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1. Introduction

Impulsive differential equations, which arise in biology, physics, population dynamics,
economics, and so forth, are a basic tool to study evolution processes that are subjected
to abrupt in their states (see [1–4]). Many literatures have been published about existence
of solutions for first-order and second-order impulsive ordinary differential equations with
boundary conditions [5–19], which are important for complementing the theory of impulsive
equations. In recent years, the solvability of the antiperiodic boundary value problems
of first-order and second-order differential equations were studied by many authors, for
example, we refer to [20–32] and the references therein. It should be noted that antiperiodic
boundary value problems appear in physics in a variety of situations [33, 34]. Recently,
the existence results were extended to antiperiodic boundary value problems for first-order
impulsive differential equations [35, 36]. Very recently, Wang and Shen [37] investigated the
antiperiodic boundary value problem for a class of second-order differential equations by
using Schauder’s fixed point theorem and the lower and upper solutions method.

Inspired by [35–37], in this paper, we investigate the antiperiodic boundary value
problem for second-order impulsive nonlinear differential equations of the form

u′′(t) + f
(
t, u(t)

)
= 0, t ∈ J0 = J \ {t1, . . . , tm},

Δu
(
tk
)
= Ik
(
u(tk)

)
, k = 1, . . . , m,
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Δu′
(
tk
)
= I∗k
(
u(tk)

)
, k = 1, . . . , m,

u(0) + u(T) = 0, u′(0) + u′(T) = 0,
(1.1)

where J = [0, T], 0 < t1 < t2 < · · · < tm < T , f : [0, T] × R → R is continuous on (t, x) ∈ J0 × R,
f(t+k, x) := limt→ t+

k
f(t, x), f(t−k, x) := limt→ t−

k
f(t, x) exist, f(t−k, x) = f(tk, x); Δu(tk) = u(t+k) −

u(t−
k
), Δu′(tk) = u′(t+k) − u′(t−k); Ik, I∗k ∈ C(R,R).

To the best of the authors knowledge, no one has studied the existence of solutions
for impulsive antiperiodic boundary value problem (1). The following Schaefer’s fixed-point
theorem is fundamental in the proof of our main results.

Lemma 1.1 (see [38] (Schaefer)). Let E be a normed linear space with H : E → E a compact
operator. If the set

S :=
{
x ∈ E | x = λHx, for some λ ∈ (0, 1)

}
(1.2)

is bounded, thenH has at least one fixed point.

The paper is formulated as follows. In Section 2, some definitions and lemmas are
given. In Section 3, we obtain two new existence theorems by using Schaefer’s fixed point
theorem. In Section 4, an illustrative example is given to demonstrate the effectiveness of the
obtained results.

2. Preliminaries

In order to define the concept of solution for (1), we introduce the following spaces of
functions:

PC(J) = {u : J → R : u is continuous for any t ∈ J0, u(t+k), u(t
−
k) exist, and u(t−k) =

u(tk), k = 1, . . . , m},
PC1(J) = {u : J → R : u is continuously differentiable for any t ∈ J0, u′(t+k), u

′(t−
k
)

exist, and u′(t−
k
) = u′(tk), k = 1, . . . , m}.

PC(J) and PC1(J) are Banach space with the norms

‖u‖PC = sup
t∈J

|u(t)|,

‖u‖PC1 = max
{‖u‖PC, ‖u′‖PC

}
.

(2.1)

A solution to the impulsive BVP (1) is a function u ∈ PC1(J) ∩ C2(J0) that satisfies (1)
for each t ∈ J .

Consider the following impulsive BVP with λ > 0

−u′′(t) + λ2u(t) = σ(t), t ∈ J0,
Δu
(
tk
)
= Ik
(
u(tk)

)
, k = 1, . . . , m,

Δu′
(
tk
)
= I∗k
(
u(tk)

)
, k = 1, . . . , m,

u(0) + u(T) = 0, u′(0) + u′(T) = 0,

(2.2)

where σ ∈ PC(J).
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For convenience, we set Ik = Ik(u(tk)), I∗k = I∗k(u(tk)).

