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Let f : [0,1]×R
2 → R be a function satisfying Carathéodory’s conditions and e(t) ∈

L1[0,1]. Let ξi ∈ (0,1), ai ∈ R, i = 1,2, . . . ,m− 2, 0 < ξ1 < ξ2 < · · · < ξm−2 < 1
be given. This paper is concerned with the problem of existence of a solution for the
m-point boundary value problem x′′(t) = f (t,x(t),x′(t))+e(t), 0 < t < 1; x(0) = 0,
x′(1) =∑m−2

i=1 aix
′(ξi). This paper gives conditions for the existence of a solution for

this boundary value problem using some new Poincaré type a priori estimates. This
problem was studied earlier by Gupta, Ntouyas, and Tsamatos (1994) when all of the
ai ∈ R, i = 1,2, . . . ,m−2, had the same sign. The results of this paper give considerably
better existence conditions even in the case when all of the ai ∈ R, i = 1,2, . . . ,m−2,
have the same sign. Some examples are given to illustrate this point.

1. Introduction

Let f : [0,1] × R
2 → R be a function satisfying Carathéodory’s conditions and

e : [0,1] �→ R be a function in L1[0,1], ai ∈ R, ξi ∈ (0,1), i = 1,2, . . . ,m− 2,
0 < ξ1 < ξ2 < · · · < ξm−2 < 1. We study the problem of existence of solutions for the
m-point boundary value problem

x′′(t)= f
(
t,x(t),x′(t)

)+e(t), 0 < t < 1,

x(0)= 0, x′(1)=
m−2∑
i=1

aix
′(ξi). (1.1)

This problem was studied earlier by Gupta, Ntouyas, and Tsamatos in [1] when all
of the ai ∈ R, i = 1,2, . . . ,m−2, have the same sign. Gupta, Ntouyas, and Tsamatos
have studied problem (1.1) by first studying the three-point boundary value problem,
for a given α ∈ R, α 
= 1, η ∈ (0,1),

x′′(t)= f
(
t,x(t),x′(t)

)+e(t), 0 < t < 1,

x(0)= 0, x′(1)= αx′(η).
(1.2)
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The purpose of this paper is to obtain conditions for the existence of a solution for
the boundary value problem (1.1), using new estimates and inequalities involving a
function x(t) and its derivative x′(t). These results are motivated by the so-called
nonlocal boundary value problem studied by Il’in and Moiseev in [5].

We use the classical spaces C[0,1], Ck[0,1], Lk[0,1], and L∞[0,1] of continuous,
k-times continuously differentiable, measurable real-valued functions whose kth power
of the absolute value is Lebesgue integrable on [0,1], or measurable functions that are
essentially bounded on [0,1]. We also use the Sobolev spaces W 2,k(0,1), k = 1,2
defined by

W 2,k(0,1)={x : [0,1]−→R | x,x′ absolutely continuous on [0,1] with x′′ ∈Lk[0,1]}
(1.3)

with its usual norm. We denote the norm in Lk[0,1] by ‖·‖k , and the norm in L∞[0,1]
by ‖·‖∞.

2. A priori estimates

Let ai ∈ R, ξi ∈ (0,1), i = 1,2, . . . ,m− 2, 0 < ξ1 < ξ2 < · · · < ξm−2 < 1, with
α = ∑m−2

i=1 ai 
= 1 be given. Let x(t) ∈ W 2,1(0,1) be such that x(0) = 0, x′(1) =∑m−2
i=1 aix

′(ξi) be given. We are interested in obtaining a priori estimates of the form
‖x′‖∞ ≤ C‖x′′‖1. The following theorem gives such an estimate. We recall that for
a ∈ R, a+ = max{a,0}, a− = max{−a,0} so that a = a+ −a− and |a| = a+ +a−.

