
WEAKLY HYPERBOLIC EQUATIONS WITH TIME

DEGENERACY IN SOBOLEV SPACES

MICHAEL REISSIG

Abstract. The theory of nonlinear weakly hyperbolic equations was devel-
oped during the last decade in an astonishing way. Today we have a good
overview about assumptions which guarantee local well posedness in spaces
of smooth functions (C∞, Gevrey). But the situation is completely unclear
in the case of Sobolev spaces. Examples from the linear theory show that
in opposite to the strictly hyperbolic case we have in general no solutions
valued in Sobolev spaces. If so-called Levi conditions are satisfied, then the
situation will be better. Using sharp Levi conditions of C∞-type leads to
an interesting effect. The linear weakly hyperbolic Cauchy problem has a
Sobolev solution if the data are sufficiently smooth. The loss of derivatives
will be determined in essential by special lower order terms. In the present
paper we show that it is even possible to prove the existence of Sobolev
solutions in the quasilinear case although one has the finite loss of derivatives
for the linear case. Some of the tools are a reduction process to problems
with special asymptotical behaviour, a Gronwall type lemma for differential
inequalities with a singular coefficient, energy estimates and a fixed point
argument.

1. Introduction

In this paper we want to prove a local existence result in Sobolev spaces with
respect to the spatial variables for the weakly hyperbolic Cauchy problem

utt − λ2(t)� u = f(t, x, u, ut, µi(t)∂xiu),(1.1)

u(x, 0) = u0(x), ut(x, 0) = u1(x) .(1.2)

Here and in the following f(..., µi(t)∂xiu) means that f depends on µi(t)∂xiu,
i = 1, ..., n. The problem becomes weakly hyperbolic if λ(t) = 0 (time
degeneracy). As a model case we suppose for the function λ = λ(t)
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(A1) λ(t) ∈ C1[0, T ], λ′(t) ≥ 0 for t > 0;
(A2) λ(0) = 0, λ′(0) = 0, λ(t) > 0 for t > 0;

where T is a positive constant. If we restrict ourselves to Gevrey classes of
order ≤ 2, then we can use ideas of [6] to prove a local existence result for

utt − λ2(t)� u = f(t, x, u, ut,∇xu),
u(x, 0) = u0(x), ut(x, 0) = u1(x).

To overcome the critical order 2 we need so-called Levi conditions. These
are relations between λ = λ(t) and the derivative of f with respect to the
argument q = ∇xu. The exact choice of the Levi condition has an important
influence on the qualitative properties of the solutions of (1.1), (1.2). Let
us illustrate it by the aid of two examples from the linear theory. In both
examples we suppose that a is a real large constant.

Example 1. We consider the Cauchy problem utt − t2luxx + atl−1ux =
0, u(x, 0) = u0(x), ut(x, 0) = u1(x) for a natural number l. One can prove

that there exists a uniquely determined solution u(·, t) ∈ H
s0− |a|−l

2(l+1) (R1) for
all t > 0 if u0 ∈ Hs0(R1) and u1 ∈ Hs0−1(R1). In [11] this loss of Sobolev
derivatives was shown for l = 1 and a = 4n+1 by an explicit representation
of the solution.

Example 2. We consider the Cauchy problem utt − λ2(t)uxx − aλ2(t)
Λ(t) ux =

0, u(x, 0) = u0(x), ut(x, 0) = u1(x), where Λ(t) = exp(−1/t), λ(t) = Λ(t)′.
One can prove that u(·, t) ∈ Hs0− |a|−1

2 (R1) for all t > 0 if u0 ∈ Hs0(R1) and
u1 ∈ Hs0−1(R1).

Both examples can be studied by using the theory of special functions (for
the first see [14], for the second one [1],[12],[16]). In both examples the
coefficient a(t) of ux behaving as O(λ′(t)) (λ(t) = tl in the first example)
determines the loss of Sobolev derivatives.
The Levi condition a(t) = O(λ′(t)) is sharp in the following sense:
If we weaken it to a(t) = o(λ′(t)s), s ∈ (0, 1), then there doesn’t exist a
distributional solution (see [5]).
If we sharpen it to a(t) = o(λ′(t)), then the term of lower order has no
influence on the loss of Sobolev regularity.

Various nonlinear generalizations of the above Levi condition are known, for
example, |∂qif(t, x, u, p, q1, ..., qn)| ≤ Cλ′(t) in a suitable domain of defini-
tion. But if we want to study model equations of the form

utt − λ2(t)� u = f(u, ut,∇xu)(1.3)

under this Levi condition, then one has to define and to work in spaces of
solutions with special asymptotics in t. Otherwise the Levi condition is not
satisfied. Another nonlinear generalization is to suppose that
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f depends on µi(t)∂xiu, where

(A3) lim sup
t→+0

|µi(t)|
λ′(t)

= Q, µi(t) ∈ C[0, T ].

Allowing this kind of sharp Levi condition we have to take into consideration
the following question.

Is it possible to connect the quasilinear structure of our problem (1.1), (1.2)
with the loss of derivatives of the solution which appears even in the linear
case?

If not, then it may turn out to be hard to prove local existence of Sobolev
solutions for our starting problem. The goal of this paper is to show how to
answer this question, to overcome these difficulties, respectively.
Let us mention some more references related to the object of this paper. In
[9] one can find a global existence result of classical solutions for

utt − λ2(t)uxx − a(x, t)ux − b(x, t)ut − c(x, t)u = f(x, t),

u(x, 0) = u0(x), ut(x, 0) = u1(x),

under the Levi condition

lim sup
t→+0

|a(x, t)|
λ′(t)

≤ Q < ∞.

