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Abstract. For the damped Boussinesq equation utt −2butxx = −αuxxxx +
uxx + β(u2)xx, x ∈ (0, π), t > 0; α, b = const > 0, β = const ∈ R1, the
second initial–boundary value problem is considered with small initial data.
Its classical solution is constructed in the form of a series in small parameter
present in the initial conditions and the uniqueness of solutions is proved.
The long-time asymptotics is obtained in the explicit form and the question
of the blow up of the solution in a certain case is examined. The possibility
of passing to the limit b → +0 in the constructed solution is investigated.

1. Introduction

One of the equations describing the propagation of long waves on the
surface of shallow water is the Boussinesq one which first appeared in the
paper [6]. It takes into account the effects of dispersion and nonlinearity and
can be written as

utt = −αuxxxx + uxx + β(u2)xx,(1.1)

where u(x, t) is an elevation of the free surface of fluid, subscripts denote par-
tial derivatives, and α, β = const ∈ R1 depend on the depth of fluid and the
characteristic speed of long waves. Recently Milewsky and Keller [13] have
deduced an isotropic pseudodifferential equation governing the evolution of
the free surface of liquid with a constant depth. The equation (1.1) can be
derived from it in the appropriate limit. Other versions of the Boussinesq
equation can be obtained in a way similar to the one proposed in [13]. In
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fact, they are all perturbations of the linear wave equation that take into
account the effects of small nonlinearity and dispersion.

Although (1.1) was proposed earlier as a model equation describing the
propagation of small amplitude, nonlinear waves on shallow water, the math-
ematical theory for it is not as complete as for the Korteweg-de Vries-type
equations ([1, 5]). The latter ones are of the first order in time and govern
waves travelling only in one direction while (1.1) describes both left- and
right-running solutions.

The equation (1.1) and its generalizations have been studied in the pa-
pers [7-12, 15, 16, 21] (see also the references there). Zakharov [21] has
constructed the Lax pair for the inverse scattering transform. Further devel-
opment of this theory has been done in [7], where the authors have showed
the way of constructing global in time solutions and those that blow up in
finite time. Galkin, Pelinovsky, and Stepanyants [8] have obtained rational
solutions of the one-dimensional Boussinesq equation for the cases of the
zero and nonzero boundary conditions at the infinity in space.

A generalization of (1.1), namely

utt = −uxxxx + uxx + (f(u))xx(1.2)

has been considered in [4,16]. It has been proposed in [4] that certain,
solitary-wave solutions of (1.2) are nonlinearly stable for a range of their
wave speeds. The authors obtained some sufficient conditions for the initial
data to evolve into a global solution of the equation. In [16] local and global
well-posedness has been proved by means of transforming the Cauchy prob-
lem for (1.2) into the system of nonlinear Schrödinger equations. Further
improvement of these results has been done in [11], where some refined time
estimates of the solution have been obtained.

Abstract Cauchy problems for the generalization of (1.2) in Banach spaces
have been examined in [9, 10], where some sufficient conditions for the blow
up of solutions have been deduced.

The equations (1.1) and (1.2) take into account the effects of dispersion
and nonlinearity, but in real processes viscosity also plays an important role
[3-5]. Therefore it is interesting to consider the equation

utt − 2butxx = −αuxxxx + uxx + β(u2)xx,(1.3)

where the term with the mixed derivative on the left-hand side is responsible
for strong internal damping. Here α, b = const > 0, β = const ∈ R1. Note
that (1.1) with α > 0, or the ”good” Boussinesq equation, describes nonlinear
beam oscillations (see [9, 11]). In the present paper we shall consider its
damped version (1.3) on a finite interval with homogeneous second boundary
conditions and inhomogeneous small initial conditions. It corresponds to
nonlinear damped oscillations of a piece of a beam with free ends.

The equation of the (1.3)-type with weak damping k1ut and a linear feed-
back term k2(u − [u]) on a periodic domain has been examined in [12] from
the point of view of establishing the global well-posedness. In [3] Biler has
studied some abstract Cauchy problems for the operator analog of (1.3) with
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a different nonlinearity (the latter one contained some powers of L2-norm
of the solution). The ”oscillation condition” used in [3] for the case of con-
stant coefficients (1.3) takes the form α > b2. This assumption excluding the
overdamping phenomenon will also be used in the present paper. Biler has
obtained sufficient conditions for both power and exponential decay in time
of the solution in question. Pego and Weinstein [15] have investigated the
behavior of solitary waves for the damped equation (1.3) with a nonlinear-
ity (f(u))xx. Having applied the spectral theory, they proved the existence
of the real eigenvalues responsible for a non-oscillatory instability and ex-
plained the mechanism of the transition to this instability in terms of the
motion of the poles of the resolvent.

However, none of the authors mentioned above has obtained long-time
asymptotics of the solutions in question in the explicit form (although some
time estimates have been deduced). The present paper is a continuation of
the investigations [17-20], where the classical solutions of various problems
for (1.3) have been constructed and their long-time asymptotics have been
found explicitly.

One of the methods of studying Cauchy problems for nonlinear evolution
equations is the inverse scattering transform (see [1]). However, this tech-
nique does not work for a wide class of dissipative equations which are not
completely integrable. Another approach has been proposed by Naumkin
and Shishmarev [14], who have considered nonlocal evolution equations of
the first order in time and with small initial data. By means of using both
the spectral and perturbation theories they have succeeded in constructing
the exact solutions of the Cauchy problems in question and have calculated
their long-time asymptotics. In [17-20] this method has been developed fur-
ther and has been adapted for the equations of the second and third order
in time governing wave propagation. Global in time classical solutions have
been constructed in the form of a series in small parameter present in the
initial conditions. Then the major terms of the long-time asymptotics have
been calculated in the explicit form. These asymptotic representations are
convenient for the qualitative analysis of the processes in question.