Theorem 2.1. Let ai ∈ R, ξi ∈ (0,1), i = 1,2, . . . ,m− 2, 0 < ξ1 < ξ2 < · · · <
ξm−2 < 1, with α = ∑m−2

i=1 ai 
= 1 be given. Then for x(t) ∈ W 2,1(0,1) with x(0) =
0,x′(1)=∑m−2

i=1 aix
′(ξi) we have

∥∥x′∥∥∞ ≤ 1

1−τ

∥∥x′′∥∥
1, (2.1)

where

τ = min

{ ∑m−2
i=1

(
ai
)
+∑m−2

i=1

(
ai
)
− +1

,

∑m−2
i=1

(
ai
)
− +1∑m−2

i=1

(
ai
)
+

}
. (2.2)

Proof. We see that the assumption x′(1)=∑m−2
i=1 aix

′(ξi) implies

x′(1)+
m−2∑
i=1

(
ai
)
−x

′(ξi)=
m−2∑
i=1

(
ai
)
+x

′(ξi) (2.3)

and thus there exist λ1,λ2 ∈ [0,1] such that(
1+

m−2∑
i=1

(
ai
)
−

)
x′(λ1

)=
m−2∑
i=1

(
ai
)
+x

′(λ2
)
. (2.4)

If, now, either x′(λ1)= 0 or x′(λ2)= 0, then we clearly have∥∥x′∥∥∞ ≤ ∥∥x′′∥∥
1. (2.5)
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Suppose, now, that x′(λ1) 
= 0 and x′(λ2) 
= 0. Then it follows easily from (2.4) that
x′(λ1) 
= x′(λ2), in view of the assumption α = ∑m−2

i=1 ai 
= 1. Then it follows from
(2.4), the estimate (2.5), and the equations

x′(t)= x′(λ1
)+∫ t

λ1

x′′(s)ds, x′(t)= x′(λ2
)+∫ t

λ2

x′′(s)ds, (2.6)

that ∥∥x′∥∥∞ ≤ 1

1−τ

∥∥x′′∥∥
1 (2.7)

with

τ = min

{ ∑m−2
i=1

(
ai
)
+∑m−2

i=1

(
ai
)
− +1

,

∑m−2
i=1

(
ai
)
− +1∑m−2

i=1

(
ai
)
+

}
. (2.8)

This completes the proof of the theorem. �

Remark 2.2. We note that if ai ≤ 0 for every i = 1,2, . . . ,m− 2, then τ = 0 and if
ai ≥ 0 for every i = 1,2, . . . ,m− 2 so that α = ∑m−2

i=1 ai = ∑m−2
i=1 (ai)+ ≥ 0, then

τ = min{α,1/α} ∈ [0,1) since α 
= 1, by assumption.

The following theorem gives a better estimate for the three-point boundary value in
the case of the L2-norm.

Theorem 2.3. Let α ∈ R, α 
= 1, and η ∈ (0,1) be given. Let x(t) ∈ W 2,2(0,1) be
such that x′(1)= αx′(η). Then ∥∥x′∥∥

2 ≤ C(α,η)
∥∥x′′∥∥

2, (2.9)

where

C(α,η)=




min

{√
F(α,η),

2

π

}
if α ≤ 0,

√
F(α,η) if α > 0,

F(α,η)= 1

2(α−1)2
[
α2(1−η)2 +(α2 −2α

)
η2 +1

]
.

(2.10)

Proof. If α ≤ 0, we note from x′(1) = αx′(η) that there exists an ξ ∈ (η,1) such that
x′(ξ)= 0. It follows from the Wirtinger’s inequality (see [4, Theorem 256]) that

∥∥x′∥∥
2 ≤ 2

π

∥∥x′′∥∥
2. (2.11)