This Levi condition is sharp. The loss of derivatives depends on Q.
Weakly hyperbolic Cauchy problems of the form

utt −
n∑

i,j=1

(aij(x, t)uxi)xj +
n∑

i=1

bi(x, t)uxi + b0(x, t)ut + c(x, t)u = f(x, t),

u(x, 0) = u0(x), ut(x, 0) = u1(x),

were studied in [10] under the Levi condition

ct(
n∑

i=1

bi(t)ξi)2 ≤ A(
n∑

i,j=1

aij(x, t)ξiξj) + ∂t(
n∑

i,j=1

aij(x, t)ξiξj).

In the case of time degeneracy this Levi condition is only sharp if we have a
degeneracy of finite order (compare with the Levi condition from [9]). Quasi-
linear weakly hyperbolic equations of higher order are studied in [7]. There
are various papers ([2],[3],[8]) concerning local existence in C∞ for special
quasilinear weakly hyperbolic model equations. But the goal of these papers
is another one. The authors are more interested in equations having a main
part which differs from that one of (1.1). The authors allow spatial degen-
eracy, too, and allow even a dependence of the coefficients on the solution
itself. But there is no nonlinear dependence on ∇xu or the Levi condition is
not sharp for time degeneracies of infinite order.
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2. Main results and some important tools

To formulate the main results we suppose for the function f = f(t, x, u, p, �r),
p = ut, �r = (r1, ..., rn), ri = µi(t)qi, qi = ∂xiu, the condition

(A4) f ∈ C([0, T ], C∞(R1
u × R1

p × Rn
r )× Hs

x(R
n))

for all s ∈ N .

Theorem 1. (Local existence result)
Let us consider the weakly hyperbolic Cauchy problem

utt − λ2(t)� u = f(t, x, u, ut, µi(t)∂xiu),
u(x, 0) = u0(x), ut(x, 0) = u1(x),(2.1)

where the data u0, u1 belong to Hs0(Rn), Hs0−1(Rn), respectively. The nat-
ural number s0 satisfies s0 ≥ 2(Q + 4) + n/2 + 1 + r, r ∈ N , where the
nonnegative constant Q is chosen from the relation

lim sup
t→+0

|∂qk
f(t, x, u0(x), u1(x), µi(t)∂xiu0(x))/λ′(t) = Q(2.2)

for all (x, t) ∈ Rn × [0, T ] and i, k = 1, ..., n. Under the assumptions (A1) to
(A4) there exists a locally defined Sobolev solution

u ∈ C([0, T ∗], H4+[n/2]+r(Rn)) ∩ C1([0, T ∗], H3+[n/2]+r(Rn))

∩ C2([0, T ∗], H2+[n/2]+r(Rn)).

Theorem 2. (Uniqueness result)
The solution of (2.1) is uniquely determined in

C([0, T ], Hs0(Rn)) ∩ C1([0, T ], Hs0−1(Rn)) ∩ C2([0, T ], Hs0−2(Rn))

under the assumptions of Theorem 1 and the condition

s0 > max(n/2 + 1, 5 + 2[(Q+ 1)/2]).(2.3)

Remark 1. There is a gap between the order of Sobolev classes for which
one has local existence to those in which one has additionally uniqueness
of solutions. This is a typical effect in the weakly hyperbolic theory if one
uses the sharp Levi condition (A3). The question whether the solution of
Theorem 1 is uniquely determined seems difficult.
If r > 1 + 2[(Q + 1)/2] − [n/2], then Theorem 2 implies the uniqueness of
the solution from Theorem 1.

An important tool for our considerations will be the following

Lemma 1. (Lemma of Nersesjan - generalization of the well-known Gron-
wall’s lemma to differential inequalities with a singular coefficient [9])
Let us consider the differential inequality

y′(t) ≤ K(t)y(t) + f(t)(2.4)
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for t ∈ (0, T ), where the functions K = K(t) and f = f(t) belong to
C(0, T ), T > 0. Under the assumptions

δ∫

0

K(τ)dτ = ∞ ,

T∫

δ

K(τ)dτ < ∞ ,

lim
δ→+0

t∫

δ

exp(
t∫

s

K(τ)dτ)f(s)ds exists ,

lim
δ→+0

y(δ) exp(
t∫

δ

K(τ)dτ) = 0

for all t ∈ (0, T ) and δ ∈ (0, t) every solution belonging to C[0, T ]∩C1(0, T )
satisfies

y(t) ≤
t∫

0

exp(
t∫

s

K(τ)dτ)f(s)ds .(2.5)

This lemma can be applied to the study of the linear weakly hyperbolic
Cauchy problem

wtt − λ2(t)� w = f(x, t), w(x, 0) = wt(x, 0) = 0 ,(2.6)

where λ = λ(t) satisfies the assumptions (A1) and (A2). In [15] it was proved
that for every function f = f(x, t) satisfying λ−df(x, t) ∈ C([0, T ];Y s

+0) there
exists a uniquely determined solution w = w(x, t) satisfying λ−dw(x, t) ∈
C2([0, T ];Y s

+0), where d is a suitable positive constant. Here we use the
notation

Y s
+0 = {u ∈ C∞(Rn

x) : ‖∂α
xu‖L2(Rn)ρ

|α|s ≤ C|α|!s}
with suitable constants ρ and C depending on u. Using Lemma 1 and the
result from [15] one obtains the next result.

Corollary 1. If f ∈ C([0, T ], HN−1(Rn)) satisfies
‖f(x, t)/(λ(t)d−1λ′(t))‖HN−1(Rn) ≤ CN , N ≥ 4, d > 1, then there exists a
uniquely determined Sobolev solution
w ∈ C([0, T ], HN (Rn))∩C1([0, T ], HN−1(Rn))∩C2([0, T ], HN−2(Rn)) of the
linear weakly hyperbolic Cauchy problem

wtt − λ2(t)� w = f(x, t), w(x, 0) = wt(x, 0) = 0.