Apart from solving the Cauchy problems for the equations of the second
and third order in time (see [17, 19]) and studying spatially periodic solutions
of (1.3) (see [18]), the first initial-boundary value problem for (1.3) has been
examined in [20]. The long-time asymptotics obtained there clearly showed
the presence of the time and space oscillations exponentially decaying in time
because of damping. The second initial-boundary value problem studied
below has some relevance to the periodic problem [18] (some periodicity is
incorporated in the boundary conditions). In the present paper the technique
is much improved, and several new questions are considered, namely: the
possibility of passing to the limit b → +0 in the constructed solution (limiting
absorption principle), the uniqueness of solutions, and the blow up of the
classical solution in finite time in the case βψ̂0 < 0, where ψ̂0 is the zero
Fourier coefficient of the second initial function. The change of boundary
conditions leads to this effect when βψ̂0 < 0. In the main case βψ̂0 > 0
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two terms of the long-time asymptotic expansion are found. The major
term increases linearly in time which is typical for the solution of the linear
problem as well. The second term contains the Airy functions of a negative
argument corresponding to the damped oscillations. The presence of the
exponential multiplier emphacizes the damping effect.

2. Statement of the problem and main results

Consider the following initial-boundary value problem:

(2.1)

utt − 2butxx = −αuxxxx + uxx + β(u2)xx, x ∈ (0, π), t > 0,

u(x, 0) = ε2ϕ(x), ut(x, 0) = ε2ψ(x), x ∈ (0, π),

ux(0, t) = ux(π, t) = 0, t > 0,

uxxx(0, t) = uxxx(π, t) = 0, t > 0,

where α, β, ε = const > 0, and β = const ∈ R1.

Definition 1. The function u(x, t) defined on (0, π)× (0,+∞) is said to be
the classical solution of the problem (2.1) if it is continuous together with its
derivatives included in the equation, satisfies the equation, and continuously
adjoins the initial and boundary conditions.

Definition 2. The function f(x) belongs to the class Ĉ2n(0, π), n ≥ 1, if
f ′(0) = f ′(π) = f ′′′(0) = f ′′′(π) = ... = f (2n−1)(0) = f (2n−1)(π) = 0 and
f (2n)(x) ∈ L2(0, π).

In the sequel we shall denote the norm of the space of functions belonging
to L2(−π, π) for each fixed t > 0 by

||u(t)|| = (
∫ π

−π
|u(x, t)|2dx)1/2.

We shall also use the notation

f̂0 =
1
π

∫ π

0
f(x) dx.

Theorem 1. If α > b2, βψ̂0 ≥ 0, ϕ(x) ∈ Ĉ6(0, π) and ψ (x) ∈ Ĉ4(0, π),
then there is ε0 > 0 such that for 0 < ε ≤ ε0 there exists a unique classical
solution of the problem (2.1) represented in the form

u(x, t) =
∞∑

N=0

εNu(N)
ε (x, t),(2.2)

where the functons u
(N)
ε (x, t) will be defined in the proof (see (3.11), (3.14),

and (4.6)). This series converges absolutely and uniformly with respect to
x ∈ [0, π], t ∈ [0,+∞], and ε ∈ [0, ε0].
The solution (2.2) has the following asymptotics as t → +∞:
a) if ψ̂0 = 0, then

(2.3) u(x, t) = ε2ϕ̂0 + e−bt{[Aε cos(σ1t) +Bε sin(σ1t)] cosx+O(e−νbt)};
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b) if βψ̂0 > 0, then

(2.4)
u(x, t) = ε2(ϕ̂0 + ψ̂0t) + e−bt{[DεBi(−ξ1(t)) + EεAi(−ξ1(t))] cosx

+O(e−νbt)},
where 0 < ν < 1, k = α−b2 > 0, σ1 =

√
k + 1 + 2ε2βϕ̂0; Aε, Bε, Dε, Eε are

constant coefficients defined by (3.17), (3.19), (4.7), and (4.8); Ai(−z) and
Bi(−z), z > 0, are the Airy functions of the first and second kind respec-
tively, and ξ1(t)̇ > 0 is a linear function of t (see (4.3)). The estimates of
the remainders in (2.3) and (2.4) are uniform with respect to x ∈ (0, π) and
ε ∈ (0, ε0].

Remark 1. We do not include the boundedness of u(x, t) for all t > 0 into
our definition of the classical solution. Although u(x, t) → +∞ as t → +∞
when βψ̂0 > 0 (see (2.4)), it has continuous derivatives and satisfies the
equation and the initial and boundary conditions in (2.1) for all t > 0. It
will be shown later that even a solution of the linear problem contains the
term ε2(ϕ̂0 + ψ̂0t) and thus tends to infinity as t → +∞.

Remark 2. The relation α > b2 corresponds to the existence of an infinite
number of damped oscillations. It is the most interesting case both from
the mathematical and physical points of view. In the overdamping case
0 < α < b2 there exists only a limited number of damped oscillations and
aperiodic processes play the main role.

Corollary 1. If βψ̂0 < 0 and the rest of the assumptions of Theorem 1
holds, then for any T > 0 there is such ε0(T ) > 0 that for 0 < ε ≤ ε0(T )
there exists a unique classical solution of the problem (2.1) on the interval
(0, T ] represented in the form (2.2). Here ε0(T ) → 0 as T → +∞. For any
fixed ε there exists such T < +∞ that the solution (2.2) blows up as t → T .

Remark 3. Blowing up of the solution in finite time means that the series
(2.2) diverges as t → T and the function (2.2) ceases to be a classical solution
of the problem (2.1) for t ≥ T .

