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1. Introduction

Gronwall-Bellman inequality [1, 2] is a fundamental tool in the study of existence,
uniqueness, boundedness, stability, invariant manifolds and other qualitative properties
of solutions of differential equations and integral equation. There are a lot of papers
investigating them such as [3–15]. Along with the development of the theory of integral
inequalities and the theory of difference equations, more attentions are paid to some discrete
versions of Bellman-Gronwall type inequalities (e.g., [16–18]). Starting from the basic form

u(n) ≤ a(n) +
n−1∑

s=0

f(s)u(s), (1.1)

discussed in [19], an interesting direction is to consider the inequality

u2(n) ≤ P 2u2(0) + 2
n−1∑

s=0

[
αu2(s) +Qg(s)u(s)

]
, (1.2)
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a discrete version of Dafermos’ inequality [20], where α, P, Q are nonnegative constants and
u, g are nonnegative functions defined on {1, 2, . . . , T} and {1, 2, . . . , T −1}, respectively. Pang
and Agarwal [21] proved for (1.2) that u(n) ≤ (1 + α)n[Pu(0) +

∑n−1
s=0 Qg(s)] for all 0 ≤ n ≤ T .

Another form of sum-difference inequality

u2(n) ≤ c2 + 2
n−1∑

s=0

[
f1(s)u(s)w(u(s)) + f2(s)u(s)

]
(1.3)

was estimated by Pachpatte [22] as u(n) ≤ Ω−1[Ω(c+
∑n−1

s=0 f2(s))+
∑n−1

s=0 f1(s)], whereΩ(u) :=∫u
u0
ds/w(s). Recently, Pachpatte [23, 24] discussed the inequalities of two variables

u(m,n) ≤ c +
m−1∑

s=0

n−1∑

t=0

u(s, t)
[
a(s, t) logu(s, t) + b(s, t)g

(
logu(s, t)

)]
,

u(m,n) ≤ c +
m−1∑

s=0

n−1∑

t=0

f1(s, t)g(u(s, t)) +
m−1∑

s=0

n−1∑

t=0

(
s−1∑

σ=0

t−1∑

τ=0

κ(s, t, σ, τ)g(u(σ, τ))

)

+
m−1∑

s=0

n−1∑

t=0

⎛

⎝
s−1∑

σ=0

t−1∑

τ=0

⎛

⎝
σ−1∑

ξ=0

τ−1∑

η=0

h
(
s, t, σ, τ, ξ, η

)
g
(
u
(
ξ, η
))
⎞

⎠

⎞

⎠,

(1.4)

where g is nondecreasing. In [25] another form of inequality of two variables

u2(m,n) ≤ c2 +
m−1∑

s=m0

n−1∑

t=n0

a(s, t)u(s, t) +
m−1∑

s=m0

n−1∑

t=n0

b(s, t)u(s, t)w(u(s, t)) (1.5)

was discussed. Later, this result was generalized in [26] to the inequality

up(m,n) ≤ c +
m−1∑

s=m0

n−1∑

t=n0

d(s, t)uq(s, t) +
m−1∑

s=m0

n−1∑

t=n0

e(s, t)uq(s, t)w(u(s, t)), (1.6)

where c, p, and q are all constants, c ≥ 0, p > q > 0, and d, e are both nonnegative real-valued
functions defined on a lattice in Z

2
+, and w is a continuous nondecreasing function satisfying

w(u) > 0 for all u > 0.
In this paper we establish a more general form of sum-difference inequality with

positive integersm, n,

ψ(u(m,n)) ≤ a(m,n) +
k∑

i=1

m−1∑

s=m0

n−1∑

t=n0

fi(m,n, s, t)ϕi(u(s, t)), (1.7)

where k ≥ 2. In (1.7)we replace the constant c, the functions up, d(s, t), e(s, t), uq and uqw(u)
in (1.6) with a function a(m,n), more general functions ψ(u), f1(m,n, s, t), f2(m,n, s, t),
ϕ1(u) and ϕ2(u), respectively. Moreover, we consider more than two nonlinear terms and
do not require the monotonicity of every ϕi (i = 1, 2, . . . , k). We employ a technique of
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monotonization to construct a sequence of functions which possesses stronger monotonicity
than the previous one. Unlike the work in [26] for two sum terms, the maximal regions of
validity for our estimate of the unknown function u are decided by boundaries of more than
two planar regions. Thus we have to consider the inclusion of those regions and find common
regions. We demonstrate that inequalities (1.6) and other inequalities considered in [26] can
also be solved with our result. Furthermore, we apply our result to boundary value problems
of a partial difference equation for boundedness, uniqueness, and continuous dependence.

