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1. Introduction

In recent years, many authors are greatly attached to investigation for the existence and
uniqueness of solution of Duffing equations, for example, [1-11], and so forth. Some authors
([8,11,12], etc.) proved the existence and uniqueness of solution of Duffing equations under C?
perturbation functions and other conditions at nonresonance by employing minimax theorems.
In 1986, Tersian investigated the equation u” + f(t,u(t)) = —p(t) using a minimax theorem
proved by himself and reaped a result of generalized solution [13]. In 2005, Huang and Shen
generalized the minimax theorem of Tersian in [13]. Using the generalized minimax theorem,
Huang and Shen proved a theorem of existence and uniqueness of solution for the equation
u” + f(t,u(t)) + e(t) = 0 [14] under the weaker conditions than those in [13].

Stimulated by the works in [13, 14], in the present paper, we investigate the solutions
of the boundary value problems of Duffing equations with non-C? perturbation functions at
nonresonance using the minimax theorem proved by Huang in [15].

2. Preliminaries

Let H be a real Hilbert space with inner product (-,-) and norm || - ||, respectively, X and Y
be two orthogonal closed subspaces of H suchthat H = X @Y. LetQ: H - X, P: H =Y
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denote the projections from H to X and from H to Y, respectively. The following theorem will
be employed to prove our main theorem.

Theorem 2.1 (see [15]). Let H be a real Hilbert space, let X and Y be orthogonal closed vector
subspace of H such that H = X @Y, let f : H — R be an everywhere defined functional with
Gateaux derivative, V f : H — H everywhere defined and hemicontinuous. Suppose that there exist
two continuous functions a : [0,+00) — (0,+00), P :[0,+0) — (0, +o0) satisfying

a(s) — +oo, P(s) — +oo, ass— oo,
(V@) = Vf(0),x1 = x2) < —a(flu—ol)[Jx1 - 22, (2.1)
(V@) =Vf@),y1-y2) 2 B(lu-ol)||ly1 - v||,
forue HveH, x1=QueX, x,=QueX,y1=PuecY, y, =Pv €Y. Then, the following hold:
(a) f has a unique critical point vy € H such that V f (vg) = 0;
(b) f(vo) = maxyex minyey f(x +y) = min,ey maxyex f(x +y).
It is easy to prove the following corollary of the above theorem.

Corollary 2.2. Let H be a real Hilbert space, let X and Y be orthogonal closed vector subspace of H
such that H = X @Y, and let f : H — R be an everywhere defined functional with second Gateaux
differential. Suppose that there exist two continuous functions a : [0, +o0) — (0,+00), p: [0,+00) —
(0, +o0) satisfying

a(s) — +oo, P(s) — +oo0, ass— oo,

(Vf(o+tu-0))(u-0),x1 - x) < —a(|u-o|)||xi — x|

(V2 f(o+tu-0))(u=0),y1 - y2) 2 B(llu—oll) |y - y2

, (22)
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forue HveH x1=QueX, xx=QueX y1=PuecYY,y,=PveY,0<t<1 Then, the
following hold:

(a) f has a unique critical point vy € H such that V f (vg) = 0;
(b) f(vo) = maxyex minyey f(x +y) = minyey maxyex f(x + y).

Proof. We note that f is a second Gateaux differentiable functional, the mean-value theorem
ensures that there exists 0 € (0,1) such that V f (1) -V f (v) = V> f (v+0(u-v)) (u—v). Therefore,
forue HveH,x1=QueX, x;,=QueX,y1=PueYY,y, =PveY,wehave
(V) = Vf(v),x1-x)=(V2f(v+0u-0v))(u-0),x1-x) <—a(|lu-2o|)]|x - x|,
(V) =V (@), y1 - y2) = (Vf (0 +0(u=-0))(u=-0),y1 - y2) > B(llu-oll) |y1 - v2 |-
(2.3)

The conclusion of the corollary follows immediately from Theorem 2.1. O
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3. The main theorems

Consider the boundary value problem

u' + g(t,u) =e(t), u(0) = a, u(2sr) = b, (3.1)
where u : [0,27r] — R, g : [0,2or] xR — Ris a potential Carathéodory function, e : [0,2or] — R
is a given function in L?[0, 2or].