The solution fulfils EN (w)(t) ≤ CNλ(t)d, where we use CN as an universal
constant (for the definition of EN (w)(t) see the proof).

Proof. a) Let χ = χ(x) be a Gevrey function from Y s
+0 ∩ C∞

0 (R
n) with

χ(x) = 0 if |x| ≥ 1, χ ≥ 0 and
∫
Rn

χ(x)dx = 1. Then the functions
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λ′−1λ−(d−1)fε = λ′−1λ−(d−1)f ∗χε (Friedrichs mollifier of λ′−1λ−(d−1)f) be-
long to C([0, T ], Y s

+0), too. This follows from

λ′−1
λ−(d−1)∂α

x fε = λ′−1
λ−(d−1)f ∗ ∂α

xχε,

‖λ′−1
λ−(d−1)∂α

x fε‖L2(Rn) ≤ ‖λ′−1
λ−(d−1)f‖L2(Rn)‖∂α

xχε‖L1(Rn)

and the fact that χε has compact support for each fixed ε > 0. Moreover,
the regularizations fulfil lim

ε→+0
‖λ′−1λ−(d−1)fε − λ′−1λ−(d−1)f‖HN−1(Rn) = 0.

Let us now consider the auxiliary problems

wtt − (λ(t) + εk)2 � w = fεk
(x, t), w(x, 0) = wt(x, 0) = 0 .

We can choose the sequence {εk}, εk → +0, in such a way that

‖λ′−1
λ−(d−1)fεk

− λ′−1
λ−(d−1)fεk+1‖HN−1(Rn) ≤ 1

2k
for all k ∈ N .

We define energies which take into consideration the degeneracy at t = 0 of
our starting problem, namely, the partial energies (j ≥ 1, t ∈ [0, T ])
(2.7) e2

j,ε(w)(t) =
∑

|α|=j−1

∫

Rn

((λ(t) + ε)2|∂α
x∇xw|2 + |∂α

xwt|2 + |∂α
xw|2)dx

and the energies of finite order (N ≥ 1, t ∈ [0, T ])

EN,ε(w)(t) =
N∑
j=1

ej,ε(w)(t) .(2.8)

Due to [6] we have for fεk
a uniquely determined solution wεk

∈ C2([0, T ];Y s
+0).

Now let us introduce gk = fεk+1 − fεk
and vk = wεk+1 − wεk

. After differen-
tiation of (2.7), (2.8) we get

e′
j,εk+1

(vk)(t) ≤ λ′(t)
(λ(t) + εk+1)

ej,εk+1(vk)(t) + ej,εk+1(vk)(t)

+
∑

|α|=j−1

‖∂α
x gk‖L2(Rn) ,

E′
N,εk+1

(vk)(t) ≤ λ′(t)
(λ(t) + εk+1)

EN,εk+1(vk)(t) + EN,εk+1(vk)(t)

+ ‖gk‖HN−1(Rn) ,

respectively. After application of Gronwall’s inequality we have

EN,εk+1(vk)(t) ≤ (λ(t) + εk+1)1+η

t∫

0

(λ(s) + εk+1)−1−η‖gk‖HN−1(s)ds

≤ (λ(t) + εk+1)1+η 1
2k(d − 1− η)

t∫

0

ds(λ(s) + εk+1)d−1−ηds

≤ (λ(t) + εk+1)d

2k(d − 1− η)
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for each d > 1. Using (2.7), (2.8) and wεk
∈ C2([0, T ];Y s

+0), then {wεk
} =

{wε0 +
n−1∑
i=0

vi} is a Cauchy sequence in C1([0, T ], HN−1(Rn)). The limit

function w ∈ C1([0, T ], HN−1(Rn)) satisfies EN (w)(t) ≤ Cλ(t)d, d > 1.
Here one has to use that
EN,εk

(wεk
)(t) ≤ C(λ(t) + ε)d for all t ∈ [0, T ], where C is independent of N.

Hence, w ∈ C([0, T ], HN (Rn)), too. Thus the existence part is proved.

b) To prove uniqueness we define the energies (j ≥ 1, N ≥ 1, t ∈ [0, T ])

(2.9) f2
j (w)(t) =

∑
|α|=j−1

∫

Rn

(|∂α
xwt|2 + |∂α

xw|2)dx, FN (w)(t) =
N∑
j=1

fj(w)(t) .

With these energies we obtain

F ′
N (w)(t) ≤ FN (w)(t) + λ2(t)FN+2(w)(t), FN (w)(0) = 0 .

The application of Gronwall’s inequality leads to

FN (w)(t) ≤ CNλ2(t) max
t∈[0,T ]

FN+2(w)(t) .

If we use the energies EN and the relation EN (w)(t) ≤ CNFN+1(w)(t), then
EN (w)(t) ≤ CN+1λ

2(t) max
t∈[0,T ]

FN+3(w)(t). As in the part a) we derive

E′
N (w)(t) ≤ λ′(t)

λ(t)
EN (w)(t) + EN (w)(t) .

The assumption N ≥ 4 implies the existence of F4(w)(t). Using the last both
inequalities we conclude with Lemma 1 (we have to use it with the notations
K(t) = (1 + η)dt lnλ(t), η > 1, y(t) = EN (w)(t)) the relation E1(w)(t) ≡ 0,
that is, w ≡ 0 in Rn × [0, T ]. The corollary is completely proved.