2. Main Result

Throughout this paper, letR = (−∞,∞),R+ = [0,∞), and N0 = {0, 1, 2, . . .},m0, n0 ∈ N0, X, Y ∈
N0 ∪ {∞} are given nonnegative integers. For any integers s < t, let dis[s, t] = {j : s ≤ j ≤
t, j ∈ N0}, I = dis[m0, X], and J = dis[n0, Y ]. Define Λ = I × J ⊂ N

2
0, and let Λ[s,t] denote the

sublattice dis[m0, s] × dis[n0, t] in Λ for any (s, t) ∈ Λ.
For functions g(m,n), m, n ∈ N0, their first-order differences are defined by

Δ1g(m,n) = g(m + 1, n) − g(m,n) and Δ2g(m,n) = g(m,n + 1) − g(m,n). Obviously, the
linear difference equation Δx(m) = b(m)with the initial condition x(m0) = 0 has the solution∑m−1

s=m0
b(s). In the sequel, for convenience, we complementarily define that

∑m0−1
s=m0

b(s) = 0.
We give the following basic assumptions for the inequality (1.7).

(H1) ψ is a strictly increasing continuous function on R+ satisfying that ψ(∞) = ∞ and
ψ(u) > 0 for all u > 0.

(H2) All ϕi (i = 1, 2, . . . , k) are continuous and positive functions on R+.

(H3) a(m,n) ≥ 0 on Λ.

(H4) All fi (i = 1, 2, . . . , k) are nonnegative functions on Λ ×Λ.

With given functions ϕ1, ϕ2, and ψ, we technically consider a sequence of functions
wi(s), which can be calculated recursively by

w1(s) := max
τ∈[0,s]

{
ϕ1(τ)

}
,

wi+1(s) := max
τ∈[0,s]

{
ϕi+1(τ)
wi(τ)

}
wi(s), i = 1, . . . , k − 1.

(2.1)

For given constants ui > 0 and variable u > 0, we define

Wi(u, ui) :=
∫u

ui

dx

wi

(
ψ−1(x)

) , i = 1, 2, . . . , k. (2.2)

Obviously,Wi is strictly increasing in u > 0 and therefore the inversesW−1
i are well defined,

continuous, and increasing. Let

f̃i(m,n, s, t) := max
(τ,ξ)∈[m0,m]×[n0,n]

fi(τ, ξ, s, t), (2.3)

which is nondecreasing in m and n for each fixed s and t and satisfies f̃i(x, y, t, s) ≥
fi(x, y, t, s) ≥ 0 for all i = 1, . . . , k.
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Theorem 2.1. Suppose that (H1)–(H4) hold and u(m,n) is a nonnegative function on Λ satisfying
(1.7). Then, for (m,n) ∈ Λ[M1,N1], a sublattice in Λ,

u(m,n) ≤ ψ−1
{
W−1

k

[
Wk(Υk(m,n)) +

m−1∑

s=m0

n−1∑

t=n0

f̃k(m,n, s, t)

]}
, (2.4)

where Υk(m,n) is determined recursively by

Υ1(m,n) := a(m0, n0) +
m−1∑

s=m0

|a(s + 1, n0) − a(s, n0)| +
n−1∑

t=n0

|a(m, t + 1) − a(m, t)|,

Υi+1(m,n) :=W−1
i

[
Wi(Υi(m,n)) +

m−1∑

s=m0

n−1∑

t=n0

f̃i(m,n, s, t)

]
, i = 1, . . . , k − 1,

(2.5)

and (M1,N1) ∈ Λ is arbitrarily given on the boundary of the lattice

U :=

{
(m,n) ∈ Λ :Wi(Υi(m,n)) +

m−1∑

s=m0

n−1∑

t=n0

f̃i(m,n, s, t) ≤
∫∞

ui

dx

wi

(
ψ−1(x)

) , i = 1, 2, . . . , k

}
.

(2.6)

Remark 2.2. As explained in [3, Remark 2], since different choices of ui in Wi (i = 1, 2, . . . , k)
do not affect our results, we simply letWi(u) denoteWi(u, ui)when there is no confusion. For
positive constants vi /=ui, let W̃i(u) =

∫u
vi
dx/wi(ψ−1(x)). Obviously, W̃i(u) = Wi(u) + W̃i(ui)

and W̃−1
i (v) =W−1

i (v − W̃i(ui)). It follows that

W̃−1
i

[
W̃i(Υi(m,n)) +

m−1∑

s=m0

n−1∑

t=n0

f̃i(m,n, s, t)

]
=W−1

i

[
Wi(Υi(m,n)) +

m−1∑

s=m0

n−1∑

t=n0

f̃i(m,n, s, t)

]
,

(2.7)

that is, we obtain the same expression in (2.4) if we replace Wi with W̃i, i = 1, 2, . . . , k.
Moreover, by replacingWi with W̃i, the condition in the definition ofU in Theorem 2.1 reads

W̃i(Υi(M1,N1)) +
M1−1∑

s=m0

N1−1∑

t=n0

f̃i(m,n, s, t) ≤
∫∞

vi

dx

wi

(
ψ−1(x)