Next we consider the problem of (2.1)-type for the classical Boussinesq
equation (without dissipation) on a bounded time interval, namely

utt = −αuxxxx + uxx + β(u2)xx, x ∈ (0, π), t ∈ (0, T ], T < +∞,

with the same initial and boundary conditions as in (2.1). We shall call
it (2.1∗) and its solution u∗(x, t). In the case βψ̂0 < 0 it is supposed that
T < T .

Theorem 2. If α > b2, ϕ(x) ∈ Ĉ6(0, π), ψ(x) ∈ Ĉ4(0, π), then for x ∈
(0, π), t ∈ (0, T ]

lim
b→+0

u(x, t) = u∗(x, t).

Remark 4. The sign of βψ̂0 doesn’t matter here since both problems are
considered on a bounded time interval.
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The rest of the paper is organized as follows. Sections 3, 4, and 5 are
devoted to the proof of Theorem 1. In Section 3 the solution of (2.1) is
constructed for the case ψ̂0 = 0 and its asymptotics as t → +∞ is obtained.
In Section 4 the same is done for βψ̂0 > 0. In Section 5 the uniqueness of
solutions of (2.1) is proved for both cases. Corollary 1 is proved in Section
6, and Theorem 2 in Section 7. Some final remarks are given in Section 8.

3. Construction of a solution and long-time asymptotics for
the case ψ̂0 = 0 (proof of Theorem 1)

3.1. Construction of a solution. Assume that a classical solution of (2.1)
exists. Making an even continuation of u(x, t) to the segment [−π, 0] in order
to satisfy the boundary conditions we expand it into the complex Fourier
series

u(x, t) =
∞∑

n=−∞
ûn(t)einx, ûn(t) =

1
2π

∫ π

−π
u(x, t)e−inxdx(3.1)

with the additional condition û−n(t) = ûn(t), n ≥ 1. Evidently, it corre-
sponds to the expansion

(3.2)
u(x, t) = û0(t) + 2

∞∑
n=1

ûn(t) cosnx, ûn(t)

=
1
π

∫ π

0
u(x, t) cosnxdx, n = 0, 1, 2, ... .

Repeating the same procedure for the initial functions we can represent them
as

ϕ(x) =
∞∑

n=−∞
ϕ̂ne

inx, ψ(x) =
∞∑

n=−∞
ψ̂ne

inx,

ϕ̂−n = ϕ̂n, ψ̂−n = ψ̂n, n ≥ 1,(3.3)

or correspondingly

ϕ(x) = ϕ̂0 + 2
∞∑

n=1
ϕ̂n cosnx, ϕ̂n =

1
π

∫ π

0
ϕ(x) cosnxdx,

ψ(x) = ψ̂0 + 2
∞∑

n=1
ψ̂n cosnx, ψ̂n =

1
π

∫ π

0
ψ(x) cosnxdx, n = 0, 1, 2, ... .

Integrating by parts in the representations of ϕ̂n and ψ̂n and using the
smoothness of ϕ(x) and ψ(x) stated in the hypothesis we deduce that

|ϕ̂n| ≤ n−6, |ψ̂n| ≤ n−4, n ≥ 1.(3.4)

where the constants in the right-hand sides can be made unit ones by the
appropriate choice of ε. Substituting (3.1) and (3.3) into (2.1) we get

û′′
0(t) = 0, t > 0,

û0(0) = ε2ϕ̂0, û
′
0(0) = 0,(3.5)
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û′′
n(t) + 2bn2û′

n(t) + (αn4 + n2 + 2βn2û0(t))ûn(t) = −βn2Q(û(t)), t > 0,

(3.6) ûn(t) = ε2ϕ̂n, û
′
n(0) = ε2ψ̂n, n ∈ Z, n �= 0,

where a prime denotes a derivative of a function of a single variable,

Q(û(t)) =
∞∑

q=−∞
q �=0,n

ûn−q(t)ûq(t), and û−n(t) = ûn(t), n ≥ 1.

This convolution term can be written as

(3.7) Q(û(t)) = εn

n−1∑
q=1

ûn−q(t)ûq(t) + 2
∞∑

q=1
ûn+q(t)ûq(t), n ≥ 1,

where εn = 0 forn = 1 and εn = 1 for n ≥ 2.

Note that we have transfered two terms containing û0(t)ûn(t) to the left-hand
side of the equation in (3.6). As a result, all the Fourier coefficients of the
index n are separated in the left-hand side of the equation (û0(t) = ε2ϕ̂0 is a
known function), and the convolution term Q(û(t)) depends on the indeces
not equal to n.

Now we can consider (3.6) with n ≥ 1 and Q(û(t)) defined by (3.7), and
then reconstruct u(x, t) by means of (3.2). Our goal is to obtain a refined
long-time estimate of û1(t) which will contribute to the second term of the
asymptotics, while û0(t) will form its major term. Then we shall estimate
the remaining series

∑∞
n=2 ûn(t) cosnx.

Seeking the fundamental solutions of the homogeneous equation associ-
ated with (3.6) in the form e−λt we deduce that

(3.8) λ1,2(n) = bn2 ∓ iσn, σn = n
√

kn2 + 1 + 2ε2βϕ̂0, k = α − b2 > 0.

Setting Φn = εϕ̂n, Ψn = εψ̂n (it is convenient to keep a small parameter in
these coefficients in order to simplify the future estimates) we integrate (3.6)
in t and get

(3.9)
ûn(t) = εe−bn2t{[cos(σnt) + bn2 sin(σnt)

σn
]Φn +

sin(σnt)
σn

Ψn}

− βn2

σn

∫ t

0
exp[−bn2(t − τ)] sin[σn(t − τ)]Q(û(τ))dτ, n ≥ 1.