Lemma 2.1. u ∈ PC1(J) ∩C2(J0) is a solution of (2.2) if and only if u ∈ PC1(J) is a solution of the
impulsive integral equation

u(t) =
∫T

0
G(t, s)σ(s)ds +

m∑

k=1

[
G
(
t, tk
)( − I∗k

)
+W

(
t, tk
)
Ik
]
, (2.3)

where

G(t, s) =
1
2λ

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

e−λ(t−s)

1 + e−λT
− eλ(t−s)

1 + eλT
, 0 ≤ s < t ≤ T,

eλ(T+t−s)

1 + eλT
− e−λ(T+t−s)

1 + e−λT
, 0 ≤ t ≤ s ≤ T,

W(t, s) =
1
2

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

e−λ(t−s)

1 + e−λT
+
eλ(t−s)

1 + eλT
, 0 ≤ s < t ≤ T,

−e
λ(T+t−s)

1 + eλT
− e−λ(T+t−s)

1 + e−λT
, 0 ≤ t ≤ s ≤ T.

(2.4)

Proof. If u ∈ PC1(J) ∩ C2(J0)is a solution of (2.2), setting

v(t) = u′(t) + λu(t), (2.5)

then, by the first equation of (2.2)we have

v′(t) − λv(t) = −σ(t), t /= tk. (2.6)

Multiplying (2.6) by e−λt and integrating on [0, t1) and (t1, t] (t1 < t ≤ t2), respectively, we get

e−λt1v
(
t−1
) − v(0) = −

∫ t1

0
σ(s)e−λsds,

e−λtv(t) − e−λt1v(t+1
)
= −
∫ t

t1

σ(s)e−λsds, t1 < t ≤ t2.
(2.7)

So

v(t) = eλt
[
v(0) −

∫ t

0
e−λsσ(s)ds + e−λt1Δv

(
t1
)
]
, t1 < t ≤ t2. (2.8)

In the same way, we can obtain that

v(t) = eλt
[
v(0) −

∫ t

0
e−λsσ(s)ds +

∑

0<tk<t

e−λtk
(
I∗k + λIk

)
]
, t ∈ J, (2.9)
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where v(0) = u′(0) + λu(0). Integrating (2.5), we have

u(t) = e−λt
[
u(0) +

∫ t

0
v(s)eλsds +

∑

0<tk<t

eλtk Ik

]
, t ∈ J. (2.10)

By (2.9), we get

∫ t

0
v(s)eλsds =

1
2λ

[

v(0)
(
e2λt − 1

) −
∫ t

0

(
e2λt − e2λs)σ(s)e−λsds

+
∑

0<tk<t

(
e2λt − e2λtk)e−λtk(I∗k + λIk

)
]

.

(2.11)

Substituting (2.11) into (2.10), we obtain

u(t) =
1
2λ

[
(
λu(0) − u′(0))e−λt + (u′(0) + λu(0))eλt

+
∫ t

0

(
e−λ(t−s) − eλ(t−s))σ(s)ds +

∑

0<tk<t

eλ(t−tk)
(
I∗k + λIk

)

−
∑

0<tk<t

e−λ(t−tk)
(
I∗k − λIk

)
]

, t ∈ J,

(2.12)

u′(t) =
1
2

[

− (λu(0) − u′(0))e−λt + (u′(0) + λu(0))eλt

−
∫ t

0

(
e−λ(t−s) + eλ(t−s)

)
σ(s)ds +

∑

0<tk<t

eλ(t−tk)
(
I∗k + λIk

)

+
∑

0<tk<t

e−λ(t−tk)
(
I∗k − λIk

)
]

, t ∈ J.

(2.13)

In view of u(0) + u(T) = 0 and u′(0) + u′(T) = 0, we have

u′(0) + λu(0) =
1

1 + eλT

[∫T

0
eλ(T−s)σ(s)ds −

∑

0<tk<T

eλ(T−tk)
(
I∗k + λIk

)
]

,

λu(0) − u′(0) = 1
1 + e−λT

[

−
∫T

0
e−λ(T−s)σ(s)ds +

∑

0<tk<T

e−λ(T−tk)
(
I∗k − λIk

)
]

.