3. Proof of the theorems

3.1. Proof of Theorem 1. a) Reduction process.
In this step we reduce (1.1) to an equivalent system of nonlinear ordinary
differential equations and a quasilinear weakly hyperbolic equation. A spe-
cial asymptotical behaviour of the nonlinear right-hand side of the weakly
hyperbolic equation allows us to apply Corollary 1.
Let us define the iterates u(i), i = 0, ..., p, in the following way (see [13] in a
special case):

(3.1)
u

(0)
tt = f(t, x, u(0), u

(0)
t , 0, ..., 0),

u(0)(x, 0) = u0(x), u
(0)
t (x, 0) = u1(x),
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(3.2)

u
(i)
tt = f(t, x,

i∑
k=0

u(k),
i∑

k=0

u
(k)
t , µ1(t)

i−1∑
k=0

∂x1u
(k), ..., µn(t)

i−1∑
k=0

∂xnu
(k))

− f(t, x,
i−1∑
k=0

u(k),
i−1∑
k=0

u
(k)
t , µ1(t)

i−2∑
k=0

∂x1u
(k), ..., µn(t)

i−2∑
k=0

∂xnu
(k))

+ λ2(t)� u(i−1),

(3.3) u(i)(x, 0) = u
(i)
t (x, 0) = 0

for i = 1, ..., p,
−1∑
k=0

... ≡ 0. This system of nonlinear ordinary differential

equations has uniquely determined solutions u(i)(x, ·) ∈ C2[0, T0] if we choose
T0 sufficiently small. Using additionally the regularity of the data u0 and u1
we obtain

f ′
j(u

(0))(t) ≤ fj(u(0))(t) +
∑

|α|=j−1

‖∂α
x f(t, x, u

(0), u
(0)
t , 0, ..., 0)‖L2(Rn).

Supposing for u(0) the conditions

|u(0) − u0| ≤ ε0, |u(0)
t − u1| ≤ ε0, |∂xi(u

(0) − u0)| ≤ ε0(3.4)

gives after a standard procedure (Leibniz formula, Gagliardo-Nirenberg in-
equality etc.)

(3.5)
f ′
j(u

(0))(t) ≤ fj(u(0))(t) + Cj(1 + Fj(u(0))(t)),

F ′
N (u

(0))(t) ≤ FN (u(0))(t) + CN (1 + FN (u(0))(t)),

respectively. By Gronwall’s inequality FN (u(0))(t) exists for t ∈ [0, T0].
If we choose data u0 ∈ Hs0(Rn), u1 ∈ Hs0−1(Rn) with n/2 + 1 < N ≤ s0,
then (3.4) is satisfied, probably with a smaller T0. There are no difficulties
to estimate the other iterates. One has only to study

u
(i)
tt = gi(t, x, u(i), u

(i)
t ) + λ2(t)� u(i−1), u(i)(x, 0) = u

(i)
t (x, 0) = 0 ,

where

gi(t, x, u(i), u
(i)
t )

= f(t, x,
i∑

k=0

u(k),
i∑

k=0

u
(k)
t , µ1(t)

i−1∑
k=0

∂x1u
(k), ..., µn(t)

i−1∑
k=0

∂xnu
(k))

−f(t, x,
i−1∑
k=0

u(k),
i−1∑
k=0

u
(k)
t , µ1(t)

i−2∑
k=0

∂x1u
(k), ..., µn(t)

i−2∑
k=0

∂xnu
(k))

and repeat the reasoning. The term λ2(t)� u(i−1) worses the Sobolev regu-
larity of u(i) with respect to x compared with that of u(i−1) by 2. Thus we
have proved the
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Lemma 2. There exists a positive constant Tp such that the system of non-
linear ordinary differential equations (3.1) to (3.3) has uniquely determined
solutions
u(i) ∈ C2([0, Tp], Hs0−1−2i(Rn)), i = 1, ..., p, where s0 − 1 − 2p > n/2 + 1.
Moreover, to given positive constants εi, i = 0, ..., p, there exists an interval
[0, Tp] in which the estimates

(3.6)
max

j=1,...,n
(|u(0) − u0|, |u(0)

t − u1|, |µj(t)(u(0)
xj

− u0,xj )|) ≤ ε0,

max
j=1,...,n

(|u(i)|, |u(i)
t |, |µj(t)u(i)

xj
|) ≤ εi

hold for all (x, t) ∈ Rn × [0, Tp], i = 1, ..., p.

One expects the statement of this lemma. The sense of our procedure will
be expressed by the next

Lemma 3. Choosing data u0 ∈ Hs0(Rn), u1 ∈ Hs0−1(Rn) with n/2 + 1 <
N ≤ s0 − 2p it holds

FN (u(i))(t) ≤ CN,iλ
i(t)(3.7)

for all t ∈ [0, Tp] and i = 0, ..., p.

Proof. Instead of (3.7) we show the stronger statement

FM (u(i))(t) ≤ CM,iλ
i(t) for i = 0, ..., p and M ≤ s0 − 2i .

Recalling (3.5) we find these estimates for i = 0 and M ≤ s0. Using (3.2)
we obtain

u
(i+1)
tt = bi+1(x, t)u

(i+1)
t + Ci+1(x, t)u(i+1)

+
n∑

k=1

µk(t)ak,i+1(x, t)u(i)
xk
+ λ2(t)� u(i).

Homogeneous data, (A1) and (A3) imply similar to (3.5)

FM (u(i+1))(t) ≤ CM

∫ t

0
(λ′(τ)CM+1,iλ

i(τ) + λ2(τ)CM+2,iλ
i(τ))dτ

≤ CM,i+1λ
i+1(t)

for all t ∈ [0, Tp] and M ≤ s0 − 2(i+ 1).