Letu(t) = v(t) + w(t), w(t) = [a(2or —t) + bt] /20w, t € [0,20r], then (3.1) may be written
in the form of

v +gi(tv)=e(t), v(0)=v(2w)=0, (3.2)
where g*(t,v) = g(t,v + w). Clearly, g*(t, v) is a potential Carathéodory function, and if vy is a

solution of (3.2), then 1y = vy + w will be a solution of (3.1).
It is well known that L2[0, 2sr] is a Hilbert space with inner product:

(u,v) = J‘:” u(tyo(t)dt (u,v € L*[0,22r]), (3.3)

1/2
and norm |[u|| = \/(u,u) = (LZ” u?(t)dt) ", respectively. The system of trigonometrical fun-
ctions,

1 1 1 1 1
——, ——C0SsX, —sinx; —c0s2x, —sin2x;...; —cosnx, —sinnx;.. ., (3.4)

T R e e m Y

is a system of orthonormal functions in L?[0,2sr]. Each v € L?[0,2sr] can be written as the
Fourier series

1 1 = cosnt \ cosnt sinnt \ sinnt
o(t) = <U/E>E+g[<v,ﬁ> NG + <v,ﬁ> NG ] (3.5)

Define the linear operator L = —d?/dt* : D*(L) c L*[0,2x] — L?[0,2sr],
1 1 = cos nt \ cos nt sinnt \ sin nt
D*(L) = {vel?0,2o] | v(t) = (v, — | ——+ v, +{ o, ,
= {reroanion - () B0 T ()R
= t ? in nt
cosn sinn
m*+1)||( v, +|( v,
ré T NI

Lo = i”z . cosnt \ cosnt (o sinnt \ sinnt
n=1 ' \/‘77 \/E ’ \/E \/E g

2
] < o0, v(0) = v(20r) = 0} c L?[0,2x],

(3.6)



4 Boundary Value Problems

Denote

[a(2or —t) + bt]

D(L) = {u | u(t) =v(t) +w(t), ve D*(L), w(t) = -

, te[0,2] } (3.7)

Clearly, L = —d?/dt* is a self-adjoint operator, and D*(L) is a Hilbert space for the inner
product:

20
(u,v) = J‘ [ (D' (t) + u(t)o(t)]dt, (3.8)
0
u,v € L?[0,2sr], the norm induced by this inner product is
27
o] = I [02() + ()] dt. (3.9)
0

Note that D(L) is not a space.
Since g(t,u) in (3.1), and hence g*(t,v) in (3.2), is a potential Carathéodory function,
there exists a function G(t, u) such that

_ 0G(t,u)
g(tu) = EY (3.10)
and hence
. _0G(t,v+w)
g'(t,v) = 5 , (3.11)

and the mapping g, and hence g*, generates a Nemytskii operator N : D(L) C L?[0,2x] —
L2[0,2r] by

N(u) = g(t, u(t)), (3.12)
and hence
N*(v) = N(v + w) = g(t,v(t) + w(t)) = g*(t, (). (3.13)
Define the functional f : D(L) ¢ L2[0,2sr] — R by
fu) = %(Lu,u) - G(tu) +e(t)u, (3.14)
where G satisfies (3.10) and e(t) is in (3.1). We have
f*(v) = %(Lv, v) - G*(t,0) + e(t)v + e(t)w. (3.15)
It is easy to see that

Vf(v) =Lu—- N(u)+e(t),
Vf*(v) = Lv - N*(v) +e(t),

(3.16)
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where N*(v) = g*(t,v(t)). Clearly, vy € D*(L) is a critical point of f if and only if v is a
solution of the equation (L — N*)v = —e(t) and hence a solution of (3.2) and thus uy = vy + w =

vo + [a(2or — t) + bt] /20, t € [0,20r] is a solution of (3.1).

Now, we suppose that there exists a real-bounded mapping b(t, u) (u € D(L)) such that

g(tup) —g(t,ur) =b(t, s +Tt(up — 1)) (u2 —w1), 7e€[0,1], ug,u, € D(L).
For uy,u; € D(L), v1,v, € D*(L), let
b(t,u) =b(t,v + w) = b*(t,v).
Since

8 (tva) -8 (L) = g(tva+w) - g(t v + w)
=b(t,v1+w+T(v2—01)) (02— V1)
=b(t,v1+1(v - 1) +w) (v —vy)

=b*(t,v1+7(v2 - v1)) (V2 - V1),

equation (3.17) is equivalent to

§tvm)-g(tv) =b"(t, vy +T(v2—v1))(v2—v1), T€[0,1], v1,v, € D*(L).