(2.14)

Substituting (2.14) into (2.12), by routine calculation, we can get (2.3).
Conversely, if u is a solution of (2.3), then direct differentiation of (2.3) gives −u′′(t) =

σ(t)−λ2u(t), t /= tk. Moreover, we obtainΔu|t=tk = Ik(u(tk)),Δu′|t=tk = I∗k(u(tk)), u(0)+u(T) = 0
and u′(0) + u′(T) = 0. Hence, u ∈ PC1(J) ∩ C2(J0) is a solution of (2.2).
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Remark 2.2. We call G(t, s) above the Green function for the following homogeneous BVP:

−u′′(t) + λ2u(t) = 0, t ∈ J,
u(0) + u(T) = 0, u′(0) + u′(T) = 0.

(2.15)

Define a mapping A : PC1(J) → PC1(J) by

Au(t) =
∫T

0
G(t, s)

[
f
(
s, u(s)

)
+ λ2u(s)

]
ds +

m∑

k=1

[
G
(
t, tk
)( − I∗k

)
+W

(
t, tk
)
Ik
]
, t ∈ [0, T].

(2.16)

In view of Lemma 2.1, we easily see that u is a fixed point of operator A if and only if
u is a solution to the impulsive boundary value problem (1).

It is easy to check that

∣∣G(t, s)
∣∣ ≤ eλT − 1

2λ
(
1 + eλT

) ,
∣∣W(t, s)

∣∣ ≤ 1
2
. (2.17)

Lemma 2.3. If u ∈ PC1(J) and u(0) + u(T) = 0, then

‖u‖PC ≤ 1
2

(∫T

0

∣∣u′(s)
∣∣ds +

m∑

k=1

∣∣Δu
(
tk
)∣∣
)

. (2.18)

Proof. Since u ∈ PC1(J), we have

u(t) = u(0) +
∑

0<tk<t

Δu
(
tk
)
+
∫ t

0
u′(s)ds. (2.19)

Set t = T , we obtain from u(0) + u(T) = 0 that

u(0) = −1
2

(
m∑

k=1

Δu
(
tk
)
+
∫T

0
u′(s)ds

)

. (2.20)

Substituting (2.20) into (2.19), we get

∣∣u(t)
∣∣ =

∣∣∣∣∣
1
2

(∫ t

0
u′(s)ds −

∫T

t

u′(s)ds
)
+
1
2

(
∑

0<tk<t

Δu
(
tk
) −
∑

t≤tk
Δu
(
tk
)
)∣∣∣∣∣

≤ 1
2

(∫ t

0

∣∣u′(s)
∣∣ds +

∫T

t

∣∣u′(s)
∣∣ds
)
+
1
2

(
∑

0<tk<t

∣∣Δu
(
tk
)∣∣ +

∑

t≤tk

∣∣Δu
(
tk
)∣∣
)

=
1
2

(∫T

0

∣∣u′(s)
∣∣ds +

m∑

k=1

∣∣Δu
(
tk
)∣∣
)

.

(2.21)

The proof is complete.
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3. Main results

In this section, we study the existence of solutions for BVP (1). For this purpose we assume
that there exist constants 0 < η < 1, functions a, b, h ∈ C(J, [0,+∞)), and nonnegative
constants αk, βk, γk, δk (k = 1, 2, . . . , m) such that

(H1) |f(t, u)| ≤ a(t)|u| + b(t)|u|η + h(t), and
(H2) |Ik(u)| ≤ αk|u| + βk, |I∗k(u)| ≤ γk|u| + δk, k = 1, . . . , m

hold.

Remark 3.1. (H1) means that the nonlinearity growths at most linearly in u, (H2) implies that
the impulses are (at most) linear.

For convenience, let

p1 =
3
2

(∫T

0
a(t)dt + λ2T +

m∑

i=1

γi

)

,

p2 =
3
2

∫T

0
b(t)dt,

p3 =
3
2

(∫T

0
h(t)dt +

m∑

i=1

δi

)

.

