
t=2

rt
λ − qt

, rt > 0, (3.94)

which may be rewritten as

f(λ) −
l∑
t=1

rt
λ − q

t

, rt > 0, (3.95)

where rn = rn+1 and q
n
= qn+1 for n = 1, . . . , l.

Now as λ → ±∞,

λ − λ0

1/R−l,m(λ0) − 1/R−l,m(λ)
−→ R−l,m(λ0)(λ − λ0). (3.96)

So, we obtain

w(m − 1)
w(m)

= Ω −Ω
[
f(λ) −

l∑
t=1

rt
λ − q

t

]

= Ω −Ω
[
(λ − λ0)R−l,m(λ0) −

l∑
t=1

rt
λ − q

t

]

= φ̃λ + ϕ̃ −
l∑
t=1

ε̃t
λ − σ̃t

:= T̃−l,m(λ),

(3.97)

where ϕ̃ := Ω+Ωλ0R
−
l,m(λ0), φ̃ := −ΩR−l,m(λ0) < 0, ε̃t := −Ωrt < 0, and σ̃t := q

t
for all t = 1, . . . , l,

that is, we obtain (3.78).

4. Comparison of the Spectra

In this section, we investigate how the spectrum of the original boundary value problem
compares to the spectrum of the transformed boundary value problem. This is done by
considering the degree of the eigenparameter polynomial for the various eigenconditions.
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Lemma 4.1. Consider the boundary value problem given by (1.1) for n = 0, . . . , r − 1 together with
boundary conditions

y(−1) =

[
aλ + b −

s∑
k=1

ck
λ − dk

]
y(0), a > 0, ck > 0, (4.1)

y(r − 1) =

⎡
⎣αλ + β −

p∑
j=1

γj

λ − σj

⎤
⎦y(r), α < 0, γj < 0. (4.2)

Then the boundary value problem (1.1), (4.1), (4.2) has s+p+r+1 eigenvalues. (Note that the number
of unit intervals considered is r + 1.)

Proof. From (1.1), with n = 0, we obtain

y(1) = −
c(−1)y(−1)

c(0)
+
(
b(0)
c(0)

− λ
)
y(0). (4.3)

Substituting in for y(−1) from (4.1) yields

y(1) =

[
−c(−1)
c(0)

(
aλ + b −

s∑
k=1

ck
λ − dk

)
+
(
b(0)
c(0)

− λ
)]

y(0), (4.4)

which may be rewritten as

y(1) :=
P 1

0 + P 1
1λ + · · · + P 1

s+1λ
s+1

(λ − d1)(λ − d2) · · · (λ − ds)
y(0), (4.5)

where P 1
i , i = 0, . . . , s + 1 are real constants.

Now (1.1), for n = 1, together with (4.5) results in

y(2) =

[
−c(0)
c(1)

+
(
b(1)
c(1)

− λ
){

P 1
0 + P 1

1λ + · · · + P 1
s+1λ

s+1

(λ − d1)(λ − d2) · · · (λ − ds)

}]
y(0)

:=

[
P 2

0 + P 2
1λ + · · · + P 2

s+2λ
s+2

(λ − d1)(λ − d2) · · · (λ − ds)

]
y(0),

(4.6)

where P 2
i , i = 0, . . . , s + 2 are real constants.



24 Boundary Value Problems

Thus, by induction,

y(r − 1) =

[
Pr−1

0 + Pr−1
1 λ + · · · + Pr−1

s+r−1λ
s+r−1

(λ − d1)(λ − d2) · · · (λ − ds)

]
y(0), (4.7)

for real constants Pr−1
i , i = 0, . . . , s + r − 1. Similarly

y(r) =
[
Pr0 + Pr1λ + · · · + Prs+rλs+r

(λ − d1)(λ − d2) · · · (λ − ds)

]
y(0), (4.8)

for real constants Pri , i = 0, . . . , s + r.
Since y(0)/≡ 0, using boundary condition (4.2) we obtain the following eigencondition:

Pr−1
0 + Pr−1

1 λ + · · · + Pr−1
s+r−1λ

s+r−1

(λ − d1)(λ − d2) · · · (λ − ds)

=

⎛
⎝αλ + β −

p∑
j=1

γj

λ − σj

⎞
⎠( Pr0 + Pr1λ + · · · + Prs+rλs+r

(λ − d1)(λ − d2) · · · (λ − ds)

)

:=

(
Q0 +Q1λ + · · · +Qp+1λ

p+1

(λ − σ1)(λ − σ2) · · ·
(
λ − σp

)
)(

Pr0 + Pr1λ + · · · + Prs+rλs+r

(λ − d1)(λ − d2) · · · (λ − ds)