Suppose that for v € D*(L),
n> <b*(tv) < (n+1)*> (neN),
and for vy, v,, v € D*(L), define

a*(||[o1-2]|) = min mn{(n+1) —Omaxb*(t v) >0, mlnb*(t v)—n >0}

Hv\|<\|v1 -0y neN

which is equivalent to

a(|lur —uz||) = min mn{(n+1) - maxb(t,v) >0, mlnb(t v) —n? >0}

||u||<\|u1 up|| nEN 0<t<2mr

Since L = —d?/dt* is a self-adjoint operator, it possesses spectral resolution

+o0
L:j AdE,, .lEO'(L),

—0o0

with a right continuous spectral family {E, : A € R}; and we let

p
Ea,p) - [ dEy

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)
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forall a, p € p(L)N{+oo} with & < p. Then, the operator L—b*(t, v)I has the spectral resolution:

L-b*(t,v)l = J‘M (A=b*(t,v))dE,, ©ve D*(L), (3.26)
where I is an identity operator.
Define X and Y by
X = E(-o0,b*(t,v))D*(L), Y = E(b*(t,v), +00) D*(L). (3.27)
By (3.21), we have
E(-o0,b*(t,v)) =1 -E(b*(t,v),+), ve D*(L), (3.28)
and hence
D*(L)=X@®Y, X and Y are orthogonal. (3.29)

We need to prove a lemma before presenting our main theorem.

Lemma 3.1. Suppose that ¢* : [0,2or] x R — R in (3.2) satisfies (3.20), b*(t,v) (v € D*(L))
commutes with the linear operator L = —d?/dt?* and satisfies (3.21), a*(s) is a continuous function
defined in (3.22). Then, for vy = x1+1y1 € D*(L), x1 € X, y1 €Y, v = xp + y» € D*(L), x5 €
X, €Y, tel0,1], z=v1+T(v, —v1) € D*(L),

(L-b*(t, 2)I) (x1 = x2), %1 = %2) < —a*(||o1 — 02| ) || 1 — x2 2
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(3.30)
(L=b"(t,21) (1~ y2),y1 - v2) 2 & ([Jor = o2 )) 1 - v )™
Proof. For z = v1 + T(v2 —v1) € D*(L), v1 € D*(L), v, € D*(L), v € D*(L), let
x=E(-o0,b*(t,2))v, y =E(b*(t,z),+0)v. (3.31)
Note that b*(t, z) (z € D*(L)) commutes with the linear operator L and
+00
(L-b"(t,2)I)(x1 - x2) = f (A=b*(t,z))dEy 0 E( — 00,b"(t,2)) (v1 — v2)
b* (t,2)
- j (A= b*(t, 2))dEx (v - 02),
- (3.32)

(L-b"(t,2)I)(y1 —v2) = J‘+w (A-b*(t,z))dE, o E(b*(t,z),+00) (v1 — v2)

_ J' (A= b"(t,2))dEx (01 - v3).
b*(t,z)



Z. Ting and H. Wenhua 7
By (3.22),

b*(t,z

)
(A=b*(t,2))d||Ex (01 - o) ||

b (t,2) )
<@ (lor-wl) [ dlE(-o)

—o0

(L-b"(t,2)]) (x1 —x2), 21— x2) = f

—Q0

= —a*(||lor - 02| |21 = x2||*, w1, 02 € D*(L), x1,x2 € X,

+00

(L=t (t,2)D)(y1 - y2), 1 —¥2) = J;m ) (A= b"(t,2))d||Ex(v1 - v) ||

+00
>a(for-ol) | dlE@ - o)l
b (t,z)

=a*(|lor - vy —v2l’, vLv2€D*L), yi,y2 €Y.
(3.33)
O
Now, we show our main theorem dealing with (3.1).