(3.1)

Theorem 3.2. Suppose that conditions (H1) and (H2) are satisfied. Further assume that

T

4
q1 +

√
Tq1

2

m∑

i=1

αi +
m

4

m∑

i=1

α2i < 1, (3.2)

holds, where q1 =
∫T
0a(t)dt +

∑m
i=1(p1αi + γi) and p1 as in (3.1). Then, BVP (1) has at least one

solution.

Proof. It is easy to check by Arzela-Ascoli theorem that the operator A is completely
continuous. Assume that u is a solution of the equation

u = μAu, μ ∈ (0, 1). (3.3)

Then,

u′′(t) = μ(Au)′′(t) = μ
[ − f(t, u(t)) − λ2u(t) + λ2(Au)(t)]

= −μf(t, u(t)) − λ2(μ − 1)u(t),
(3.4)

−u(t)u′′(t) = μu(t)f(t, u(t)) + λ2(μ − 1)u2(t) ≤ μu(t)f(t, u(t)). (3.5)
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Integrating (3.4) from 0 to T , we get that

u′(T) − u′(0) =
∫T

0
u′′(t)dt +

m∑

i=1

I∗i = −μ
∫T

0
f
(
t, u(t)

)
dt − λ2(μ − 1)

∫T

0
u(t)dt +

m∑

i=1

I∗i . (3.6)

In view of u′(0) + u′(T) = 0, we obtain by (3.6) that

∣
∣u′(0)

∣
∣ ≤ 1

2

∫T

0

∣
∣f
(
t, u(t)

)∣∣dt +
λ2

2

∫T

0

∣
∣u(t)

∣
∣dt +

1
2

m∑

i=1

∣
∣I∗i
∣
∣. (3.7)

Integrating (3.4) from 0 to t, we obtain that

u′(t) − u′(0) =
∫ t

0
u′′(s)ds +

∑

0<ti<t

I∗i = −μ
∫ t

0
f
(
s, u(s)

)
ds − λ2(μ − 1)

∫ t

0
u(s)ds +

∑

0<ti<t

I∗i . (3.8)

From (3.7) and (3.8), we have

∣∣u′(t)
∣∣ ≤ ∣∣u′(0)∣∣ +

∫T

0

∣∣f
(
s, u(s)

)∣∣ds + λ2
∫T

0

∣∣u(s)
∣∣ds +

m∑

i=1

∣∣I∗i
∣∣

≤ 3
2

∫T

0

(
a(t)
∣∣u(t)

∣∣ + b(t)
∣∣u(t)

∣∣η + h(t)
)
dt +

3
2
λ2
∫T

0

∣∣u(t)
∣∣dt +

3
2

m∑

i=1

(
γi‖u‖PC + δi

)

≤ 3
2

(
‖u‖PC

∫T

0
a(t)dt + ‖u‖ηPC

∫T

0
b(t)dt +

∫T

0
h(t)dt

)
+
3
2
λ2T‖u‖PC +

3
2

m∑

i=1

(
γi‖u‖PC + δi

)
,

(3.9)

that is,

‖u′‖PC ≤ 3
2

(∫T

0
a(t)dt + λ2T +

m∑

i=1

γi

)

‖u‖PC +
3
2

∫T

0
b(t)dt‖u‖ηPC +

3
2

∫T

0
h(t)dt +

3
2

m∑

i=1

δi.

(3.10)

Thus,

‖u′‖PC ≤ p1‖u‖PC + p2‖u‖ηPC + p3, (3.11)

where p1, p2, p3 are as in (3.1). Integrating (3.5) from 0 to T , we get that

−
∫T

0
u(t)u′′(t)dt ≤ μ

∫T

0
u(t)f(t, u(t))dt. (3.12)
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In view of u(0) + u(T) = 0 and u′(0) + u′(T) = 0, we have

∫T

0
u(t)u′′(t)dt=

∫T

0
u(t)d

(
u′(t)

)

=
∫ t1

0
u(t)d

(
u′(t)

)
+
∫ t2

t1

u(t)d
(
u′(t)