Representing ûn(t), n ≥ 1, as a formal series in ε

ûn(t) =
∞∑

N=0

εN+1v̂(N)
n (t),(3.10)
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substituting it into (3.9) and comparing the coefficients of equal powers of ε
we obtain for n ≥ 1, t > 0

(3.11)

v̂(0)
n (t) = e−bn2t{[cos(σnt) + bn2 sin(σnt)

σn
]Φn +

sin(σnt)
σn

Ψn},

v̂(N)
n (t)

= −βn2

σn

∫ t

0
exp[−bn2(t − τ)] sin[σn(t − τ)]FN (v̂(τ))dτ, N ≥ 1,

where

FN (v̂(t)) = εn

n−1∑
q=1

N∑
j=1

v̂
(j−1)
n−q (t)v̂(N−j)

q (t) + 2
∞∑

q=1

N∑
j=1

v̂
(j−1)
n+q (t)v̂(N−j)

q (t).

Now we have to prove that the formally constructed function (3.2), (3.10),
(3.11) really represents a classical solution of the problem (2.1). To this end
we shall show that the series

û0(t) + 2
∞∑

n=1
cosnx

∞∑
N=0

εN+1v̂(N)
n (t)

converges absolutely and uniformly for sufficiently small ε together with its
derivatives included in the equation.

First we shall prove the following inequalities for n ≥ 1, N ≥ 0, t > 0, and
any constant γ ∈ (0, 1/2) :

|v̂(N)
n (t)| ≤ cN (N + 1)−2n−6 exp(−γbt).(3.12)

Here and in the sequel we denote by c generic positive constants not de-
pendent on N, n, ε, x, and t. They may depend on the coefficients of the
equation and the initial functions.

We use the induction on the number N. For N = 0 and n ≥ 1 we have
from (3.8) and (3.11) for sufficiently small ε and γ ∈ (0, 1/2)

|v̂(0)
n (t)| ≤ n−6 exp(−bn2t) ≤ n−6 exp(−γbt).

Assuming that (3.12) is valid for all v̂
(s)
n (t) with 0 ≤ s ≤ N − 1 we shall

prove that it holds for s = N. Since for all integer n ≥ 1, q ≥ 1, n �= q (see
[14])

q−6|n − q|−6 ≤ 26[q−6 + |n − q|−6],

j−2(N + 1 − j)−2 ≤ 22(N + 1)−2[j−2 + (N + 1 − j)−2],
we have

|v̂(N)
n (t)| ≤ c|β|(N + 1)−2n−6

∞∑
q=1

(q−6 + |n − q|−6)

×
N∑

j=1

cj−1cN−j [(N + 1 − j)−2 + j−2]SN (n, t),

SN (n, t) = exp(−bn2t)
∫ t

0
exp[b(n2−2γ)τ ]dτ ≤ exp(−2γbt)

b(n2 − 2γ)
for 0 < γ < 1/2.
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Hence

SN (n, t) ≤ exp(−γbt)
b(1 − 2γ)

,

and consequently (3.12) is proved by induction with some c = c(b) → +∞
as b → +0. By means of analogous arguments it is easy to prove that for
n ≥ 2, t > 0, N ≥ 0 and any constant æ ∈ (0, 2)

|v̂(N)
n (t)| ≤ cN (N + 1)−2n−6 exp(−æbt).(3.13)

Indeed, on the final step of the proof we shall use the inequality

SN (n, t) = exp(−bn2t)
∫ t

0
exp[b(n2 − 2æ)τ ]dτ ≤ exp(−æbt)

2b(2 − æ)
.

Now we can recall (3.2), (3.10), and (3.11) and deduce the formula (2.2).
Performing the interchange of summation in the series we have

(3.14) u(x, t) = û0(t) + 2
∞∑

n=1
cos(nx)

∞∑
N=0

εN+1v̂(N)
n (t) =

∞∑
N=0

εNu(N)
ε (x, t),

where

u(0)
ε (x, t) = û0(t), u(N)

ε (x, t) = 2ε
∞∑

n=1
v̂(N)
n (t) cos(nx), N ≥ 1.

This interchange is possible due to the absolute and uniform in x ∈ [0, π], t ≥
0, ε ∈ [0, ε0] convergence of the series in question. The last statement in its
own term follows from the estimates (3.12) with ε ≤ ε0 < c−1.

Now in order to prove that (3.14) represents a classical solution of (2.1)
we need to obtain the following estimates of the time derivatives of ûn(t) for
n ≥ 1, t > 0 :

|∂k
t ûn(t)| ≤ cn2k−6 exp(−γbt), k = 1, 2.(3.15)

Differentiating (3.11) with respect to t we get for k = 1, 2

∂k
t v̂

(0)
n =

k∑
l=0

cl
k(−1)l(bn2)l exp(−bn2t)∂k−l

t

·
{
[cos(σnt) + bn2 sin(σnt)

σn
]Φn +

sin(σnt)
σn

Ψn

}
,

∂k
t v̂

(N)
n (t) = −βn2

σn

∫ t

0
Hk(n, t − τ)FN (v̂(τ))dτ +Rk(n, t), N ≥ 1,

where

Hk(n, t) =
k∑

l=0

cl
k(−1)l(bn2)l exp(−bn2t)(σn)k−l sin[σnt+ (k − l)π/2],

FN (v̂(t)) is defined by (3.11), cl
k are binomial coefficients, and Rk(n, t) are

the results of the differentiating the integrals with respect to the upper limit,
namely

R1(n, t) = 0, R2(n, t) = −βn2FN (v̂(t)).
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Hence it follows that for n ≥ 1, N ≥ 0, t > 0, k = 1, 2, and γ ∈ (0, 1/2)

|∂k
t v̂

(N)
n (t)| ≤ cN (N + 1)−2n2k−6 exp(−γbt)(3.16)

which implies (3.15). By means of (3.15) it can be verified straightforwardly
that (3.14) represents a classical solution of (2.1).