For the solution of (1.1) we choose the ansatz u = v +
p∑

i=0
u(i), p > Q + 1

(Q from Theorem 1), where the functions u(i) ∈ C2([0, Tp], Hs0−1−2i(Rn))
are the solutions of (3.1) to (3.3). Taking account of p > Q + 1 and
s0 ≥ 2(Q + 4) + n/2 + 1 + r we conclude from Theorem 1 that u(i) ∈
C2([0, Tp], Hs+[n/2]+r(Rn)) for i = 0, 1, ..., p.

It remains to consider the weakly hyperbolic Cauchy problem

vtt − λ2(t)� v = F (t, x, v, vt, µi(t)∂xiv), v(x, 0) = vt(x, 0) = 0,(3.8)
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where

F (t, x, v, vt, µi(t)∂xiv)

= f(t, x, v +
p∑

k=0

u(k), ∂t(v +
p∑

k=0

u(k)), µi(t)∂xi(v +
p∑

k=0

u(k)))

−f(t, x,
p∑

k=0

u(k),
p−1∑
k=0

∂tu
(k), µi(t)

p−1∑
k=0

∂xiu
(k)) + λ2(t)� u(p).

Our starting Cauchy problem (1.1),(1.2) is obviously equivalent to (3.1),
(3.3), (3.8).

Remark 2. Using (3.7) the right-hand side F (t, x, v, vt, µi(t)∂xiv) has in
(t, x, 0, 0, ..., 0) a special asymptotical behaviour, namely, F (t, x, 0, 0, 0) ∼
λp(t)λ′(t). In this sense it is reasonable to speak of an improvement of the
asymptotical behaviour from iterate to iterate.

b) To proceed further, let us devote to (3.8) and define the successive ap-
proximation scheme

v
(q+1)
tt − λ2(t)� v(q+1) = F (t, x, v(q), v

(q)
t , µi(t)∂xiv

(q)),

v(q+1)(x, 0) = v
(q+1)
t (x, 0) = 0,

v(0) ≡ 0.

Then the differences w(q) = v(q+1) − v(q) satisfy

w
(0)
tt − λ2(t)� w(0) = F (t, x, 0, 0, 0) ,

w
(q)
tt − λ2(t)� w(q) = F (t, x, v(q), v

(q)
t , µi(t)∂xiv

(q))

−F (t, x, v(q−1), v
(q−1)
t , µi(t)∂xiv

(q−1))

with homogeneous initial conditions. Now we observe that, by Remark 2
and Corollary 1, we have w(0) ∈ C([0, Tp], HN (Rn)) and the existence of
EN (w(0))(t) for all t ∈ [0, Tp],
N = 4+[n/2]+ r. Hence the right-hand side in the weakly hyperbolic equa-
tion for w(1) belongs to C([0, Tp], HN−1(Rn)). Using Hadamard’s formula,
(A3) and the definition of EN its asymptotical behaviour is O(λ(t)p−1λ′(t))
for t → +0. Consequently, Corollary 1 is applicable and yields
w(1) ∈ C([0, Tp], HN (Rn)), EN (w(1))(t) ≤ CN,1λ(t)p. With this proce-
dure at hand, it is not difficult to conclude w(q) ∈ C([0, Tp], HN (Rn)) and
EN (w(q))(t) ≤ CN,qλ(t)p for all q ≥ 0. Thus, all iterates are well defined.
c) The ideas of the second step give us the possibility to estimate EN (w(q))(t).
Let us sketch it for EN (w(0))(t). We obtain for a small ε > 0

E′
N (w

(0))(t) ≤ (1 +
ε

2
)
λ′(t)
λ(t)

EN (w(0))(t)

+
N∑
j=1

∑
|α|=j−1

‖∂α
xF (t, x, 0, 0, 0)‖L2(Rn).
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To estimate ∂α
xF (t, x, 0, 0, 0), |α| ≤ N − 1, the essential terms are the fol-

lowing:

∂α
x (

n∑
i=1

∫ 1

0
∂rif(t, x,

p∑
k=0

u(k),
p∑

k=0

u
(k)
t , µ1(t)∂x1

p−1∑
k=0

u(k),

. . . , µi(t)∂xi(
p−1∑
k=0

u(k) + τu(p)), ..., µn(t)∂xn

p∑
k=0

u(k))dτ µi(t)∂xiu
(p)).

Let us denote the integrand by
n∑

i=1
gi(t, x, ...). Applying Leibniz formula

there are terms of the form
n∑

i=1

∫ 1

0
gi(t, x, ...)dτ µi(t)∂α

xu
(p)
xi

with |α| = N − 1 .

Using (2.2) and (3.4) one can estimate to a given ε > 0 the L2(Rn)-norm
of the sum of all these terms by (Q + ε

2)
λ′(t)
λ(t) EN (u(p))(t) for all t ∈ [0, Tε],

where Tε ≤ Tp.
Moreover, we have terms of the form

n∑
i=1

∫ 1

0

∑
β+ρ≤α

∑
l1+l2=|α|−|β|−|ρ|

l1∑
ν1=0

l2∑
ν2=0

g
(β,ν1,ν2)
i (t, x, ...)

× (
∑

|γ1|+...+|γν1 |=l1,|γi|≥1

∂γ1
x (

p∑
k=0

u(k))...∂γν1
x (

p∑
k=0

u(k)))

× (
∑

|δ1|+...+|δν2 |=l2,|δi|≥1

∂δ1
x (

p∑
k=0

u
(k)
t )...∂δν2

x (
p∑

k=0

u
(k)
t ))dτµi(t)∂ρ

xu
(p)
xi

,

with |ρ| < |α|. Using (A3),(3.4) and the Gagliardo-Nirenberg inequality the
L2(Rn) -norm of this sum can be estimated by
CNλ′(t)EN (u(p))(t)EN (

∑p
k=0 u

(k))(t). Here (3.4) is used to estimate the
L∞(Rn) -norm of

∑p
k=0 u

(k) and
∑p

k=0 u
(k)
t . Finally, there appear terms in

which gi will be differentiated to ri, too. Similar to the above considerations
the sum of these terms can be estimated by

CN
λ′2(t)
λ(t)

EN (u(p))(t)EN (
p∑

k=0

u(k))(t) .