Next, we note, again, from x′(1)= αx′(η) that

x′(t)=
∫ t

0
x′′(s)ds+ α

1−α

∫ η

0
x′′(s)ds− 1

1−α

∫ 1

0
x′′(s)ds for 0 < t < 1. (2.12)
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Accordingly, we have for t ∈ [0,η]

x′(t)=
∫ t

0
x′′(s)ds+ α

1−α

∫ η

0
x′′(s)ds− 1

1−α

∫ 1

0
x′′(s)ds

=
∫ t

0

(
1+ α

1−α− 1

1−α
)
x′′(s)ds+

∫ η

t

(
α

1−α− 1

1−α
)
x′′(s)ds− 1

1−α
∫ 1

η

x′′(s)ds

= −
∫ η

t

x′′(s)ds− 1

1−α

∫ 1

η

x′′(s)ds,

(2.13)

and for t ∈ [η,1]

x(t)=
∫ t

0
x′′(s)ds+ α

1−α

∫ η

0
x′′(s)ds− 1

1−α

∫ 1

0
x′′(s)ds

=
∫ η

0

(
1+ α

1−α
− 1

1−α

)
x′′(s)ds+

∫ t

η

(
1− 1

1−α

)
x′′(s)ds− 1

1−α

∫ 1

t

x′′(s)ds

= −
∫ t

η

α

1−α
x′′(s)ds− 1

1−α

∫ 1

t

x′′(s)ds.

(2.14)

We now define a function K : [0,1]×[0,1] �→ R by

K(t,s)=




−χ[t,η](s)− 1

1−α
χ[η,1](s) for t ∈ [0,η], s ∈ [0,1],

− α

1−α
χ[η,t](s)− 1

1−α
χ[t,1](s) for t ∈ [η,1], s ∈ [0,1].

(2.15)

Now, we see from (2.13) and (2.14) that

x′(t)=
∫ 1

0
K(t,s)x′′(s)ds for t ∈ [0,1], (2.16)

∥∥x′∥∥2
2 ≤

(∫ 1

0

∫ 1

0

(
K(t,s)

)2
ds dt

)∥∥x′′∥∥2
2. (2.17)

Now, it is easy to see that∫ 1

0

∫ 1

0

(
K(t,s)

)2
ds dt = 1

2(α−1)2
[
α2(1−η)2 +(α2 −2α

)
η2 +1

]
. (2.18)

For α ≤ 0 the estimate (2.9) is now immediate from (2.11), (2.17), and (2.18) and for
α > 0, α 
= 1, by (2.17) and (2.18). This completes the proof of the theorem. �

Remark 2.4. It is easy to see that C(−0.1,η) = 2/π , for all η ∈ (0,1), indeed,√
F(−0.1,η) ≥ 0.648986183 and 2/π ≈ 0.6366197724. Also C(−2,1/3) = √

11/54
and C(−2,15/16)= 2/π , since

√
F(−2,15/16)= √

1030/48 > 2/π .
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3. Existence theorems

Definition 3.1. A function f : [0,1]×R
2 → R satisfies Carathéodory’s conditions if

(i) for each (x,y) ∈ R
2, the function t ∈ [0,1] → f (t,x,y) ∈ R is measurable on

[0,1],
(ii) for a.e. t ∈ [0,1], the function (x,y) ∈ R

2 → f (t,x,y) ∈ R is continuous
on R

2,
(iii) for each r > 0, there exists αr(t) ∈ L1[0,1] such that |f (t,x,y)| ≤ αr(t) for

a.e. t ∈ [0,1] and all (x,y) ∈ R
2 with

√
x2 +y2 ≤ r .

Theorem 3.2. Let f : [0,1]×R
2 → R be a function satisfying Carathéodory’s con-

ditions. Assume that there exist functions p(t), q(t), and r(t) in L1(0,1) such that

∣∣f (t,x1,x2
)∣∣≤ p(t)|x1|+q(t)|x2|+r(t) (3.1)

for a.e. t ∈ [0,1] and all (x1,x2) ∈ R
2. Also let ai ∈ R, ξi ∈ (0,1), i = 1,2, . . . ,m−2,

0 < ξ1 < ξ2 < · · · < ξm−2 < 1, with α = ∑m−2
i=1 ai 
= 1 be given. Then the boundary

value problem (1.1) has at least one solution in C1[0,1] provided

‖tp(t)‖1 +‖q(t)‖1 +τ < 1, (3.2)

where τ is as defined in Theorem 2.1.