) , i = 1, 2, . . . , k, (2.8)

the left-hand side of which is equal to

W̃i(ui) +Wi(Υi(M1,N1)) +
M1−1∑

s=m0

N1−1∑

t=n0

f̃i(m,n, s, t), (2.9)
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and the right-hand side of which equals

∫ui

vi

dx

wi

(
ψ−1(x)

) +
∫∞

ui

dx

wi

(
ψ−1(x)

) = W̃i(ui) +
∫∞

ui

dx

wi

(
ψ−1(x)

) . (2.10)

The comparison between the both sides implies that (2.8) is equivalent to the condition given
in the definition ofU in Theorem 2.1 with (m,n) = (M1,N1).

Remark 2.3. If we choose k = 2, ψ(u) = up, ϕ1(u) = uq, ϕ2(u) = uqw(u) with p > q > 0,
f1(m,n, s, t) = d(s, t) and f2(m,n, s, t) = e(s, t) and restrict a(m,n) to be a constant c in (1.7),
then we can apply Theorem 2.1 to inequality (1.6) discussed in [26].

3. Proof of Theorem

First of all, we monotonize some given functions ϕi, fi in the sums. Obviously, the sequence
wi(s) defined by ϕi (i = 1, . . . , k) in (2.1) consists of nondecreasing nonnegative functions and
satisfies wi(s) ≥ ϕi(s), for i = 1, . . . , k. Moreover,

wi ∝ wi+1, i = 1, 2, . . . , k − 1, (3.1)

as defined in [27] for comparison of monotonicity of functions wi(s) (i = 1, . . . , k), because
every ratio wi+1(s)/wi(s) is nondecreasing. By the definitions of functions wi, f̃i, ψ, and Υ1,
from (1.7)we get

u(m,n) ≤ ψ−1
[
Υ1(m,n) +

k∑

i=1

m−1∑

s=m0

n−1∑

t=n0

f̃i(m,n, s, t)wi(u(s, t))

]
, ∀(m,n) ∈ Λ. (3.2)

Then, we discuss the case that a(m,n) > 0 for all (m,n) ∈ Λ. Because Υ1 satisfies

Υ1(m,n) = a(m0, n0) +
m−1∑

s=m0

|a(s + 1, n0) − a(s, n0)| +
n−1∑

t=n0

|a(m, t + 1) − a(m, t)|

≥ a(m,n),
(3.3)

it is positive and nondecreasing on Λ. We consider the auxiliary inequality to (3.2), for all
(m,n) ∈ Λ[M,N],

u(m,n) ≤ ψ−1
[
Υ1(M,N) +

k∑

i=1

m−1∑

s=m0

n−1∑

t=n0

f̃i(M,N, s, t)wi(u(s, t))

]
, (3.4)
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where M ∈ dis[m0,M1] and N ∈ dis[n0,N1] are chosen arbitrarily, and claim that, for
(m,n) ∈ Λ[min{M2,M},min{N2,N}], a sublattice in Λ[M1,N1],

u(m,n) ≤ ψ−1
{
W−1

k

[
Wk

(
Υ̃k(M,N,m, n)

)
+

m−1∑

s=m0

n−1∑

t=n0

f̃k(M,N, s, t)

]}
, (3.5)

where Υ̃k(M,N,m, n) is determined recursively by

Υ̃1(M,N,m, n) := Υ1(M,N),

Υ̃i+1(M,N,m, n) :=W−1
i

[
Wi

(
Υ̃i(M,N,m, n)

)
+

m−1∑

s=m0

n−1∑

t=n0

f̃i(M,N, s, t)

]
,

(3.6)

i = 1, 2, . . . , k − 1, and (M2,N2) ∈ Λ[M1,N1] is arbitrarily chosen on the boundary of the lattice

U1 :=

{
(m,n) ∈ Λ :Wi

(
Υ̃i(M,N,m, n)

)
+

m−1∑

s=m0

n−1∑

t=n0

f̃i(M,N, s, t)

≤
∫∞

ui

dx

wi

(
ψ−1(x)

) , i = 1, 2, . . . , k

}
.

(3.7)

We note thatM2,N2 can be chosen appropriately such that

M2(M,N) =M1, N2(M,N) =N1, ∀(M,N) ∈ Λ[M1,N1]. (3.8)

In fact, from the fact of (M1,N1) being on the boundary of the latticeU, we see that

Wi

(
Υ̃i(M1,N1,M1,N1)

)
+
M1−1∑

s=m0

N1−1∑

t=n0

f̃i(M1,N1, s, t)

=Wi(Υi(M1,N1)) +
M1−1∑

s=m0

N1−1∑

t=n0

f̃i(M1,N1, s, t)

≤
∫∞

ui

dx

wi

(
ψ−1(x)

) , i = 1, 2, . . . , k.

