
ON A PROBLEM OF LOWER LIMIT

IN THE STUDY OF NONRESONANCE

A. ANANE AND O. CHAKRONE

Abstract. We prove the solvability of the Dirichlet problem{
−∆pu = f(u) + h in Ω,

u = 0 on ∂Ω

for every given h, under a condition involving only the asymptotic behaviour
of the potential F of f with respect to the first eigenvalue of the p-Laplacian
∆p. More general operators are also considered.

1. Introduction

This paper is concerned with the existence of solutions for the problem

(Pp)
{ −∆pu = f(u) + h in Ω,

u = 0 on ∂Ω

where Ω is a bounded domain of IRN , N ≥ 1, ∆p denotes the p-Laplacian
∆pu = div(|∇u|p−2∇u), 1 < p < ∞, f is a continuous function from IR to
IR and h is a given function on Ω.

A classical result, essentially due to Hammerstein [H], asserts that if f
satisfies a suitable polynomial growth restriction connected with the Sobolev
imbeddings and if

(F1) lim sup
s→±∞

2F (s)
|s|2 < λ1,

then problem (P2) is solvable for any h. Here F denotes the primitive
F (s) =

∫ s
0 f(t) dt and λ1 is the first eigenvalue of -∆ on H1

0 (Ω). Several
improvements of this result have been considered in the recent years.
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In 1989, the case N=1 and p=2 was considered in [Fe,O,Z]. It was shown
there that (P2) is solvable for any h ∈ L∞(Ω) if

(F2) lim inf
s→±∞

2F (s)
|s|2 < λ1.

If N ≥ 1 and p=2, [F,G,Z] showed later that (P2) is solvable for any h ∈
L∞(Ω) if

(F3) lim inf
s→±∞

2F (s)
|s|2 < (

π

2R(Ω)
)2,

where R(Ω) denotes the radius of the smallest open ball B(Ω) containing Ω.
This result was extended to the p-laplacian case in [E,G.1], where solvability
of (Pp) was derived under the condition

(F4) lim inf
s→±∞

pF (s)
|s|p < (p − 1){ 1

R(Ω)

∫ 1

0

dt

(1 − tp)
1
p

}p.

Note that (F4) reducer to (F3) when p = 2.
The question now naturally arises whether (p − 1){ 1

R(Ω)
∫ 1
0

dt

(1−tp)
1
p
}p can

be replaced by λ1 in (F4), where λ1 denotes the first eigenvalue of −∆p on
W 1,p
0 (Ω) (cf. Anane [A]).
Observe that for N > 1 and p = 2, ( π

2R(Ω))
2 < λ1, and a similar strict

inequality holds when 1 < p < ∞. One of our purposes in this paper is to
show that the constants in (F3) and (F4) can be inproved a little bit.

Denote by l(Ω) = l the length of the smallest edge of an arbitrary paral-
lelepiped containing Ω. In the first part of the paper we assume

(F5) lim inf
s→±∞

pF (s)
|s|p < Cp(l)

where Cp(l) = Cp = (p − 1){2l
∫ 1
0

dt

(1−tp)
1
p
}p.

Observe that for N = 1, Cp = λ1 is the first eigenvalue of -∆p on Ω =]0, l[.
In particular: C2 = (π

l )2, and we recover the result of [ Fe,O,Z]. It is clear
that (F5) is a weaker hypothesis than (F4). The difference between (F5) and
(F4) is particularly important when Ω is a rectangle or a triangle. However
Cp(l) < λ1 when N > 1, and the question raised above remains open.

In the second part of the paper we investigate the question of replacing
∆p by the second order elliptic operator

Ap(u) =
∑

1≤i,j≤N

∂

∂xi
(|∇u|p−2

a aij(x)
∂u

∂xj
),

where |∇u|2a =
∑
1≤i,j≤N aij(x) ∂u

∂xi

∂u
∂xj

. Observe that the method used in
[F,G,Z], and [E,G.1] exploits the symmetry of the Laplacian or p-laplacian.
It is not clear whether it can be adapted to more general second order elliptic
operators like Ap above.