Proof. LetX denote the Banach spaceC1[0,1] and Y denote the Banach spaceL1(0,1)
with their usual norms. We define a linear mapping L :D(L)⊂X → Y by setting

D(L)=
{
x ∈W 2,1(0,1)

∣∣x(0)= 0, x′(1)=
m−2∑
i=1

aix
′(ξi)

}
, (3.3)

and for x ∈D(L),
Lx = x′′. (3.4)

We also define a nonlinear mapping N :X → Y by setting

(Nx)(t)= f
(
t,x(t),x′(t)

)
, t ∈ [0,1]. (3.5)

We note that N is a bounded mapping from X into Y . Next, it is easy to see that the
linear mapping L :D(L)⊂X → Y , is a one-to-one mapping. Next, the linear mapping
K : Y →X, defined for y ∈ Y by

(Ky)(t)=
∫ t

0
(t−s)y(s)ds+At, (3.6)

where A is given by,

A

(
1−

m−2∑
i=1

ai

)
=

m−2∑
i=1

ai

∫ ξi

0
y(s)ds−

∫ 1

0
y(s)ds, (3.7)
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is such that for y ∈ Y, Ky ∈ D(L), and LKy = y; and for u ∈ D(L),KLu = u. Fur-
thermore, it follows easily using the Arzela-Ascoli theorem that KN maps a bounded
subset of X into a relatively compact subset of X. Hence KN : X → X is a compact
mapping.

We, next, note that x ∈ C1[0,1] is a solution of the boundary value problem (1.2) if
and only if x is a solution to the operator equation

Lx =Nx+e. (3.8)

Now, the operator equation Lx =Nx+e is equivalent to the equation

x =KNx+Ke. (3.9)

We apply the Leray-Schauder continuation theorem (cf. [6, Corollary IV.7]) to obtain
the existence of a solution for x = KNx+Ke or equivalently to the boundary value
problem (1.2).

To do this, it suffices to verify that the set of all possible solutions of the family
of equations

x′′(t)= λf
(
t,x(t),x′(t)

)+λe(t), 0 < t < 1,

x(0)= 0, x′(1)=
m−2∑
i=1

aix
′(ξi), (3.10)

is, a priori, bounded in C1[0,1] by a constant independent of λ ∈ [0,1].
We observe that if x ∈ W 2,1(0,1), with x(0) = 0, x′(1) = ∑m−2

i=1 aix
′(ξi), then

x(t)= ∫ t
0 x

′(s)ds. Hence, |x(t)| ≤ t‖x′‖∞ for t ∈ [0,1] and ‖x′‖∞ ≤ (1/(1−τ))‖x′′‖1,
where τ is as defined in Theorem 2.1.

Let x(t) be a solution of (3.10) for some λ ∈ [0,1], so that x ∈ W 2,1(0,1) with
x(0) = 0, x′(1) = ∑m−2

i=1 aix
′(ξi). We then get from the equation in (3.10) and

Theorem 2.1 that

∥∥x′∥∥∞ ≤ λ

1−τ

∥∥f (t,x(t),x′(t)
)+e(t)

∥∥
1

≤ 1

1−τ

(∥∥p(t)|x(t)|+q(t)
∣∣x′(t)

∣∣+r(t)
∥∥

1 +‖e(t)‖1
)

≤ 1

1−τ

(∥∥tp(t)∥∥x′∥∥∞ +q(t)
∣∣x′(t)

∣∣+r(t)
∥∥

1 +‖e(t)‖1
)

≤ 1

1−τ

(‖tp(t)‖1 +‖q(t)‖1
)∥∥x′∥∥∞ + 1

1−τ

(‖r(t)‖1 +‖e(t)‖1
)
.