3.2. Long-time asymptotics. Here we shall find a refined asymptotic es-
timate of û1(t) which will contribute to the second term of the expansion
(2.3) and make a rough estimate of the remaining series. Using (3.9) with
n = 1 and adding and subtracting integrals from t to ∞ we can represent
v̂

(N)
1 (t) as folows:

(3.17)

v̂
(N)
1 (t) = e−bt[A(0)

ε cos(σ1t) +B(0)
ε sin(σ1t)],

v̂
(N)
1 (t) = e−bt[(A(N)

ε +R
(N)
A ) cos(σ1t) + (B(N)

ε +R
(N)
B ) sin(σ1t)],

A(0)
ε = εϕ̂1, B

(0)
ε =

ε

σ1
(bϕ̂1 + ψ̂1),

A(N)
ε =

β

σ1

∫ ∞

0
ebτ sin(σ1τ)LN (τ)dτ,

B(N)
ε = − β

σ1

∫ ∞

0
ebτ cos(σ1τ)LN (τ)dτ,

R
(N)
A =

β

σ1

∫ ∞

t
ebτ sin(σ1τ)LN (τ)dτ,

R
(N)
B = − β

σ1

∫ ∞

t
ebτ cos(σ1τ)dτ,

LN (t) = 2
∞∑

q=1

N∑
j=1

v̂
(j−1)
1+q v̂(N−j)

q (t), N ≥ 1,

and the functions v̂
(s)
n (t), s = 0, 1, ..., N − 1, for the calculation of the sum

LN (t) are defined by (3.11).
Next we shall prove that for N ≥ 1, t > 0, 0 < ρ < 3/2

|R(N)
A,B(t)| ≤ cNe−ρbt,(3.18)

Taking into account (3.12) and (3.13) and choosing γ and æ there so that
γ +æ > 1 and æ > γ we can write that

|R(N)
A,B(t)| ≤ 2

|β|
σ1

∫ ∞

t
ebτ

N∑
j=1

[|v̂(j−1)
1 (τ)v̂(N−j)

1 (τ)| +
∞∑

q=2
|v̂(j−1)

1+q (τ)v̂(N−j)
q (τ)|]dτ

≤ cN−1(N + 1)−2
N∑

j=1

[j−2 + (N + 1 − j)−2]{
∫ ∞

t
{exp[−(γ +æ − 1)bτ ]

+
∞∑

q=2
(1 + q)−6q−6 exp[−(2æ − 1)bτ ]}dτ ≤ cN exp[−(γ +æ − 1)t]

γ +æ − 1
.

Setting ρ = γ +æ − 1 we obtain (3.18).
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Recalling (3.10) we deduce that as t → +∞:

(3.19)

2û1(t) = e−bt[Aε cos(σ1t) +Bε sin(σ1t) +O(e−ρbt)],

Aε = 2
∞∑

N=0

εN+1A(N)
ε , Bε = 2

∞∑
N=0

εN+1B(N)
ε .

Finally we obtain

(3.20)

u(x, t) = û0(t) + 2û1(t) cosx+Ru(x, t),

|Ru(x, t)| ≤ exp(−æbt)
∞∑

N=0

εN+1cN
∞∑

n=2
n−6 ≤ c exp(−æbt), t > 0.

Combining (3.19) and (3.20) and denoting ν = æ − 1, 0 < ν < 1, we obtain
(2.3).

4. Construction of a solution and long-time asymptotics for
the case βψ̂0 > 0 (proof of Theorem 1)

4.1. Construction of a solution. It suffices to consider β > 0, ψ̂0 > 0
because the case β < 0, ψ̂0 < 0 can be obtained by changing u to −u in
(2.1). The sign of ϕ(x) doesn’t matter in our considerations.

Now instead of (3.5) we get the following problem for the zero Fourier
coefficient

û′′
0(t) = 0, t > 0,

û0(0) = ε2ϕ̂0, û
′
0(0) = ε2ψ̂0,

the solution of which is a linear function of time, namely

û0(t) = ε2(ϕ̂0 + ψ̂0t).(4.1)

Therefore this time in (3.6) we have an equation with variable in time coef-
ficients. We can reduce it to the Airy equation by means of some transfor-
mations. Setting ûn(t) = wn(t) exp(−bn2t), n ≥ 1, we get

(4.2)

w′′
n(t) + (an + γnt)wn(t) = 0,

an = kn4 + n2(1 + 2ε2βϕ̂0) > 0,

k = α − b2 > 0, γn = ε2n22βψ̂0 > 0.

Introducing a new variable

(4.3)
ξn(t) = hn + γ1/3

n t > 0,

hn = anγ
−2/3
n =

kn4 + n2(1 + 2ε2βϕ̂0)
n4/3ε4/3(2βψ̂0)2/3

> 0

we transform (4.2) to the Airy equation

d2wn

dξ2
n

+ ξn(t)wn = 0,
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where we have used the same notation for the function wn(ξn). Its fundamen-
tal solutions are the Airy functions of a negative argument, namely Ai(−ξn)
and Bi(−ξn) (see [2]), which have the following representations:

Ai(−z) =
√
z

3
[J−1/3(ς) + J1/3(ζ)], Bi(−z) =

√
z

3
[J−1/3(ζ) + J1/3(ζ)],

where z > 0, ς = (2/3)z2/3, and Jν(z) are the Bessel functions of the index
ν. We shall also need the estimates as z → +∞

(4.4)
|Ai(−z)| ≤ cz−1/4, |Bi(−z)| ≤ cz−1/4,

|Ai′(−z)| ≤ cz1/4, |Bi′(−z)| ≤ cz1/4.