)
+ · · · +

∫T

tn

u(t)d
(
u′(t)

)

= (t)u′(t)|t10 −
∫ t1

0

(
u′(t)

)2
dt + u(t)u′(t)|t2t1 −

∫ t2

t1

(
u′(t)

)2
dt

+ · · · + u(t)u′(t)|Ttn −
∫T

tn

(
u′(t)

)2
dt

= u
(
t1 − 0

)
u′
(
t1 − 0

) − u(0)u′(0) + u(t2 − 0
)
u′
(
t2 − 0

) − u(t1 + 0
)
u′
(
t1 + 0

)

+ · · · + u(T)u′(T) − u(tn + 0
)
u′
(
tn + 0

) −
∫T

0

(
u′(t)

)2
dt

= u
(
t1 − 0

)
u′
(
t1 − 0

) − u(t1 + 0
)
u′
(
t1 + 0

)

+ · · · + u(tn − 0
)
u′
(
tn − 0

) − u(tn + 0
)
u′
(
tn + 0

) −
∫T

0

(
u′(t)

)2
dt

= u
(
t1 − 0

)
u′
(
t1 − 0

) − u(t1 − 0
)
u′
(
t1 + 0

)
+ u
(
t1 − 0

)
u′
(
t1 + 0

)

− u(t1 + 0
)
u′
(
t1 + 0

)
+ · · · + u(tn − 0

)
u′
(
tn − 0

) − u(tn − 0
)
u′
(
tn + 0

)

+ u
(
tn − 0

)
u′
(
tn + 0

) − u(tn + 0
)
u′
(
tn + 0

) −
∫T

0

(
u′(t)

)2
dt

= −u(t1 − 0)I∗1 − u′(t1 + 0)I1 − · · · − u(tn − 0)I∗n − u′(tn + 0)In −
∫T

0
(u′(t))2dt.

(3.13)

Substituting (3.13) into (3.12), we obtain by (H2), (H3), and (3.11) that

∫T

0

(
u′(t)

)2
dt ≤ μ

∫T

0
u(t)f

(
t, u(t)

)
dt − u(t1 − 0

)
I∗1

− u′(t1 + 0
)
I1 − · · · − u(tn − 0

)
I∗n − u′

(
tn + 0

)
In

≤ μ
∫T

0
u(t)f

(
t, u(t)

)
dt + ‖u‖PC

m∑

i=1

∣∣I∗i
∣∣ + ‖u′‖PC

m∑

i=1

∣∣Ii
∣∣

≤
∫T

0

(
a(t)u2(t) + b(t)

∣∣u(t)
∣∣1+η + h(t)

∣∣u(t)
∣∣)dt

+ ‖u‖PC
m∑

i=1

(
γi‖u‖PC + δi

)
+ ‖u′‖PC

m∑

i=1

(
αi‖u‖PC + βi

)

≤ ‖u‖2PC
∫T

0
a(t)dt + ‖u‖1+ηPC

∫T

0
b(t)dt + ‖u‖PC

∫T

0
h(t)dt

+
m∑

i=1

γi‖u‖2PC +
m∑

i=1

δi‖u‖PC +
(
p1‖u‖PC + p2‖u‖ηPC + p3

) m∑

i=1

(
αi‖u‖PC + βi

)
.

(3.14)
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Thus,

∫T

0

(
u′(t)

)2
dt ≤ q1‖u‖2PC + q2‖u‖1+ηPC + q3‖u‖PC + q4‖u‖ηPC + q5, (3.15)

where

q1 =
∫T

0
a(t)dt +

m∑

i=1

(
p1αi + γi

)
,

q2 =
∫T

0
b(t)dt + p2

m∑

i=1

αi,

q3 =
∫T

0
h(t)dt +

m∑

i=1

(
p1βi + p3αi + δi

)
,

q4 = p2
m∑

i=1

βi,

q5 = p3
m∑

i=1

βi.