)
,

(4.9)

where Qi, i = 0, . . . , p + 1, are real constants.
Thus, the numerator is a polynomial, in λ, of order p + 1 + s + r. Note that, none of the

roots of this polynomial are given by dk, k = 1, . . . , s or σj , j = 1, . . . , p since, from Figures 1
to 3, it is easy to see that none of the eigenvalues of the boundary value problem are equal
to the poles of the boundary conditions. Also λ = ±∞ is not a problem as the curve of the
Nevanlinna function never intersects with the horizontal or oblique asymptote. This means
that there are no common factors to cancel out. Hence the eigencondition has p+1+s+r roots
giving that the boundary value problem has p + 1 + s + r eigenvalues.

As a direct consequence of Theorems 2.1, 3.2, 3.3, 3.4, and Lemma 4.1 we have the
following theorem.

Theorem 4.2. For the original boundary value problem we consider twelve cases, (see Table 1 in the
Appendix), each of which has s+l+m+1 eigenvalues. The corresponding transformed boundary value
problem for each of the twelve cases, together with the number of eigenvalues for that transformed
boundary value problem, is given in Table 1 (see the appendix).
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Remark 4.3. To summarise we have the following.
(a) If z obeys the boundary conditions at both ends the transformed boundary value

problem will have one less eigenvalue than the original boundary value problem, namely, λ0.
(b) If z obeys the boundary condition at one end only the transformed boundary value

problem will have the same eigenvalues as the original boundary value problem.
(c) If z does not obey any of the boundary conditions the transformed boundary value

problem will have one more eigenvalue than the original boundary value problem, namely,
λ0.

Corollary 4.4. If λ1, . . . , λs+l+m+1 are the eigenvalues of any one of the original boundary value
problems (1)–(9), in Theorem 4.2, with corresponding eigenfunctions u1, . . . , us+l+m+1 then

(i) λ0, . . . , λs+l+m+1 are the eigenvalues of the corresponding transformed boundary value
problems (1)–(3), in Theorem 4.2, with corresponding eigenfunctions z, u1, . . . , us+l+m+1;

(ii) λ1, . . . , λs+l+m+1 are the eigenvalues of the corresponding transformed boundary value
problems (4)–(9), in Theorem 4.2, with corresponding eigenfunctions u1, . . . , us+l+m+1.

Also, if λ0, . . . , λs+l+m are the eigenvalues of any one of the original boundary value problems (10)–
(12), in Theorem 4.2, with corresponding eigenfunctions z, u1, . . . , us+l+m then λ1, . . . , λs+l+m are the
eigenvalues of the corresponding transformed boundary value problems (10)–(12), in Theorem 4.2,
with corresponding eigenfunctions u1, . . . , us+l+m.

Proof. By Theorems 2.1, 3.2, 3.3, and 3.4, we have that (2.1) transforms eigenfunctions
of the original boundary value problems (1)–(9) to eigenfunctions of the corresponding
transformed boundary value problems. In particular, if λ1, . . . , λs+l+m+1 are the eigenvalues
of one of the original boundary value problems, (1)–(9), with eigenfunctions u1, . . . , us+l+m+1

then

(i) z, u1, . . . , us+l+m+1 are the eigenfunctions of the corresponding transformed bound-
ary value problem, (1)–(3), with eigenvalues λ0, . . . , λs+l+m+1. Since the transformed
boundary value problems, (1)–(3), have s + l + m + 2 eigenvalues it follows that
λ0, . . . , λs+l+m+1 constitute all the eigenvalues of the transformed boundary value
problem;

(ii) u1, . . . , us+l+m+1 are the eigenfunctions of the corresponding transformed boundary
value problem, (4)–(9), with eigenvalues λ1, . . . , λs+l+m+1. Since the transformed
boundary value problems, (4)–(9), have s + l + m + 1 eigenvalues it follows that
λ1, . . . , λs+l+m+1 constitute all the eigenvalues of the transformed boundary value
problem.

Also, again by Theorems 2.1, 3.2, 3.3, and 3.4, we have that (2.1) transforms eigenfunctions
of the original boundary value problems (10)–(12) to eigenfunctions of the corresponding
transformed boundary value problems. In particular, if λ0, λ1, . . . , λs+l+m are the eigenvalues of
one of the original boundary value problems, (10)–(12), with eigenfunctions z, u1, . . . , us+l+m
then u1, . . . , us+l+m are the eigenfunctions of the corresponding transformed boundary value
problem, (10)–(12), with eigenvalues λ1, . . . , λs+l+m. Since the transformed boundary value
problems, (10)–(12), have s + l +m eigenvalues it follows that λ1, . . . , λs+l+m constitute all the
eigenvalues of the transformed boundary value problem.
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Appendix

Twelve Cases for Theorem 4.2

See Table 1.