Integrating (3.6) with û0(t) defined by (4.1) with respect to t we reduce this
problem to the integral equation

(4.5)
ûn(t) = ε exp(−bn2t)[U (1)

n Ai(−ξn(t)) − U (2)
n Bi(−ξn(t))]

+ βn2
∫ t

0
exp[−bn2(t − τ)]gn(t, τ)Q(û(τ))dτ, n ≥ 1,

where

U (1)
n = π[bn2γ−1/3

n Bi(−hn) +Bi′(−hn)]Φn +Bi(−hn)γ−1/3
n Ψn,

U (2)
n = π[bn2γ−1/3

n Ai(−hn) +Ai′(−hn)]Φn +Ai(−hn)γ−1/3
n Ψn,

Φn = εϕ̂n, Ψn = εψ̂n,

gn(t, τ) = πγ−1/3
n [Ai(−ξn(τ))Bi(−ξn(t)) − Ai(−ξn(t))Bi(−ξn(τ))],

0 < τ < t, t > 0.
Here we have used the expression for the Wronskian of the Airy functions
[2]

W̃{Ai(z), Bi(z)} =
1
π
.

Representing ûn(t) as a formal series (3.10) and equating coefficients of equal
powers of ε we find that for n ≥ 1

(4.6)
v̂(0)
n (t) = exp(−bn2t)[U (1)

n Ai(−ξn(t)) − U (2)
n Bi(−ξn(t))],

v̂(N)
n (t) = βn2

∫ t

0
exp[−bn2(t − τ)]gn(t, τ)FN (v̂(τ))dτ, N ≥ 1,

with FN (v̂(t)) defined by(3.11). Now u(x, t) can be expressed by the formula
(3.14) with v̂

(N)
n (t) defined by (4.6).

In order to prove that the function represented by (3.14), (4.6) is really
a classical solution of (2.1) we need to obtain some estimates of v̂(N)

n (t) and
its derivatives. Since the arguments of the Airy functions depend not only
on n, but also on ε we need to take into account the following estimates as
ε → +0 :

rnγ
−1/3
n |B(−hn)| ≤ cn−2/3ε−1/3, |Bi′(−hn)| ≤ ch1/4

n ≤ cn−2/3ε1/3,

|Ai(−ξn(t))| ≤ ch−1/4
n ≤ cn2/3ε1/3, |Bi′(−ξn(t))| ≤ cn−2/3ε1/3,

|Ai(−ξn(t))Bi(−ξn(t))| ≤ ch−1/2
n ≤ cε2/3n−4/3.
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They follow from (4.4). Hence |v̂(0)
n (t)| ≤ n−6 exp(−bn2t) and

|gn(t, τ)| ≤ c

n2 as ε → +0

uniformly in t, τ. Taking into account these estimates and conducting the
same arguments as in the previous section we can deduce the inequalities
(3.12) for v̂(N)

n (t) with n ≥ 1 and (3.13) for v̂(N)
n (t) with n ≥ 2.Differentiating

(4.6) with respect to t we get for n ≥ 1, t > 0

∂tv̂
(0)
n (t) = exp(−bn2t){(−bn2)[U (1)

n Ai(−ξn(t)) − U (2)
n Bi(−ξn(t))]

− γ1/3
n [U (1)

n Ai′(−ξn(t)) − U (2)
n Bi′(−ξn(t))]},

∂2
t v̂

(0)
n (t) = exp(−bn2t){U (1)

n [(bn2)2Ai(−ξn(t)) + bn2γ1/3
n Ai′(−ξn(t))

+ γ2/3
n ξn(t)Ai(−ξn(t))] − U (2)

n [(bn2)2Bi(−ξn(t))

+ bn2γ1/3
n Bi′(−ξn(t)) + γ2/3

n ξn(t)Bi(−ξn(t))]},

∂tv̂
(N)
n (t) = βn2[(−bn2)

∫ t

0
exp[−bn2(t − τ)]gn(t, τ)FN (v̂(τ))dτ

+
∫ t

0
exp[−bn2(t − τ)]∂tgn(t, τ)FN (v̂(τ))dτ ], N ≥ 1,

∂2
t v̂

(N)
n (t) = βn2{(bn2)2

∫ t

0
exp[−bn2(t − τ)]gn(t, τ)FN (v̂(τ))dτ

− 2bn2
∫ t

0
exp[−bn2(t − τ)]∂tgn(t, τ)FN (v̂(τ))dτ

+
∫ t

0
exp[−bn2(t − τ)]∂2

t gn(t, τ)FN (v̂(τ))dτ − FN (v̂(t))}, N ≥ 1,

where

gn(t, t) = 0,

∂tgn(t, τ) = −π[Ai(−ξn(τ))Bi′(−ξn(t)) − Ai′(−ξn(t))Bi(−ξn(τ))],

∂tgn(t, t) = −πW̃{Ai(−ξn(t)) , Bi(−ξn(t))} = −1,

∂2
t gn(t, τ) = −γ2/3

n ξn(t)gn(t, τ).

Hence it follows that ∂k
t v̂

(N)
n (t), n ≥ 1, N ≥ 0, k = 1, 2, satisfy (3.16) and

consequently (3.15) is valid for ûn(t). Then it can be verified that (3.14),
(4.6) represent a classical solution of (2.1).
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4.2. Long-time asymptotics. Now we shall obtain a subtle asymptotic
estimate of û1(t).We can write that

(4.7)

v̂
(0)
1 (t) = e−bt[D(0)Bi(−ξ1(t)) + E(0)Ai(−ξ1(t))],

D(0) = −U
(2)
1 , E(0) = U

(1)
1 ;

v̂
(N)
1 = e−bt{[D(N) +R

(N)
D ]Bi(−ξ1(t)) − [E(N) +R

(N)
E ]Ai(−ξ1(t)),

D(N) = βγ
−1/3
1 π

∫ ∞

0
ebτAi(−ξ1(τ))MN (τ)dτ,

E(N) = −βγ
−1/3
1 π

∫ ∞

0
ebτBi(−ξ1(τ))MN (τ)dτ,

MN (τ) = 2
∞∑

q=1

N∑
j=1

v̂
(j−1)
1+q (τ)v̂(N−j)

q (τ), N ≥ 1,

where the functions v̂
(s)
n (t), s = 0, 1, ..., N − 1, for the calculation of MN (t)

must be taken from (4.6).
As in the previous section, using (3.12), (3.13), and the boundedness of

the Airy functions of a negative argument we can prove that for N ≥ 1, t >
0, 0 < ρ < 3/2

|R(N)
D,E(t)| ≤ cN exp(−ρbt).