(3.16)

By Lemma 2.3 and (3.15), we have

‖u‖2PC ≤ 1
4

(∫T

0

∣∣u′(t)
∣∣dt
)2

+
1
2

∫T

0

∣∣u′(t)
∣∣dt

m∑

i=1

|Ii| + 1
4

(
m∑

i=1

|Ii|
)2

≤ T

4

∫T

0

(
u′(t)

)2
dt +

√
T

2

(∫T

0

(
u′(t)

)2
dt

)1/2 m∑

i=1

|Ii| + m

4

m∑

i=1

|Ii|2

≤ T

4
[
q1‖u‖2PC + q2‖u‖1+ηPC + q3‖u‖PC + q4‖u‖ηPC + q5

]

+

√
T

2
[
q1‖u‖2PC + q2‖u‖1+ηPC + q3‖u‖PC + q4‖u‖ηPC + q5

]1/2

×
m∑

i=1

(
αi‖u‖PC + βi

)
+
m

4

m∑

i=1

(
α2i ‖u‖2PC + 2αiβi‖u‖PC + β2i

)

=

(
Tq1
4

+

√
Tq1

2

m∑

i=1

αi +
m

4

m∑

i=1

α2i

)

‖u‖2PC + · · · .

(3.17)

It follows from the above inequality and (3.2) that there existsM1 > 0 such that ‖u‖PC ≤ M1.
Hence, we get by (3.11) that

‖u′‖PC ≤ a1M1 + a2M
η

1 + a3 :=M2. (3.18)
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Thus, ‖u‖PC1 ≤ max{M1,M2}. It follows from Lemma 1.1 that BVP (1) has at least one
solution. The proof is complete.

Theorem 3.3. Assume that (H2) holds. Suppose that there exist a continuous and nondecreasing
function ψ : [0,∞) → [0,∞) and a nonnegative function c ∈ C(J) with

∣
∣f(t, u) + λ2u

∣
∣ ≤ c(t)ψ(|u|), t ∈ J, u ∈ R. (3.19)

Moreover suppose that

lim sup
u→∞

ψ(u)
u

< L (3.20)

holds, where

L :=
1 − ((eλT − 1

)
/2λ
(
1 + eλT

))∑m
i=1γi − (1/2)

∑m
i=1αi

((
eλT − 1

)
/2λ
(
1 + eλT

))∫T
0 c(s)ds

> 0. (3.21)

Then, BVP (1) has at least one solution.

Proof. From (3.20), there exist 0 < ε < L andM > 0 such that

ψ(v) ≤ (L − ε)v, v ≥M. (3.22)

Thus, there exists K > 0 such that

ψ(v) ≤ (L − ε)v +K, v ≥ 0. (3.23)

Assume that u is a solution of the equation

u = μAu, μ ∈ (0, 1). (3.24)

Then, we have by (3.19), (2.17), and (3.23) that

∣∣u(t)
∣∣ = μ

∣∣∣∣∣

∫T

0
G(t, s)

(
f(s, u(s)) + λ2u(s)

)
ds +

m∑

k=1

[
G
(
t, tk
)( − I∗k

)
+W

(
t, tk
)
Ik
]
∣∣∣∣∣

≤ eλT − 1
2λ
(
1 + eλT

)
∫T

0
c(s)ψ(|u|)ds + eλT − 1

2λ
(
1 + eλT

)
m∑

i=1

(
γi‖u‖PC + δi

)
+
1
2

m∑

i=1

(
αi‖u‖PC + βi

)
.

(3.25)
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Thus, we have

‖u‖PC ≤ eλT − 1
2λ
(
1 + eλT

)
∫T

0
c(s)ds

(
(L − ε)‖u‖PC +K

)

+

(
eλT − 1

2λ
(
1 + eλT

)
m∑

i=1

γi +
1
2

m∑

i=1

αi

)

‖u‖PC +
eλT − 1

2λ
(
1 + eλT

)
m∑

i=1

δi +
1
2

m∑

i=1

βi,

(3.26)

that is,

ε
eλT − 1

2λ
(
1 + eλT

)
∫T

0
c(s)ds‖u‖PC ≤ eλT − 1

2λ
(
1 + eλT

)K
∫T

0
c(s)ds +

eλT − 1
2λ
(
1 + eλT

)
m∑

i=1

δi +
1
2

m∑

i=1

βi,

(3.27)

which implies that there exists M3 > 0 such that ‖u‖PC ≤ M3. By (3.7), (3.8), and (3.23), we
get