Consequently,

E′
N (w

(0))(t) ≤ (1 +
ε

2
)
λ′(t)
λ(t)

EN (w(0))(t) + (Q+
ε

2
)
λ′(t)
λ(t)

EN (u(p))(t)

+CN
λ′2(t)
λ(t)

EN (u(p))(t)EN (
p∑

k=0

u(k))(t)

+CNλ′(t)EN (u(p))(t)EN (
p∑

k=0

u(k))(t) + λ2(t)EN+2(u(p))(t) .
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Using (3.7) and Lemma 1 we have EN (w(0))(t) ≤ CN,0λ(t)p with a suitable
constant CN,0.
Repeating the above considerations leads to

(3.9)

E′
N (w

(q))(t) ≤ (1 +
ε

2
)
λ′(t)
λ(t)

EN (w(q))(t)

+ (Q+
ε

2
)
λ′(t)
λ(t)

EN (w(q−1))(t)

+ ϕN
λ′2(t)
λ(t)

EN (w(q−1))(t)(EN (v(q−1) +
p∑

k=0

u(k))

+ EN (v(q) +
p∑

k=0

u(k)))(t) ,

where the function ϕN increasing in N depends on the L∞(Rn)-norms of

v(i) +
p∑

k=0

u(k), v
(i)
t +

p∑
k=0

u
(k)
t , µk(t)∂xk

(v(i) +
p∑

k=0

u(k)), i = q − 1, q .

d) Finally, we want to show the existence of constants T ∗, DN and CN,q such
that

EN (w(q))(t) ≤ CN,qλ(t)p, EN (v(q) +
p∑

k=0

u(k))(t) ≤ DN

for all q ≥ 0, t ∈ [0, T ∗], where the sequence {v(q)} converges to a solution
valued in Sobolev spaces of (3.8). The application of Lemma 1 to (3.9) gives

EN (w(q))(t) ≤
t∫

0

exp(
t∫

s

(1 +
ε

2
)
λ′(τ)
λ(τ)

dτ)((Q+
ε

2
)
λ′(s)
λ(s)

EN (w(q−1))(s)

+ ϕN (DN )
λ′2(s)
λ(s)

EN (w(q−1))(s)(EN (v(q−1) +
p∑

k=0

u(k))(s)

+ EN (v(q) +
p∑

k=0

u(k))(s)))ds ,

respectively, using the induction assumption (the inequalities are fulfilled for
q = 0)

EN (w(q))(t) ≤ λ(t)1+ ε
2

t∫

0

λ(s)−(1+ ε
2 )((Q+

ε

2
)
λ′(s)
λ(s)

CN,q−1λ(s)p

+ 2ϕN (DN )
λ′2(s)
λ(s)

CN,q−1λ(s)pDN )ds

≤ CN,q−1
Q+ ε

2
p − 1− ε

2
λ(t)p(1 + 2ϕN (DN )DN sup

[0,T ]
λ′(t)) .
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Here it is sufficient to estimate the L∞(Rn)-norm by DN . Let us choose

DN = 1+max
[0,Tε]

EN (
p∑

k=0
u(k))(t). Taking into consideration (A1) and p > Q+1

we have a positive constant T ∗ such that

Q+ ε
2

p − 1− ε
2
(1 + λ′(T ∗)2ϕN (DN )DN ) = b < 1 .

Consequently, EN (w(q)) ≤ bqCN,0λ(t)p for all q ≥ 0 and t ∈ [0, T ∗]. An
eventually smaller T ∗ implies that CN,0λ(T ∗)p/(1− b) ≤ 1, EN (v(q))(t) ≤ 1
respectively.
As in part a) of the proof of Corollary 1 we have that {v(q)} is a Cauchy
sequence in C([0, T ∗], HN (Rn)) ∩ C1([0, T ∗], HN−1(Rn)), where N = 4 +
[n/2] + r. The limit function v belonging to C2([0, T ∗], HN−2(Rn)), too,
solves (3.8). This completes the proof.

3.2. Proof of Theorem 2. We only want to sketch the proof because the
main ideas one can find in the proofs of Corollary 1 and Theorem 1.

a) The date u0, u1 belong to Hs0(Rn), Hs0−1(Rn), respectively. If s0 >
n/2 + 1 we obtain |u0(x)| ≤ Cu, |u1(x)| ≤ Cp and |∂xiu0(x)| ≤ Cqi for all
x ∈ Rn, i = 1, ..., n, with suitable nonnegative constants Cu, Cp, Cqi . Let
v1, v2 be two different Sobolev solutions, then w = v1 − v2 solves

(3.10)

wtt − λ2(t)� w =
n∑

i=1

ai(t, x, v1, v2)µi(t)wxi + b(t, x, v1, v2)wt

+ c(t, x, v1, v2)w,

w(x, 0) = wt(x, 0) = 0 .