(3.11)

It follows from assumption (3.2) that there is a constant c, independent of λ ∈ [0,1],
such that

‖x‖∞ ≤ ∥∥x′∥∥∞ ≤ c. (3.12)

It is now immediate that the set of solutions of the family of equations (3.10) is, a priori,
bounded in C1[0,1] by a constant, independent of λ ∈ [0,1].

This completes the proof of the theorem. �
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Theorem 3.3. Let f : [0,1]×R
2 → R be a function satisfying Carathéodory’s con-

ditions. Assume that there exist functions p(t), q(t), and r(t) in L2(0,1) such that

∣∣f (t,x1,x2
)∣∣≤ p(t)|x1|+q(t)|x2|+r(t) (3.13)

for a.e. t ∈ [0,1] and all (x1,x2) ∈ R
2. Also let α 
= 1, and η ∈ (0,1) be given. Then for

any given e(t) in L2(0,1) the boundary value problem (1.2) has at least one solution
in C1[0,1] provided

C(α,η)

(
2

π
‖p‖2 +‖q‖2

)
< 1, (3.14)

where C(α,η) is as in Theorem 2.3.

Proof. As in the proof of Theorem 3.2 it suffices to prove that the set of all possible
solutions of the family of equations

x′′(t)= λf
(
t,x(t),x′(t)

)+λe(t), 0 < t < 1,

x(0)= 0, x′(1)= αx′(η),
(3.15)

is, a priori, bounded in C1[0,1] by a constant independent of λ ∈ [0,1]. For x ∈
W 2,2(0,1), with x(0) = 0, and x′(1) = αx′(η) we use the Wirtinger’s inequality (see
[4, Theorem 256]) and Theorem 2.3, above, to note that

‖x‖2 ≤ 2

π

∥∥x′∥∥
2 and

∥∥x′∥∥
2 ≤ C(α,η)

∥∥x′′∥∥
2. (3.16)

Now, for a solution x of the family of equations (3.15) for some λ ∈ [0,1] we have∥∥x′′∥∥
2 ≤ λ

∥∥f (t,x(t),x′(t)
)+e(t)

∥∥
2

≤ ∥∥p(t)|x(t)|+q(t)
∣∣x′(t)

∣∣+r(t)
∥∥

2 +‖e‖2

≤ ‖p‖2‖x‖2 +‖q‖2
∥∥x′∥∥

2 +‖r‖2 +‖e‖2

≤
(

2

π
‖p‖2 +‖q‖2

)∥∥x′∥∥
2 +‖r(t)‖2 +‖e‖2

≤ C(α,η)

(
2

π
‖p‖2 +‖q‖2

)∥∥x′′∥∥
2 +‖r(t)‖2 +‖e‖2,

(3.17)

in view of estimate (3.16), for a solution x of the family of equations (3.15) for some
λ ∈ [0,1]. It then follows from (3.14) that there is a constant c independent of λ ∈ [0,1]
such that ∥∥x′′∥∥

2 ≤ c, (3.18)

for a solution x of the family of equations (3.15) for some λ ∈ [0,1]. Finally, we
see, using Theorem 2.1 that ‖x‖∞ ≤ ‖x′‖∞ ≤ (1/(1−τ))‖x′′‖1 ≤ (1/(1−τ))‖x′′‖2

and accordingly, the set of solutions of the family of equations (3.15) is, a priori,
bounded in C1[0,1] by a constant independent of λ ∈ [0,1]. This completes the proof
of Theorem 3.3. �
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We next give an existence condition independent of α and η for the three-point
boundary value problem (1.2).