Thus, we have

(4.8)

2û1(t) = e−bt[DεBi(−ξ1(t)) + EεAi(−ξ1(t)) +O(e−ρbt)],

Dε = 2
∞∑

N=0

εN+1D(N), Eε = 2
∞∑

N=0

εN+1E(N),

and the formula (3.20) is valid for u(x, t) with the same estimate of the
remainder. Combining (3.20) and (4.8) we obtain (2.4).

5. Uniqueness of the solutions (proof of Theorem 1)

In this section we shall prove the uniqueness of the solutions for both
cases in question. We assume the contrary, that is that there exist two
classical solutions u1(x, t) and u2(x, t) of the problem (2.1) and make an
even continuation of these functions in x to the segment [−π, 0]. Setting
W (x, t) = u(1)(x, t) − u(2)(x, t) we notice that W (x, t) belongs to the space
L2(−π, π) for each fixed t > 0 and therefore ||W (t)|| < +∞.

Expanding W (x, t) into the complex Fourier series on [−π, π] we can write

W (x, t) =
∞∑

n=−∞
n�=0

Ŵn(t)einx, Ŵ−n(t) = Ŵn(t) for n ≥ 1.
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Here Ŵ0(t) = 0 since for both functions u(1)(x, t) and u(2)(x, t) the zero
Fourier coefficients satisfy the same problem (3.5) (or (3.5) with inhomoge-
neous initial conditions when βψ̂0 > 0). Then for all n ∈ Z, n �= 0

Ŵn(t) = −βn2

σ̃n

∫ t

0
exp[−bn2(t−τ)]

∞∑
q=−∞
q �=0,n

[û(1)
n−q(τ)−û

(2)
n−q][û

(1)
q (τ)+û(2)

q (τ)]dτ,

and σ̃n = n
√
kn2 + 1 correspond to σn in (3.8) with ϕ̂0 = 0.

Using the Cauchy-Schwartz inequality and Parceval’s equation we can
deduce that

|Wn(t)| ≤ c

∫ t

0
exp[−bn2(t − τ)]||W (τ)||dτ.

Squaring both sides of this inequality and summing the result from −∞ to
∞ in n we get

||W (t)||2 ≤ c
∞∑

n=−∞
n�=0

(
∫ t

0
exp[−bn2(t − τ)]||W (τ)||dτ)2.

Hence for some T1 > 0

( sup
t∈[0,T1]

||W (t)||)2 ≤ c( sup
t∈[0,T1]

||W (t)||)2
∞∑

n=−∞
n�=0

[
1 − exp(−bn2t)

bn2

]2

≤ c(T1)( sup
t∈[0,T1]

||W (t)||)2,

where the constant c(T1) can be made less than one by the appropriate choice
of T1. This contradiction allows to complete the proof of the uniqueness for
t ∈ [0, T1]. Continuing this process for the segments [T1, T2], [T2, T3] , ...,
[Tn, Tn+1] , ... , with {Tn} → +∞ we obtain the same result for all t > 0.
The proof of Theorem 1 is complete.

6. Proof of Corollary 1

In the case βψ̂0 < 0 we use the same scheme of construction of the solution
as in Section 4. Setting in (3.6) ûn(t) = wn(t) exp(−bn2t) we obtain the
transformed equation in the form

w′′
n(t) + (an − |γn|t)wn(t) = 0

with the same an and γn as in (4.2) and n ≥ 1. Then we reduce it to the
Airy equation

d2wn

dξ2
n

+ ξn(t)wn = 0

with ξn(t) = hn − |γn|1/3t which can change its sign. Indeed, for each fixed
n ≥ 1 there is such

t0(n) =
kn2 + 1 + 2ε2βϕ̂0

ε2 | 2βψ̂0 |
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that for t > t0(n) the argument of the Airy functions becomes positive, that
is

−ξn(t) = γ1/3
n [t − t0(n)] > 0.

Therefore the Airy function Bi(−ξn(t)) is bounded for t ∈ [0, T ], T < +∞,
while Ai(−ξn(t)) is bounded for all t > 0. As a consequence, instead of
(3.16) we shall have for n ≥ 1, N ≥ 0, k = 0, 1, 2 and t ∈ [0, T ]

|∂k
t v̂

(N)
n (t)| ≤ [c(T )]N (N + 1)−2n2k−6.

In order to guarantee the absolute and uniform convergence of the series
(2.2) we have to satisfy the condition εc(T ) < 1, or ε0(T ) < [c(T )]−1, 0 <
ε ≤ ε0(T ).

To see what happens if T is sufficiently large we have to remember the
properties of the Airy functions of a positive argument: Ai(z) decreases and
Bi(z) increases with the increase of z and the asymptotics of these functions
are (see [2])

Ai(z) ∼ exp[−(2/3)z3/2]
2
√
πz1/4 , Bi(z) ∼ exp[(2/3)z3/2]√

πz1/4 , z → +∞.

Therefore even v̂
(0)
n (t) tends to infinity as t → +∞ with a speed greater than

exponential and for v̂
(N)
n (t), N ≥ 1, the speed is even greater because of the

presence of the term

N∑
j=1

v̂
(j−1)
1+q (τ)v̂(N−j)

q (τ)

in the integrand (see (3.11) and (4.6)). Thus, c(T ) → +∞ and ε0(T ) → 0
as T → +∞.