(3.9)

Thus, it means that we can take M2 = M1, N2 = N1. Moreover, M = min{M2,M}, N =
min{N2,N}.

In the following, we will use mathematical induction to prove (3.5).
For k = 1, let z(m,n) =

∑m−1
s=m0

∑n−1
t=n0 f̃1(M,N, s, t)w1(u(s, t)). Then z is nonnegative

and nondecreasing in each variable on Λ[M,N]. From (3.4)we observe that

u(m,n) ≤ ψ−1(Υ1(M,N) + z(m,n)), ∀(m,n) ∈ Λ[M N]. (3.10)
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Moreover, we note that w1 is nondecreasing and satisfies w1(u) > 0 for u > 0 and that
Υ1(M,N) + z(m,n) > 0. From (3.10) we have

Δ1(Υ1(M,N) + z(m,n))
w1
(
ψ−1(Υ1(M,N) + z(m,n))

) =

∑n−1
t=n0 f̃1(M,N,m, t)w1(u(m, t))

w1
(
ψ−1(Υ1(M,N) + z(m,n))

)

≤
n−1∑

t=n0

f̃1(M,N,m, t).

(3.11)

On the other hand, by the Mean Value Theorem for integral and by the monotonicity of w1

and ψ, for arbitrarily given (m,n), (m + 1, n) ∈ Λ[M N] there exists ξ in the open interval
(Υ1(M,N) + z(m,n),Υ1(M,N) + z(m + 1, n)) such that

W1(Υ1(M,N) + z(m + 1, n)) −W1(Υ1(M,N) + z(m,n))

=
∫Υ1(M,N)+z(m+1,n)

Υ1(M,N)+z(m,n)

du

w1
(
ψ−1(u)

)

=
Δ1(Υ1(M,N) + z(m,n))

w1
(
ψ−1(ξ)

)

≤ Δ1(Υ1(M,N) + z(m,n))
w1
(
ψ−1(Υ1(M,N) + z(m,n))

) .

(3.12)

It follows from (3.11) and (3.12) that

W1(Υ1(M,N) + z(m + 1, n)) −W1(Υ1(M,N) + z(m,n)) ≤
n−1∑

t=n0

f̃1(M,N,m, t). (3.13)

Substituting m with s and summing both sides of (3.13) from s = m0 to m − 1, we get, for all
(m,n) ∈ Λ[M N],

W1(Υ1(M,N) + z(m,n)) ≤W1(Υ1(M,N)) +
m−1∑

s=m0

n−1∑

t=n0

f̃1(M,N, s, t). (3.14)

We note from the definition of z(m,n) in (3.2) and the definition of
∑m0−1

s=m0
in Section 2 that

z(m0, n) = 0. By the monotonicity ofW−1 and (3.10)we obtain

u(m,n) ≤ ψ−1
{
W−1

1

(
W1(Υ1(M,N)) +

m−1∑

s=m0

n−1∑

t=n0

f̃1(M,N, s, t)

)}
, ∀(m,n) ∈ Λ[M N], (3.15)

that is, (3.5) is true for k = 1.
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Next, we make the inductive assumption that (3.5) is true for k = l. Consider

u(m,n) ≤ ψ−1
[
Υ1(M,N) +

l+1∑

i=1

m−1∑

s=m0

n−1∑

t=n0

f̃i(M,N, s, t)wi(u(s, t))

]
, (3.16)

for all (m,n) ∈ Λ[M N]. Let y(m,n) =
∑l+1

i=1
∑m−1

s=m0

∑n−1
t=n0 f̃i(M,N, s, t)wi(u(s, t)), which is

nonnegative and nondecreasing in each variable on Λ[M,N]. Then (3.16) is equivalent to

u(m,n) ≤ ψ−1(Υ1(M,N) + y(m,n)
)
, ∀(m,n) ∈ Λ[M N]. (3.17)

Since wi is nondecreasing and satisfies wi(u) > 0 for u > 0 (i = 1, 2, . . . , l + 1) and Υ1(K,L) +
y(m,n) > 0, from (3.17) we obtain, for all (m,n) ∈ Λ[M N],

Δ1
(
Υ1(M,N) + y(m,n)

)

w1
(
ψ−1(Υ1(M,N) + y(m,n)

)) =

∑n−1
t=n0 f̃1(M,N,m, t)w1(u(m, t))

w1
(
ψ−1(Υ1(M,N) + y(m,n)

))

+

∑l+1
i=2
∑n−1

t=n0 f̃i(M,N,m, t)wi(u(m, t))

w1
(
ψ−1(Υ1(M,N) + y(m,n)

))

≤
n−1∑

t=n0

f̃1(M,N,m, t) +
l∑

i=1

n−1∑

t=n0

f̃i+1(M,N,m, t)φi+1(u(m, t)),

(3.18)

where

φi(u) :=
wi(u)
w1(u)