Theorem 3.2. Let g : [0,25r] xR — R be a potential Carathéodory function satisfying (3.17). Suppose
that b(t,u) (u € D(L), t € [0,2sr]) commutes with the linear operator L = —d*/dt* and satisfies

n* <b(t,u)<(n+1)*>, neN, ueD(L), (3.34)
and the continuous function a(s) defined by (3.23) satisfies the conditions
a:[0,+00) — (0,+00), s-a(s) — +oo as s — co. (3.35)
Then, (3.1) has a unique solution uy € D(L) such that

Vf(uo) =0, fuo) = max 1;1;;1 fx+y+w) = lin I?E%(xf(x +Y+w), (3.36)

yey
where f is a functional defined in (3.14) and w(t) = [a(27 —t) + bt]/20r, t € [0, 20r].
Proof. Forv; = x1+y1 € D*(L), vp = x2+ 1y € D*(L), x1,x2 € X, y1,¥2 € Y, by Lemma 3.1, we
have

(Vf*(v2) = Vf*(v1), 20— x1) = (Lo — N*(vp) +e(t) — Loy + N*(v1) —e(t), x2 — x1)
(L(va —v1) = (8" (t,02(t)) = &*(t, 01 (1)), X2 — x1)
(L(vy —v1) =b*(t, o1+ T(v2 — 1)) (V2 — V1), 22 — x1)
([L-b"(t, o1 +T(v2—01)) ]| (v2 — 1), %2 — x1)
([L-b"(t, o1+ T(v2 —01)) ] (%2 — x1), %2 — x1)

<—a*(|loa—oi|)||x1 - x2|>, Tel01],
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(VF (02) =Vf(01), 92 - 11) = (Lva = N*(v2) + e(t) - Loy + N*(v1) —e(t), y2 - 1)

(L(v2-v1) = (&' (t,02(1) = 8" (t, 01 (1)), y2 = 1)

=([L-b"(t,or+7(v2-01))I](y2 - ¥1), v2— 1)

>a*(|lo-vil) v -ell’,  Telol].
(3.37)

Employing Theorem 2.1, we can know that there exists a unique vy € D*(L) such that
V f*(vp) = 0, where vy € D*(L) is a solution of (3.2) and this means that (3.1) has a unique
solution 1y = vy + w € D(L) such that

Vi (vo) = Vf(vg+w) =Vf(u) =0,
f (o) = f(v0 +w) = f*(v0) = maxmin f*(x +y) = minmax f*(x + y) (3.38)

=maxmin f(x +y +w) =minmax f(x + vy + w
xeX yeYy f( y ) yeY xeX f( y ),

where f is a functional defined in (3.14) and w(t) = [a(2sr —t) + bt] /20, t € [0, 277].

If the perturbation function G(t,u) in (3.10) is a second Gateaux differential, (3.17),
(3.34), and (3.23) become

g(tup) —g(t,ur) =g, (bur +T(uz —u1)) (up —u1), 7€(0,1), u,u, € D(L), (3.39)

n* < g (t,u)<(n+1)?, neN, ueD(L), (3.40)
_ _ . . 2 , . ) 2
a(||m —uzl|) uu||§|'fluz||Te1§?{ (n+1) Otsl}fa;;gu(t,u) >0, Og};grgu(t, u) —n° > 0}, (3.41)

respectively. By (3.30) in Lemma 3.1, we have

(L= gi(t,0)]) (x2 = x1), %2 = x1) < —a* (||o1 = 02]|) |21 = x|,
(3.42)

* * 2
(L-gut, ) (y2=v1), 2 —y1) 2 & (o =2 |ly1 - |,
where v = vy + (v, —v1) € D*(L), v1,v; € D*(L), T€(0,1), x1, 2 € X, y1,1p €Y. ]
We then have the following corollary of Theorem 3.2.

Corollary 3.3. Let g : [0,2ar] xR — R be a potential Carathéodory function with first Gateaux deriv-
ative g, satisfying (3.39) and (3.40) and g, (t,u) (u € D(L), t € [0,2sr]) commutes with the linear
operator L = —d?/ dt?. If the continuous function a(s) defined by (3.41) satisfies (3.35), then (3.1) has
a unique solution uy € D(L) and

f(uo) = Igrclea;(xrig?f(x +ty+w)= I;E?T&Xf(x +y+w), (3.43)

where f is a functional defined in (3.14) and w(t) = [a(2sr —t) + bt]/2r, t € [0,207].
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