Let p(t),q(t) be given functions in L1(0,1). For, a given measurable function x(t)
on [0,1], we define for t ∈ [0,1],

P(t)=
∫ 1

t

p(u)du, (V x)(t)=
∫ 1

t

q(s)x(s)ds,

(Sx)(t)= P(t)

∫ t

0
x(u)du+

∫ 1

t

P (u)x(u)du;
(3.19)

provided that the integrals in (3.19) exist. We, further, suppose that the operator M :
L2(0,1) �→ L2(0,1) defined for x(t) ∈ L2(0,1) by

(Mx)(t)= (Sx)(t)+(V x)(t), 0 < t < 1; (3.20)

maps L2(0,1) into itself and is continuous.

Theorem 3.4. Let p(t),q(t), and M be as above. Let f : [0,1]×R
2 �→ R be a given

function satisfying Carathéodory conditions. Suppose that p(t),q(t) ∈ L1(0,1) and
r(t) ∈ L2(0,1) be such that

|f (t,x,y)| ≤ p(t)|x|+q(t)|y|+r(t) for t ∈ [0,1], x,y ∈ R. (3.21)

Then, given α ∈ R, α ≤ 0, and η ∈ (0,1), the three-point boundary value problem

x′′(t)= f
(
t,x(t),x′(t)

)
, 0 < t < 1,

x(0)= 0, x′(1)= αx′(η),
(3.22)

has at least one solution if the spectral radius, r(M) of the operator M is less than one.

Proof. Let x(t) be a solution of the boundary value problem (3.22), so that x(0) =
0, x′(1)= αx′(η). It is then easy to see that there exists aµ ∈ (0,1) such that x′(µ)= 0.
The rest of the proof is identical to the proof of Theorem 5 of [2] and is omitted. �

Corollary 3.5. Let p(t),q(t) in Theorem 3.4 be such that p(t),q2(t) ∈ L1(σ,1) for
every σ > 0, and

√
t
∫ 1
t
q2(s)ds ∈ L2(0,1). Suppose, further, that

∥∥√2tP (t)
∥∥

2 +
∥∥∥∥√2t

∫ 1

t

q2(s)ds

∥∥∥∥
1/2

2

< 1. (3.23)

Then, given α ∈ R, α ≤ 0, and η ∈ (0,1), the boundary value problem (3.22) has at
least one solution.

The proof of the corollary is identical to the proof of Theorem 3 of [3] and is omitted.
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Example 3.6. Let α ≤ 0 and η ∈ (0,1) be given and A ∈ R. For e(t) ∈ L1(0,1), we
consider the three-point boundary value problem

x′′(t)= t−1/2|x(t)|+At
∣∣x′(t)

∣∣+e(t), 0 < t < 1,

x(0)= 0, x′(1)= αx′(η).
(3.24)

We apply Theorem 3.2 to obtain a condition for the existence of a solution for the
three-point boundary value problem (3.24). Here p(t) = t−1/2, q(t) = At , and τ = 0.
Now, ‖tp(t)‖1 = 2/3 and ‖q(t)‖1 = (1/2)|A|. Now, if

2

3
+ 1

2
|A|< 1, (3.25)

or, equivalently

|A|< 2

3
, (3.26)

then Theorem 3.2 implies the existence of a solution for the three-point boundary value
problem (3.24).

Example 3.7. Let α = −2, η = 1/3, and A ∈ R. For e(t) ∈ L2(0,1), we, next, consider
the three-point boundary value problem

x′′(t)= t−1/4|x(t)|+At−1/4
∣∣x′(t)

∣∣+e(t), 0 < t < 1,

x(0)= 0, x′(1)= αx′(η).
(3.27)

We apply Theorem 3.3 to obtain a condition for the existence of a solution for the
three-point boundary value problem (3.27). Here p(t) = t−1/4, q(t) = At−1/4. Now,
‖p(t)‖2 = √

2 and ‖q(t)‖2 = √
2|A|. Now the existence condition required to apply

Theorem 3.3 is

C(α,η)

(
2
√

2

π
+√

2|A|
)
< 1. (3.28)