If ε is fixed, then there exists such point t = T that the necessary condition
of the convergence of the series (2.2) is broken and u(x, t) → +∞ as t → T .
Naturally, the derivatives of (2.2) do not exist either and this function ceases
to be a solution of (2.1).

The uniqueness of the solution on the interval (0, T ], T < T , can be proved
by means of the same arguments as in Section 5. The proof of the corollary
is complete.

7. Proof of Theorem 2

First we need to prove that for all the three cases in question the series
(3.14) with v̂

(N)
n (t) defined by (3.11) or (4.6) converges absolutely and uni-

formly with respect to b ∈ [0, b0] for some b0 > 0 and t ∈ [0, T ]. To this end
it suffices to show that for n ≥ 1, N ≥ 0, t ∈ [0, T ], and b ∈ [0, b0]

|v̂(N)
n (t)| ≤ [c(T )]N (N + 1)−2n−6,(7.1)

where c(T ) is independent of b.
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We shall use the induction on the number N. For N = 0 we have from
(3.11) and (4.5) for suffficiently small ε

|v̂(0)
n (t)| ≤ n−6, n ≥ 1.

Assuming that (7.1) holds for v̂
(s)
n (t), 0 ≤ s ≤ N − 1,using the uniform in b

boundedness of the Airy functions for t ∈ [0, T ] and the inequality

SN (t) =
∫ t

0
exp[−bn2(t − τ)]dτ ≤ T

we establish (7.1) for all N ≥ 0.
Passing to the limit b → +0 in (3.14) we get for t ∈ [0, T ]

lim
b→+0

u(x, t) = û0(t) + 2
∞∑

n=1
cos(nx)

∞∑
N=0

εN+1v(N)
n (t),(7.2)

where for the case ψ̂0 = 0

v(0)
n (t) = cos(σnt)Φn +

sin(σnt)
σn

Ψn, σn = n
√

αn2 + 1 + 2ε2βϕ̂0,

v(N)
n = −βn2

σn

∫ t

0
sin[σn(t − τ)]FN (v(τ))dτ, N ≥ 1,

and for βψ̂0 �= 0

v(0)
n (t) = π[Bi′(−hn)Φn +Bi(−hn)γ−1/3

n Ψn]Ai(−ξn(t))

− [Ai′(−hn)Φn +Ai(−hn)γ−1/3
n Ψn]Bi(−ξn(t)),

v(N)
n (t) = βn2

∫ t

0
gn(t, τ)FN (v(τ))dτ, N ≥ 1,

where hn, ξn(t), and gn(t, τ) are obtained from the corresponding formulas
by putting there b = 0, and FN is defined by (3.11).

By means of the estimates

|∂k
t v

(N)
n (t)| ≤ [c(T )]N (N + 1)−2n2k−6

valid for t ∈ (0, T ], n ≥ 1, N ≥ 0, k = 0, 1, 2, it can be verified straightfor-
wardly that (7.2) represents a classical solution of the problem (2.1∗). The
proof is complete.

8. Final remarks

There are no major difficulties in using the method proposed above for the
overdamping case 0 < α < b2,but one must consider several subcases. For
example, when ψ̂0 = 0 the eigenvalues of the linear operator of the equation
are

λ1,2(n) = bn2 ∓ n
√

|k|[n2 − χ(ε)], |k| = b2 − α > 0, χ(ε) =
1 + 2ε2βϕ̂0

|k| ,

and it is necessary to consider the following possibilities:
1) n2 > χ(ε),when λ1,2 > 0;
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2)n2 < χ(ε), when λ1,2 are complex conjugate.
There is no need to consider multiple eigenvalues when n2 = χ(ε) since the

term 2βn2ε2ϕ̂0ûn(t) can be transfered to the right-hand side of the equation.
We would like to emphacize the fact that the main idea of obtaining the

time estimates of ûn(t) for βψ̂0 �= 0 is based on separating all the Fourier
coefficients of the index n in the left-hand side of (3.6) while all the other
ones are left in the convolution term in the right-hand side of the equation.
The attempt to construct a classical solution of (2.1) by means of leaving the
term 2βn2û0ûn(t) in the right-hand side is doomed to failure. Indeed, the
presence of the linear function ϕ̂0 + ψ̂0t in the integrand in the expression
for v̂

(N)
n (t), n ≥ 1, N ≥ 1,will cause the appearance of a rapidly increasing

function of N and t in the estimate of |v̂(N)
n (t)|.

In order to compare the solution of (2.1) with that of the corresponding
linear problem we have to construct the latter. It is

(8.1)
ulin(x, t) = ε2{ϕ̂0 + ψ̂0t+ 2

∞∑
n=1

e−bn2t[(cos σ̃nt+ bn2 sin σ̃nt

σ̃n
)ϕ̂n

+
sin σ̃nt

σ̃n
ψ̂n]}, σ̃n = n

√
kn2 + 1.

For the case ψ̂0 = 0 passing to the limit β → 0 in (3.11), (3.14) we can obtain
(8.1). But when βψ̂0 �= 0 the very choice of the fundamental solutions of the
homogeneous equation associated with (3.6) prevents from passing to this
limit in the constructed solution.

In conclusion, we would like to point out the main difference in the long-
time behavior of the solution in question when βψ̂0 > 0 and βψ̂0 < 0. In
both cases the zero term of the series (3.14) contains a linear function of t,
which is not surprising since even the solution of the linear problem includes
it. However, in the first case this series converges absolutely and uniformly
together with its derivatives for all t ≥ 0, while in the second case it diverges
as t → T and the solution can not be extended beyond this point.
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