, i = 2, 3, . . . , l + 1. (3.19)

On the other hand, by the Mean Value Theorem for integrals and by the monotonicity of
w1 and ψ, for arbitrarily given (m,n), (m + 1, n) ∈ Λ[M,N] there exists ξ in the open interval
(Υ1(M,N) + y(m,n), Υ1(M,N) + y(m + 1, n)) such that

W1
(
Υ1(M,N) + y(m + 1, n)

) −W1
(
Υ1(M,N) + y(m,n)

)

=
∫Υ1(M,N)+y(m+1,n)

Υ1(M,N)+y(m,n)

du

w1
(
ψ−1(u)

)

=
Δ1
(
Υ1(M,N) + y(m,n)

)

w1
(
ψ−1(ξ)

)

≤ Δ1
(
Υ1(M,N) + y(m,n)

)

w1
(
ψ−1(Υ1(M,N) + y(m,n)

)) .

(3.20)
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Therefore, it follows from (3.18) and (3.20) that

W1
(
Υ1(M,N) + y(m + 1, n)

) −W1
(
Υ1(M,N) + y(m,n)

)

≤
n−1∑

t=n0

f̃1(M,N,m, t) +
l∑

i=1

n−1∑

t=n0

f̃i+1(M,N,m, t)φi+1(u(m, t)).
(3.21)

substituting m with s in (3.21) and summing both sides of (3.21) from s = m0 to m − 1, we
get, for all (m,n) ∈ Λ[M,N],

W1
(
Υ1(M,N) + y(m,n)

) −W1(Υ1(M,N))

≤
m−1∑

s=m0

n−1∑

t=n0

f̃1(M,N, s, t) +
l∑

i=1

m−1∑

s=m0

n−1∑

t=n0

f̃i+1(M,N, s, t)φi+1(u(s, t)),
(3.22)

where we note that y(m0, n) = 0. For convenience, let

ψ(Ξ(m,n)) :=W1
(
Υ1(M,N) + y(m,n)

)
,

θ(M,N,m, n) :=W1(Υ1(M,N)) +
m−1∑

s=m0

n−1∑

t=n0

f̃1(M,N, s, t).
(3.23)

From (3.17) and (3.22) we can get

Ξ(m,n) ≤ ψ−1
{
θ(M,N,M,N) +

l∑

i=1

m−1∑

s=m0

n−1∑

t=n0

f̃i+1(M,N, s, t)φi+1
[
ψ−1
(
W−1

1

(
ψ(Ξ(m,n))

))]
}
,

(3.24)

the same form as (3.4) for k = l, for all (m,n) ∈ Λ[M,N], where we note that θ(M,N,M,N) ≥
θ(M,N,m, n) for all (m,n) ∈ Λ[M,N]. We are ready to use the inductive assumption for (3.24).
In order to demonstrate the basic condition of monotonicity, let h(s) = ψ−1(W−1

1 (ψ(s))),
obviously which is a continuous and nondecreasing function on R+. Thus each φi(h(s)) is
continuous and nondecreasing on R+ and satisfies φi(h(s)) > 0 for s > 0. Moreover,

φi+1(h(s))
φi(h(s))

=
wi+1(h(s))
wi(h(s))

= max
τ∈[0,h(s)]

{
ϕi+1(τ)
wi(τ)

}
, (3.25)

which is also continuous nondecreasing onR+ and positive onR+. This implies that φi(h(s)) ∝
φi+1(h(s)), for i = 2, . . . , l. Therefore, the inductive assumption for (3.5) can be used to (3.24)
and we obtain, for all (m,n) ∈ Λ[min{M,M3},min{N,N3}],

Ξ(m,n) ≤ ψ−1
{
Φ−1
l+1

[
Φl+1(θl+1(M,N,m, n)) +

m−1∑

s=m0

n−1∑

t=n0

f̃l+1(M,N, s, t)

]}
, (3.26)
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where Φi(u) :=
∫u
�(ui)

(ds/φi(h(s))), u > 0, �(u) = ψ−1(W1(u)), Φ−1
i is the inverse of Φi (for

i = 2, 3, . . . , l + 1), θl+1(M,N,m, n) is determined recursively by

θ1(M,N,m, n) := θ(M,N,M,N),

θi+1(M,N,m, n) := Φ−1
i

[
Φi(θi(M,N,m, n)) +

m−1∑

s=m0

n−1∑

t=n0

f̃i(M,N, s, t)

]
, i = 1, 2, . . . , l,

(3.27)

and M3, N3 are functions of (M,N) such that M3(M,N), N3(M,N) ∈ Λ[M1,N1] lie on the
boundary of the lattice

U2 :=

{
(m,n) ∈ Λ : Φi(θi(M,N,m, n)) +

m−1∑

s=m0

n−1∑

t=n0

f̃i(M,N, s, t)

≤
∫�(∞)

�(ui)

ds

φi(h(s))
, i = 2, 3, . . . , l + 1

}
,

(3.28)

where �(∞) denotes either limu→∞�(u) if it converges or ∞. Note that

Φi(u) =
∫u

�(ui)

ds

θ
(
ψ−1(W−1

1

(
ψ(s)

)))

=
∫u

�(ui)

w1
(
ψ−1(W−1

1

(
ψ(s)

)))
ds

wi

(
ψ−1(W−1

1

(
ψ(s)

)))

=
∫W−1

1 (ψ(u))

ui

dx

wi

(
ψ−1(x)

)

=Wi

(
W−1

1

(
ψ(u)

))
, i = 2, 3, . . . , l + 1.