To every positive constant ε we can find a constant Tε such that the argu-
ments of the coefficients fulfil

|vk(x, t)| ≤ Cu + ε, |∂tvk(x, t)| ≤ Cp + ε, |µi(t)∂xivk(x, t)| ≤ Cqi + ε

for k = 1, 2, i = 1, ..., n and all (x, t) ∈ Rn × [0, Tε]. Using (A4) and (2.2)
leads to

lim
t→+0

|ai(t, x, v1, v2)| ≤ Q(3.11)

for all x ∈ Rn.

b) The function

w ∈ C([0, T ], Hs0(Rn)) ∩ C1([0, T ], Hs0−1(Rn)) ∩ C2([0, T ], Hs0−2(Rn))

solves

wtt − b(t, x, v1, v2)wt − c(t, x, v1, v2)w =
n∑

i=1

ai(t, x, v1, v2)µi(t)wxi

+ λ2(t)� w, w(x, 0) = wt(x, 0) = 0 .
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By (A4) the coefficients belong to C([0, T ], Hs0−1(Rn)). Similar to part b)
of the proof of Corollary 1 it follows

(3.12)

F ′
N (w)(t) ≤ CNFN (w)(t) + λ′(t)CN+1FN+1(w)(t)

+ λ2(t)FN+2(w)(t),

FN (w)(0) = 0

for all t ∈ [0, Tε] and 1 ≤ N ≤ s0 − 2. Applying Gronwall’s inequality and
repeating the same reasoning p − 1 times gives

FN (w)(t) ≤ CN,pλ(t)pmax
[0,T ]

FN+2(1+[p/2])(w)(t)(3.13)

for all t ∈ [0, Tε] and 1 ≤ N ≤ s0 − 2(1 + [p/2]).

c) Similar to part a) of the proof of Corollary 1 we can show

E′
N (w)(t) ≤ (Q+ 1 + ε)

λ′(t)
λ(t)

EN (w)(t) + CNEN (w)(t)(3.14)

for all t ∈ [0, Tε]. Using EN (w)(t) ≤ CNFN+1(w)(t) it follows from (3.13)

EN (w)(t) ≤ CN+1,p AN+1,pλ(t)p ,(3.15)

where AN,p = max
[0,Tε]

FN+2(1+[p/2])(w)(t).

Finally let us choose p > Q+1+ε. Then Lemma 1 can be applied to (3.14).
Due to (3.15) the essential assumption

lim
δ→+0

EN (w)(t) exp(
τ∫

δ

(Q+ 1 + ε)
λ′(s)
λ(s)

ds) =

lim
δ→+0

EN (w)(δ)(
λ(τ)
λ(δ)

)Q+1+ε = 0

is satisfied for all τ > 0.
Consequently, E1(w)(t) = 0, w ≡ 0 in Rn × [0, Tε]. Therefore we need the
existence of F2(2+[p/2])(w)(t) with p > Q + 1. But this follows from the
fact that FN (w)(t) is defined for N > 5 + 2[(Q + 1)/2]. Consequently, the
special choice of s0 > max(n/2+1, 5+2[(Q+1)/2]) implies the uniqueness of
Sobolev solutions of our starting problem (2.1), (2.2) in [0, Tε] with respect
to t. From the strictly hyperbolic theory we obtain even the uniqueness in
[Tε, T ].

4. Further results

Corollary 2. Additionally to the assumptions (A1) to (A4) we suppose that
λ(t) ∈ C2[0, T ]. If the data u0, u1 belong to

⋂
k∈N

Hk(Rn), then there exists a

locally defined solution u ∈ C2([0, T ∗],
⋂

k∈N
Hk(Rn)) of the weakly hyperbolic

Cauchy problem (1.1), (1.2).
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Proof. Using (3.5) we obtain FN (u(0))(t) ≤ AN,0 +BN,0
t∫

0
FN (u(0))(τ)dτ for

all t ∈ [0, T0], where a sufficiently small T0 and a suitable N0 imply the
conditions (3.4). Let us fix the set

K0 := {v ∈ C1([0, T0],
⋂
k∈N

Hk(Rn)) : FN (v)(t) ≤ AN,0e
BN,0t ∀N}

and consider utt = f(t, x, v, vt, 0, ..., 0) , u(x, 0) = u0(x), ut(x, 0) = u1(x),
with an arbitrary function v from K0. Then we have

FN (u)(t) ≤ AN,0 +BN,0

t∫

0

FN (v)(τ)dτ

≤ AN,0 +BN,0

t∫

0

AN,0e
BN,0τdτ ≤ AN,0e

BN,0t.

Consequently, u ∈ K0, too. Using the property of
⋂

k∈N
Hk(Rn) to be a

Montel space and the uniqueness property of solutions for the Cauchy prob-
lem (3.1) we conclude that there exists a uniquely determined solution
u(0) ∈ C2([0, T0],

⋂
k∈N

Hk(Rn)) satisfying the energy estimates FN (u(0))(t) ≤
AN,0e

BN,0t for all N .
It is clear that an analogous argument gives locally defined solutions u(i) ∈
C2([0, Ti],

⋂
k∈N

Hk(Rn)) of (3.2), (3.3). From (3.7) we know additionally that

FN (u(i))(t) ≤ CN,iλ
i(t) for all t ∈ [0, Tp] and i = 0, ..., p. Now let us devote

to the weakly hyperbolic Cauchy problem (3.8).
Applying Hadamard’s formula and the above cited properties of u(i), espe-
cially those for u(p), gives by the same reasoning as in part c) of the proof
for Theorem 1

E′
N (v)(t) ≤ (1 +

ε

2
)
λ′(t)
λ(t)

EN (v)(t) + (Q+
ε

2
)
λ′(t)
λ(t)

EN (v)(t) +

AN
λ′2(t)
λ(t)

ϕN (‖v‖L∞(Rn), ‖vt‖L∞(Rn), ‖∇xv‖L∞(Rn))EN (v)(t) +BN λ(t)p ,

where AN , BN and ϕN depend on the energies of u(i), i = 0, ..., p, and ϕN is
a monotonously increasing function in its arguments. Now let us define the
set

K := {v ∈ C1([0, T ∗],
⋂
k∈N

Hk(Rn)) : EN (v)(t) ≤ DN λ(t)peLN t ∀N},

where the constants DN and LN will be determined later. A suitable small
T ∗ and a suitable index N0 imply for fixed DN0 and LN0 the fulfilment of
‖v‖L∞(Rn), ‖vt‖L∞(Rn), ‖∇xv‖L∞(Rn) ≤ 1. If we replace on the right-hand
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side v by u, then the application of Lemma 1 leads to

EN (v)(t) ≤ λ(t)1+ ε
2

t∫

0

λ(s)−(1+ ε
2 )((Q+

ε

2
)
λ′(s)
λ(s)

EN (u)(s)

+AN
λ′2(s)
λ(s)

ϕN (‖u‖L∞(Rn), ‖ut‖L∞(Rn), ‖∇xu‖L∞(Rn))EN (u)(s)

+BN λ(s)p)ds.