∣∣u′(t)
∣∣ ≤ 3

2

∫T

0

∣∣f(s, u(s))
∣∣ds +

3
2
λ2
∫T

0
|u(s)|ds + 3

2

m∑

i=1

∣∣I∗i
∣∣

≤ 3
2

∫T

0

∣∣f(s, u(s)) + λ2u(s)
∣∣ds + 3λ2

∫T

0
|u(s)|ds + 3

2

m∑

i=1

∣∣I∗i
∣∣

≤ 3
2

∫T

0
c(s)ψ

(|u(s)|)ds + 3λ2
∫T

0
|u(s)|ds + 3

2

m∑

i=1

(
γi‖u‖PC + δi

)

≤ 3
2

∫T

0
c(s)ds

(
L‖u‖PC +K

)
+ 3λ2T‖u‖PC +

3
2

m∑

i=1

(
γi‖u‖PC + δi

)
,

(3.28)

which implies that

‖u′‖PC ≤
(
3L
2

∫T

0
c(s)ds + 3λ2T +

3
2

m∑

i=1

γi

)
‖u‖PC +

3K
2

∫T

0
c(s)ds +

3
2

m∑

i=1

δi

≤ 3
2

(
L

∫T

0
c(s)ds + 2λ2T +

m∑

i=1

γi

)
M3 +

3K
2

∫T

0
c(s)ds +

3
2

m∑

i=1

δi :=M4.

(3.29)

Hence, ‖u‖PC1 ≤ max{M3,M4}. It follows from Lemma 1.1 that BVP (1) has at least one
solution. The proof is complete.

4. Example

In this section, we give an example to illustrate the effectiveness of our results.
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Example 4.1. Consider the problem

u′′(t) +
1
π
u(t)cos2t +

1
2
etu1/2(t) + 1 + tan t = 0, t ∈

[
0,
π

2

]
\
{
π

3

}
,

Δu
(
t1
)
=

1
3
sin
(
u
(
t1
))

+
1
4
, Δu′

(
t1
)
=

1
2
u
(
t1
)
+
1
3
, t1 =

π

3
,

u(0) + u(T) = 0, u′(0) + u′(T) = 0,

(4.1)

Let f(t, u) = (1/π)u cos2t+(1/2)etu1/2 +1+ tan t, I1(u) = (1/3) sin u+(1/4), I∗1(u) = (1/2)u+
(1/3), T = (π/2), J = [0, π/2]. It is easy to show that

∣
∣f(t, u)

∣
∣ ≤ a(t)|u| + b(t)|u|1/2 + h(t), (4.2)

where a(t) = (1/π)cos2t, b(t) = (1/2)et, h(t) = 1 + tan t. And

∣∣I1(u)
∣∣ ≤ 1

3
|u| + 1

4
,

∣∣I∗1(u)
∣∣ ≤ 1

2
|u| + 1

3
. (4.3)

Thus, (H1) and (H2) hold. Obviously, α1 = 1/3, β1 = 1/4, γ1 = 1/2, δ1 = 1/3, and m = 1. Let
λ2 = 1/4π , we have

p1 =
3
2

(∫T

0
a(t)dt + 2λ2T +

m∑

i=1

γi

)

=
3
2

(
1
4
+
1
4
+
1
2

)
=

3
2
,

q1 =
∫T

0
a(t)dt +

m∑

i=1

(
p1αi + γi

)
=

1
4
+
3
2
· 1
3
+
1
2
=

5
4
.

(4.4)

Therefore,

Tq1
4

+

√
Tq1

2

m∑

i=1

αi +
m

4

m∑

i=1

α2i = 0.7522 < 1, (4.5)

which implies that (3.2) holds. So, all the conditions of Theorem 3.2 are satisfied. By
Theorem 3.2, antiperiod boundary value problem (4.1) has at least one solution.
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