(3.29)

Thus, from (3.17), (3.23), and (3.27), (3.26) can be equivalently written as

u(m,n) ≤ ψ−1
(
W−1

1

(
ψ(Ξ(m,n))

))

≤ ψ−1
{
W−1

l+1

[
Wl+1

(
W−1

1

(
ψ(θl+1(M,N,m, n))

))

+
m−1∑

s=m0

n−1∑

t=n0

f̃l+1(M,N, s, t)

]}
, ∀(m,n) ∈ Λ[min{M,M3},min{N,N3}].

(3.30)

We further claim that the termW−1
1 (ψ(θi(M,N,m, n))) is the same as Υ̃i(M,N,m, n), defined

in (3.6), i = 1, 2, . . . , l + 1. For convenience, let θ̃i(M,N,m, n) = W−1
1 (ψ(θi(M,N,m, n))).

Obviously, it is that θ̃1(M,N,m, n) = Υ̃1(M,N,m, n).
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The remainder case is that a(m,n) = 0 for some (m,n) ∈ Λ. Let

Υ1,ε(m,n) = Υ1(m,n) + ε, (3.31)

where ε > 0 is an arbitrary small number. Obviously, Υ1,ε(m,n) > 0 for all (m,n) ∈ Λ. Using
the same arguments as above and replacing Υ1(m,n)with Υ1,ε(m,n), we get

u(m,n) ≤ ψ−1
{
W−1

2

[
W2

(
W−1

1

(
W1(Υ1,ε(m,n)) +

m−1∑

s=m0

n−1∑

t=n0

f1(s, t)

))
+

m−1∑

s=m0

n−1∑

t=n0

f2(s, t)

]}

(3.32)

for all (m,n) ∈ Λ(m1,n1).
Considering continuities of Wi and W−1

i for i = 1, 2 as well as of Υi,ε in ε and letting
ε → 0+, we obtain (2.4). This completes the proof.

We remark that m1, n1 lie on the boundary of the lattice U. In particular, (2.4) is true
for all (m,n) ∈ Λ when every wi (i = 1, 2) satisfies

∫∞
ui
dx/wi(ψ−1(x)) = ∞. Therefore, we may

takem1 =M, n1 =N.

4. Applications to a Difference Equation

In this section we apply our result to the following boundary value problem (simply called
BVP) for the partial difference equation:

Δ1Δ2ψ(z(m,n)) = F(m,n, z(m,n)), (m,n) ∈ Λ,

z(m,n0) = f(m), z(m0, n) = g(n), (m,n) ∈ Λ,
(4.1)

where Λ := I × J is defined as in the beginning of Section 2, ψ ∈ C0(R,R) is strictly increasing
odd function satisfying ψ(u) > 0 for u > 0, F : Λ × R → R satisfies

|F(m,n, u)| ≤ h1(m,n)ϕ1(|u|) + h2(m,n)ϕ2(|u|), (4.2)

for given functions h1, h2 : Λ → R+ and ϕi ∈ C0(R+,R+) (i = 1, 2) satisfying ϕi(u) > 0 for
u > 0, and functions f : I → R and g : J → R satisfy that f(m0) = g(n0) = 0. Obviously,
(4.1) is a generalization of the BVP problem considered by [26, Section 3], and the theorems
of [26] are not able to solve it. In the following we first apply our main result to the discussion
of boundedness of (4.1).
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Corollary 4.1. All solutions z(m,n) of BVP (4.1) have the following estimation for all (m,n) ∈
Λ(m1,n1)

|z(m,n)| ≤ ψ−1
{
W−1

2

[
W2(Υ2(m,n)) +

m−1∑

s=m0

n−1∑

t=n0

h2(s, t)

]}
, (4.3)

wherem1, n1 are given as in Theorem 2.1 and

W2(u) =
∫u

1

dx
{
maxτ∈[0,x]

{
ϕ2
(
ψ−1(τ)

)
/maxτ1∈[0,τ]

{
ϕ1
(
ψ−1(τ1)

)}}
maxτ∈[0,x]

{
ϕ1
(
ψ−1(τ)

)}} ,

W1(u) =
∫u

1

dx

maxτ∈[0,x]
{
ϕ1
(
ψ−1(τ)

)} ,

Υ2(m,n) =W−1
1

[
W1(Υ1(m,n)) +

m−1∑

s=m0

n−1∑

t=n0

h1(t, s)

]
,

Υ1(m,n) ≤
m−1∑

s=m0

∣∣ψ
(
f(s + 1)

) − ψ(f(s))∣∣ +
n−1∑

t=n0

∣∣ψ
(
g(t + 1)

) − ψ(g(t))∣∣.