If u ∈ K, then

EN (v)(t) ≤ λ(t)1+ ε
2

t∫

0

λ(s)−(1+ ε
2 )((Q+

ε

2
)
λ′(s)
λ(s)

DN λ(s)peLNs

+AN
λ′2(s)
λ(s)

ϕN (1, 1, 1)DN λ(s)peLNs +BNλ(s)p)ds

≤
( Q+ ε

2
p − 1− ε

2
+

C AN ϕN (1, 1, 1)
LN

)
DN λ(t)peLN t +BN λ(t)pt .

Here we have used λ(t) ∈ C2[0, T ]. By (A1) and (A2) the function λ′2/λ
belongs to C(0,T]. But the additional regularity assumption yields
limt→+0 λ

′(t)2/λ(t) = 0. Consequently, λ′2(t)/λ(t) ≤ C for t ∈ [0, T ]. Let us
choose p ≥ 3Q + 2ε + 1, LN ≥ 3ANC ϕN (1, 1, 1) and DN ≥ 3BN . Then a
small T ∗ implies EN (v)(t) ≤ DN λ(t)peLN t for all t ∈ [0, T ∗] and N . Using
the property of

⋂
k∈N

Hk(Rn) to be a Montel space and the differential equa-

tion we obtain a uniquely determined solution u ∈ C2([0, T ∗],
⋂

k∈N
Hk(Rn))

by Schauder-Tychonoff’s fixed point theorem and Theorem 2.

Remark 3. For the proof of Corollary 2 we have used the additional reg-
ularity assumption λ(t) ∈ C2[0, T ]. It seems to be possible to avoid this
assumption if one uses instead of Schauder-Tychonoff’s fixed point theorem
the Nash-Moser technique (see [2], [3], [4], [8] for different weakly hyperbolic
Cauchy problems). But we want to restrict ourselves to the statement of
Corollary 2 because the main goal of this paper is to prove the existence of
Sobolev solutions for (1.1),(1.2).

Remark 4. Using Corollary 2 one can prove local existence of C∞ -solutions
for (1.1),(1.2) if the data u0, u1 belong to C∞(G), G ⊂ Rn is a bounded
domain. Multiplying the data by a cutoff function χ ∈ C∞

0 (G), χ ≡ 1 on
G′ ⊂ G, they belong to

⋂
k∈N

Hk(Rn)). Recalling Corollary 2 and Theorem

2 there exists a uniquely determined solution u ∈ C2([0, T ∗],
⋂

k∈N
Hk(Rn)).

But this solution has the property to have a cone of dependence. This follows
from the corresponding property of the solutions for the strictly hyperbolic
Cauchy problems (ε > 0)

utt − (λ(t) + ε)2 � u = f(t, x, u, ut, µi(t)∂xiu), u(x, 0) = ut(x, 0) = 0
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and a continuity argument. Consequently, the solution of our auxiliary prob-
lem coincides on a small cylinder G1 × [0, T ∗] with that one of (1.1),(1.2)
with data belonging to C∞(G), G1 ⊂ G′.

Remark 5. We are now able to prove an existence- and uniqueness result
for the solutions of the Cauchy problem for the weakly hyperbolic equations

utt − t2l � u = f(t, x, u, ut, µi(t)∂xiu), lim sup
t→+0

|µi(t)|
tl−1 = Q,

(degeneracy of finite order at t = 0) and

utt − t−4 exp(−2
t
)� u = f(t, x, u, ut, µi(t)∂xiu), lim sup

t→+0

|µi(t)|
t−2 exp(−1

t )
= Q

(degeneracy of infinite order at t = 0).
If we compare the results for the first equation with those from Example
1 the loss of Sobolev regularity decreases, too, if l increases. In the case
of degeneracy of finite order it is not necessary to use the step a) with the
improvement of asymptotical behaviour. In this case the energy method
can be applied directly to the starting problem (see [10], where the Levi
condition is sharp in the case of degeneracy of finite order).

Remark 6. The results of this paper complete the knowledge about the
theory for weakly hyperbolic Cauchy problems of the form

utt − λ2(t)� u = f(t, x, u, ut, µi(t)∂xiu), u(x, 0) = u0(x), ut(x, 0) = u1(x).

a) If u0 ∈ Hs0(Rn), u1 ∈ Hs0−1(Rn), then the nonnegative number Q from
(2.2) determines the suitable s0 for which a Sobolev solution exists. The
solution has a loss of Sobolev derivatives in comparison with that one of the
data.
b) If s0 is sufficiently large, then the solution is uniquely determined.

The following problem seems to be open under the assumptions (A1),(A2)
and (A4):
c) If f depends on µi(t)∂xiu, where |µi(t)| = O(λ′(t)1−2/s), s ∈ (2,∞), then
one cannot expect even in the linear case C∞-well posedness (see [5]). An
interesting problem should be to prove Gevrey-well posedness and to find
the critical Gevrey index depending on s. For s ∈ [1, 2] Levi conditions don’t
appear ([6]).
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