Since we have C(−2,1/3)= √
11/54, we get from (3.28)

2
√

22√
54π

+
√

22

54
|A|< 1. (3.29)

Accordingly, we see from Theorem 3.3 that a solution for the three-point boundary
value problem (3.27) exists if |A| < √

54/22(1 − 2
√

22/(
√

54π)) = 0.930079132.
Next, we apply Corollary 3.5 to the three-point boundary value problem (3.27). Now,
we see that P(t)= ∫ 1

t
u−1/4du= 4/3−4/3( 4

√
t )3, so that

∥∥√2tP (t)
∥∥2

2 =
∫ 1

0

(√
2t

(
4

3
− 4

3

( 4
√
t
)3))2

dt = 0.20779,

∥∥∥∥√2t
∫ 1

t

q2(s)ds

∥∥∥∥
2

2

= 8A4
∫ 1

0
t
(
1−√

t
)2
dt = 4

15
A4,

(3.30)
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so that a solution to the three-point boundary value problem (3.27) exists if

√
0.20779+

(
4

15

)0.25

|A|< 1 (3.31)

or equivalently, if |A| < (15/4)0.25(1 − √
0.20779) = 0.7572417038 for every η ∈

(0,1). So we see that Corollary 3.5 does not give a better result than Theorem 3.3.
On the other hand, if we apply Theorem 3.3 when α = −0.1, η ∈ (0,1) so that
C(−0.1,η) = 2/π we see that a solution to the three-point boundary value problem
(3.27) exists if |A|< 0.4741009622, which is not as good as that given by Corollary 3.5.

Example 3.8. Let α = −2, η = 1/3, and A ∈ R. For e(t) ∈ L2(0,1), we, next, consider
the three-point boundary value problem

x′′(t)= t−15/32|x(t)|+At
∣∣x′(t)

∣∣+e(t), 0 < t < 1,

x(0)= 0, x′(1)= αx′(η).
(3.32)

We apply Theorem 3.3 to obtain a condition for the existence of a solution for the
three-point boundary value problem (3.32). Here p(t) = t−15/32, q(t) = At . Now,
‖p(t)‖2 = 4 and ‖q(t)‖2 = (1/

√
3)|A|. Now the existence condition required to apply

Theorem 3.3 is

C(α,η)

(
8

π
+ 1√

3
|A|
)
< 1. (3.33)

Since, C(−2,1/3)= √
11/54 and we get from (3.33)

8
√

11√
54π

+
√

11

162
|A|< 1, (3.34)

which is impossible. Now, to apply Theorem 3.2 we see that ‖tp(t)‖1 = ∫ 1
0 t

17/32dt =
32/49 and ‖q(t)‖1 = (1/2)|A|. Accordingly, we see using Theorem 3.2 a solution for
the three-point boundary value problem (3.32) exists if

32

49
+ 1

2
|A|< 1, (3.35)

or, equivalently, if

|A|< 2

(
1− 32

49

)
= 34

49
= 0.69387751. (3.36)

Next, we apply Corollary 3.5 to the three-point boundary value problem (3.32). Now,
we see that P(t)= ∫ 1

t
u−15/32du= 32/17−(32/17)( 32

√
t)17, so that

∥∥√2tP (t)
∥∥2

2 =
∫ 1

0

(√
2t

(
32

17
− 32

17

( 32
√
t
)17
))2

dt = 0.258,

∥∥∥∥√2t
∫ 1

t

q2(s)ds

∥∥∥∥
2

2

= 2A4

9

∫ 1

0
t
(
1− t3

)2
dt = 1

20
A4,

(3.37)
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so that a solution to the three-point boundary value problem (3.32) exists if

√
0.258+

(
1

20

)0.25

|A|< 1 (3.38)

or equivalently, if |A| < (20)0.25(1−√
0.258) = 1.040586544. Clearly, Corollary 3.5

gives a better result than Theorem 3.2.
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