(4.4)

Proof. Clearly, the difference equation of BVP (4.1) is equivalent to

ψ(z(m,n)) = ψ
(
f(m)

)
+ ψ
(
g(n)

)
+

m−1∑

s=m0

n−1∑

t=n0

F(s, t, z(s, t)). (4.5)

It follows, by (4.2), that

∣∣ψ(z(m,n))
∣∣ ≤ ∣∣ψ(f(m)

)
+ ψ
(
g(n)

)∣∣ +
m−1∑

s=m0

n−1∑

t=n0

h1(s, t)ϕ1(|z(s, t)|)

+
m−1∑

s=m0

n−1∑

t=n0

h2(s, t)ϕ2(|z(s, t)|).
(4.6)

Let a(m,n) = |ψ(f(m)) + ψ(g(n))|. Since |ψ(z(m,n))| = ψ(|z(m,n)|), (4.6) is of the form (1.6).
Applying our Theorem 2.1 to inequality (4.6), we obtain the estimate of z(m,n) as given in
this corollary.

Corollary 4.1 gives a condition of boundedness for solutions. Concretely, if

Υ1(m,n) <∞,
m−1∑

s=m0

n−1∑

t=n0

h1(s, t) <∞,
m−1∑

s=m0

n−1∑

t=n0

h2(s, t) <∞ (4.7)

for all (m,n) ∈ Λ(m1,n1), then every solution z(m,n) of BVP (4.1) is bounded on Λ(m1,n1).
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Next, we discuss the uniqueness of solutions for BVP (4.1).

Corollary 4.2. Suppose additionally that

|F(m,n, u1) − F(m,n, u2)| ≤ h1(m,n)ϕ1
(∣∣ψ(u1) − ψ(u2)

∣∣) + h2(m,n)ϕ2
(∣∣ψ(u1) − ψ(u2)

∣∣)

(4.8)

for u1, u2 ∈ R and (m,n) ∈ Λ := I × J , where I = [m0,M)∩N0, J = [n0,N)∩N0 as assumed in the
beginning of Section 2 with natural numbersM andN, h1, h2 are both nonnegative functions defined
on the latticeΛ, ϕ1, ϕ2 ∈ C0(R+,R+) are both nondecreasing with the nondecreasing ratio ϕ2/ϕ1 such
that ϕi(0) = 0, ϕi(u) > 0 for all u > 0 and

∫1
0ds/ϕi(s) = +∞ for i = 1, 2 and ψ ∈ C0(R,R) is strictly

increasing odd function satisfying ψ(u) > 0 for u > 0. Then BVP (4.1) has at most one solution on Λ.

Proof. Assume that both z(m,n) and z̃(m,n) are solutions of BVP (4.1). From the equivalent
form (4.5) of (4.1) we have

∣∣ψ(z(m,n)) − ψ(z̃(m,n))∣∣ ≤
m−1∑

s=m0

n−1∑

t=n0

h1(s, t)ϕ1
(∣∣ψ(z(s, t)) − ψ(z̃(s, t))∣∣)

+
m−1∑

s=m0

n−1∑

t=n0

h2(s, t)ϕ2
(∣∣ψ(z(s, t)) − ψ(z̃(s, t))∣∣)

(4.9)

for all (m,n) ∈ Λ, which is an inequality of the form (1.7), where a(m,n) ≡ 0. Applying
our Theorem 2.1 with the choice that u1 = u2 = 1, we obtain an estimate of the difference
|ψ(z(m,n)) − ψ(z̃(m,n))| in the form (2.4), where Υ1(m,n) ≡ 0 because a(m,n) ≡ 0.
Furthermore, by the definition ofWi we see that

lim
u→ 0

Wi(u) = −∞, lim
u→−∞

W−1
i (u) = 0, i = 1, 2. (4.10)

It follows that

W1(Υ1(m,n)) +
m−1∑

s=m0

n−1∑

t=n0

h1(s, t) = −∞, (4.11)

sincem <M, n < N. Thus, by (4.10),

Υ2(m,n) =W−1
1

[
W1(Υ1(m,n)) +

m−1∑

s=m0

n−1∑

t=n0

h1(s, t)

]
= 0. (4.12)
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Similarly, we getW2(Υ2(m,n)) +
∑m−1

s=m0

∑n−1
t=n0 h2(s, t) = −∞ and therefore

W−1
2

[
W2(Υ2(m,n)) +

m−1∑

s=m0

n−1∑

t=n0

h2(s, t)

]
= 0. (4.13)

Thus we conclude from (2.4) that |ψ(z(m,n)) − ψ(z̃(m,n))| ≤ 0, implying that z(m,n) =
z̃(m,n) for all (m,n) ∈ Λ since ψ is strictly increasing. It proves the uniqueness.