Table 1

Original BVP: (1.1) with bc’s Trans. BVP: (2.2) with bc’s No. of evals of Trans. BVP

1 (3.1) with b = 0 and (3.76) (3.14) and (3.77) s + l + 1 +m + 1 = s + l +m + 2
z does not obey (3.1) or (3.76) That is, one extra eval λ = λ0

2 (3.1) with b > 0 and (3.76) (3.15) and (3.77) s + l + 1 +m + 1 = s + l +m + 2
z does not obey (3.1) or (3.76) That is, one extra eval λ = λ0

3 (3.50) and (3.76) (3.51) and (3.77) s + l + 1 +m + 1 = s + l +m + 2
z does not obey (3.50) or (3.76) That is, one extra eval λ = λ0

4 (3.1) with b = 0 and (3.76) (3.16) and (3.77) s − 1 + l + 1 +m + 1 = s + l +m + 1
z obeys (3.1) but not (3.76) That is, same number of evals

5 (3.1) with b > 0 and (3.76) (3.17) and (3.77) s − 1 + l + 1 +m + 1 = s + l +m + 1
z obeys (3.1) but not (3.76) That is, same number of evals

6 (3.50) and (3.76) (3.52) and (3.77) s + l + 1 +m = s + l +m + 1
z obeys (3.50) but not (3.76) That is, same number of evals

7 (3.1) with b = 0 and (3.76) (3.14) and (3.78) s + l +m + 1 = s + l +m + 1
z obeys (3.76) but not (3.1) That is, same number of evals

8 (3.1) with b > 0 and (3.76) (3.15) and (3.78) s + l +m + 1 = s + l +m + 1
z obeys (3.76) but not (3.1) That is, same number of evals

9 (3.50) and (3.76) (3.51) and (3.78) s + 1 + l +m = s + l +m + 1
z obeys (3.76) but not (3.1) That is, same number of evals

10 (3.1) with b = 0 and (3.76) (3.16) and (3.78) s − 1 + l +m + 1 = s + l +m
z obeys both (3.1) and (3.76) That is, one less eval λ = λ0

11 (3.1) with b > 0 and (3.76) (3.17) and (3.78) s − 1 + l +m + 1 = s + l +m
z obeys both (3.1) and (3.76) That is, one less eval λ = λ0

12 (3.50) and (3.76) (3.52) and (3.78) s − 1 + l +m + 1 = s + l +m
z obeys both (3.50) and (3.76) That is, one less eval λ = λ0
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transformations,” Journal of Nonlinear Mathematical Physics, vol. 10, supplement 2, pp. 13–26, 2003.

[9] Y. Wu and X. Geng, “A new hierarchy of integrable differential-difference equations and Darboux
transformation,” Journal of Physics A, vol. 31, no. 38, pp. L677–L684, 1998.

[10] S. Currie and A. D. Love, “Transformations of difference equations I,” Advances in Difference Equations,
vol. 2010, Article ID 947058, 22 pages, 2010.

[11] S. Currie and A. D. Love, “Transformations of difference equations II,” Advances in Difference
Equations, vol. 2010, Article ID 623508, 23 pages, 2010.

[12] P. A. Binding, P. J. Browne, and B. A. Watson, “Sturm-Liouville problems with boundary conditions
rationally dependent on the eigenparameter. I,” Proceedings of the EdinburghMathematical Society. Series
II, vol. 45, no. 3, pp. 631–645, 2002.

[13] W. Gautschi, Orthogonal Polynomials: Computation and Approximation, Numerical Mathematics and
Scientific Computation, Oxford University Press, New York, NY, USA, 2004.

[14] K. S. Miller, Linear Difference Equations, W. A. Benjamin, New York, NY, USA, 1968.
[15] K. S. Miller, An Introduction to the Calculus of Finite Differences and Difference Equations, Dover, New

York, NY, USA, 1966.
[16] F. V. Atkinson, Discrete and Continuous Boundary Problems, vol. 8 of Mathematics in Science and

Engineering, Academic Press, New York, NY, USA, 1964.
[17] G. Teschl, Jacobi Operators and Completely Integrable Nonlinear Lattices, vol. 72 of Mathematical Surveys

and Monographs, American Mathematical Society, Providence, RI, USA, 2000.