While this paper was being completed, we learned of a work by P.Omari
and Grossinho (Cf. [GR,O.1], [GR,O.2]), where a result of the same type as



ON A PROBLEM OF LOWER LIMIT 229

ours is established in the case of the linear operator A2(u). The authors in
[GR,O.2] also consider parabolic operators.

2. The case of the p-laplacian

In this section we will consider the problem (Pp) where Ω is a bounded
domain of IRN , N ≥ 1, 1 < p < ∞, f is a continuous function from IR to IR
and h ∈ L∞(Ω).

Denote by [AB] the smallest edge of an arbitrary parallelepiped containing
Ω. Making an orthogonal change of variables, we can always suppose that
AB is parallel to one of the axis of IRN . So Ω ⊂ P =

∏N
j=1[aj , bj ] with, for

some i, |AB| = bi − ai = min1≤j≤N{bj − aj}, a quantity which we denote by
l(Ω) = l.

Theorem 1. Assume

(F ) lim inf
s→±∞

pF (s)
|s|p < Cp,

where Cp = Cp(l) is defined in the introduction. Then for any h ∈ L∞(Ω)
(Pp) has a solution u ∈ W 1,p

0 (Ω) ∩ C1(Ω).

Definition 1. An upper solution for (Pp) is defined as a function β : Ω → IR
such that:

• β ∈ C1(Ω)
• ∆pβ ∈ C(Ω)
• −∆pβ(x) ≥ f(β(x)) + h(x) a.e.x in Ω

A lower solution α is defined by reversing the inequalities above.

Lemma 1. Assume that (Pp) admits an upper solution β and a lower solu-
tion α with α(x) ≤ β(x) in Ω. Then (Pp) admits a solution u ∈ W 1,p

0 (Ω) ∩
C1(Ω), with α(x) ≤ u(x) ≤ β(x) in Ω.

Proof. This lemma is well known when p = 2 (see, e.g., [F.G.Z]). We sketch
a proof in the general case 1 < p < ∞.

Define

f̃(x, s) =




f(β(x)) if s ≥ β(x)
f(s) if α(x) ≤ s ≤ β(x)

f(α(x)) if s ≤ α(x).
By a simple fixed point argument and the results of Di Benedetto [B], there
is a solution u ∈ W 1,p

0 (Ω) ∩ C1(Ω) of

(P̃)

{
−∆pu = f̃(x, u) + h(x) in Ω,

u = 0 on ∂Ω.

We claim that α(x) ≤ u(x) ≤ β(x) in Ω, which clearly implies the conclusion.
To prove the first inequality, one multiplies the equation (P̃) by
w = u−uα, where uα(x) = max(u(x), α(x)), integrates by parts and uses the
fact that α is a lower solution we obtain 〈(−∆pu) − (−∆p(u − w)), w〉 ≤ 0,
which implies w = 0 (since −∆p is strictly monotone).
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Lemma 2. Let a < b and M > 0, and assume

(F+) lim inf
s→+∞

pF (s)
|s|p < Cp(b − a).

Then there exists β1 ∈ C1(I) such that ∆pβ1 ∈ C(I) and{ −∆pβ1(t) ≥ f(β1(t)) + M ∀t ∈ I,
β1(t) ≥ 0 ∀t ∈ I,

where I = [a, b]

Lemma 3. Assume

(F−) lim inf
s→−∞

pF (s)
|s|p < Cp(b − a).

Then there exists α1 ∈ C1(I) such that ∆pα1 ∈ C(I) and{ −∆pα1(t) ≤ f(α1(t)) − M ∀t ∈ I,
α1(t) ≤ 0 ∀t ∈ I.

Accepting for a moment the conclusion of these two lemmas, let us turn
to the

Proof of Theorem 1. By Lemma 1 it suffices to show the existence of an
upper solution and a lower solution for (Pp). Let us describe the construction
of the upper solution (that of the lower solution is similar).
Let M > ‖h‖∞ and i ∈ {1, 2, ..., N} such that b−a = bi−ai = min

1≤j≤N
bj − aj .

By Lemma 2 there exists β1 : I → IR such that β1 ∈ C1(I), ∆pβ1 ∈ C(I)
and { −∆pβ1(t) ≥ f(β1(t)) + M ∀t ∈ I

β1(t) ≥ 0 ∀t ∈ I.