Remark 4.3. If h1 ≡ 0 or h2 ≡ 0 in (4.8), the conclusion of the Corollary 4.2 also can be obtained.

Finally, we discuss the continuous dependence of solutions of BVP (4.1) on the given
functions F, f , and g. Consider a variation of BVP (4.1)

Δ1Δ2ψ(z(m,n)) = F̃(m,n, z(m,n)), (m,n) ∈ Λ,

z(m,n0) = f̃(m), z(m0, n) = g̃(n), (m,n) ∈ Λ,
(4.14)

where ψ ∈ C0(R,R) is strictly increasing odd function satisfying ψ(u) > 0 for u > 0, F̃ ∈
C0(Λ × R,R), and f̃ : I → R, g̃ : J → R are functions satisfying f̃(m0) = g̃(n0) = 0.

Corollary 4.4. Let F be a function as assumed in the beginning of Section 4 and satisfy (4.2) and
(4.8) on the same lattice Λ as assumed in Corollary 4.2. Suppose that the three differences

max
m∈I

∣∣∣f̃ − f
∣∣∣, max

n∈J

∣∣g̃ − g∣∣, max
(s,t,u)∈Λ×R

∣∣∣F̃(s, t, u) − F(s, t, u)
∣∣∣ (4.15)

are all sufficiently small. Then solution z̃(m,n) of BVP (4.14) is sufficiently close to the solution
z(m,n) of BVP (4.1).

Proof. By Corollary 4.2, the solution z(m,n) is unique. By the continuity and the strict
monotonicity of ψ, we suppose that

max
m∈I

∣∣∣ψ
(
f̃(m)

)
− ψ(f(m)

)∣∣∣ < ε, max
n∈J

∣∣ψ
(
g̃(n)

) − ψ(g(n))∣∣ < ε,

max
(s,t,u)∈I×J×R

∣∣∣F̃(s, t, u) − F(s, t, u)
∣∣∣ < ε,

(4.16)
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where ε > 0 is a small number. By the equivalent difference equation (4.5) and the inequality
(4.8) we get

∣∣ψ
(
z̃(m,n) − ψ(z(m,n)))∣∣ ≤

∣∣∣ψ
(
f̃(m)

)
− ψ(f(m)

)
+ ψ
(
g̃(n)

) − ψ(g(n))
∣∣∣

+
m−1∑

s=m0

n−1∑

t=n0

∣∣∣F̃(s, t, z̃(s, t)) − F(s, t, z(s, t))
∣∣∣

≤ 2ε +
m−1∑

s=m0

n−1∑

t=n0

∣∣∣F̃(s, t, z̃(s, t)) − F(s, t, z̃(s, t))
∣∣∣

+
m−1∑

s=m0

n−1∑

t=n0

|F(s, t, z̃(s, t)) − F(s, t, z(s, t))|

≤ {2 + (m1 −m0)(n1 − n0)}ε

+
m−1∑

s=m0

n−1∑

t=n0

h1(s, t)ϕ1
(∣∣ψ(z̃(s, t)) − ψ(z(s, t))∣∣)

+
m−1∑

s=m0

n−1∑

t=n0

h2(s, t)ϕ2
(∣∣ψ(z̃(s, t)) − ψ(z(s, t))∣∣),

(4.17)

that is an inequality of the form (1.7). Applying Theorem 2.1 to (4.17), we obtain, for all
(m,n) ∈ Λ(m1,n1), that

∣∣ψ
(
z̃(m,n) − ψ(z(m,n)))∣∣ ≤W−1

2

[
W2(Υ2(m,n)) +

m−1∑

s=m0

n−1∑

t=n0

h2(s, t)

]
, (4.18)

wherem1, n1 are given as in Theorem 2.1,

Υ2(m,n) =W−1
1

[
W1(Υ1(m,n)) +

m−1∑

s=m0

n−1∑

t=n0

h1(t, s)

]
,

Υ1(m,n) = {2 + (m1 −m0)(n1 − n0)}ε.

(4.19)

By (4.10) we see that Υi(m,n) → 0 (i = 1, 2) as ε → 0. It follows from (4.18) that
limε→ 0|ψ(z̃(m,n) − ψ(z(m,n))| = 0 and hence z(m,n) depends continuously on F, f, and
g.

Remark 4.5. Our requirement of the small difference F̃ −F in Corollary 4.4 is stronger than the
condition (iii) in [26, Theorem 3.3], but it is easier to check than the condition of them.
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