Writing β(x) = β1(xi) for all x ∈ Ω, it is clear that β ∈ C1(Ω), −∆pβ(x) =
−∆pβ1(xi) ∈ C(Ω), and we have:

−∆pβ(x) = −∆pβ1(xi)
≥ f(β1(xi)) + M
= f(β(x)) + M
≥ f(β(x)) + h(x) a.e.x ∈ Ω.

The proof of Theorem 1 is thus complete.

Proof of Lemma 2. The proof of Lemma 3 follows simiarly.

First case.
Suppose inf

s≥0
f(s) = −∞. Then ∃β ∈ IR∗

+ such that f(β) < −M , and the

constant function β provides a solution to the problem in Lemma 2.

Second case.
Suppose now inf

s≥0
f(s) > −∞. Let K > M such that inf

s≥0
f(s) > −K + 1.

Thus f(s) + K ≥ 1 for all s ≥ 0. Define g : IR → IR by:

g(s) =
{

f(s) + K if s ≥ 0,
f(0) + K if s < 0,
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and denote G(s) =
∫ s
0 g(t) dt for all s in IR. It is easy to see that

g(s) ≥ 1 ∀s ∈ IR and that

lim inf
s→+∞

pG(s)
sp

= lim inf
s→+∞

pF (s)
sp

< Cp.

Now it is clearly sufficient to prove the existence of a function β1 : I → IR
such that β1 ∈ C1(I), ∆pβ1 ∈ C(I) and{ −∆pβ1(t) = g(β1(t)) ∀t ∈ I,

β1(t) ≥ 0 ∀t ∈ I.

For that purpose we will need the following three lemmas.

Lemma 4. Define

τG(d) =
∫ d

0

dt

(p{G(d) − G(s)})
1
p

for d > 0. Then

lim sup
d→+∞

τG(d) ≥ (
∫ 1

0

dt

(1 − tp)
1
p

)(lim inf
s→+∞

pG(s)
|s|p )

−1
p .

In particular (F+) implies lim sup
d→+∞

τG(d) > (p − 1)− 1
p (b−a)

2 .

Proof. Let be a positive number such that lim infs→+∞
pG(s)

sp < ρ < Cp.
Then lim sups→+∞ (K(s)) = +∞ where K(s) = ρ|s|p − pG(s). Let wn

be the smallest number in [0, n] such that max0≤s≤n K(s) = K(wn); it is
easily seen that wn is increasing with respect to n. Since ρ|s|p − pG(s) <
ρwp

n − pG(wn) ∀s ∈ [0, wn[, we have

τG(wn) > ρ
− 1

p
∫ wn
0

dt

(wp
n−sp)

1
p

= ρ
− 1

p
∫ 1
0

dt

(1−sp)
1
p

and therefore

lim sup
d→+∞

τG(d) ≥ ρ
− 1

p

∫ 1

0

dt

(1 − sp)
1
p

for all ρ such that lim inf
s→+∞

pG(s)
sp < ρ < Cp, which clearly implies the lemma.

Lemma 5. Let d > 0 and consider the mapping Td defined by

Td(u)(t) = d −
∫ t

a
([

∫ r

a
g(u(s)) ds]

1
p−1 ) dr

in the Banach space C(I). Then Td has a fixed point.

Proof. Clearly by Ascoli’s theorem Td is compact. The proof of Lemma 5
uses a homotopy argument based on the Leray Schauder topological degree.
So T will have a fixed point if the following condition holds:
∃r > 0 such that (I−λTd)(u) �= 0 ∀u ∈ ∂B(0, r) ∀λ ∈ [0, 1], where ∂B(0, r) =
{u ∈ C(I); ‖u‖∞ = r}.
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To prove that this condition holds, suppose by contradiction that ∀n =
1, 2, ... ∃un ∈ ∂B(0, n), ∃λn ∈ [0, 1] such that: un = λnTd(un). The latter
relation means

(1) un = λnd − λn

∫ t

a
({

∫ r

a
g(un(s)) ds} 1

p−1 ) dr.

Therefore un ∈ C1(I) and we have successively

(2)

{
u′

n(t) = −λn{∫ t
a g(un(s)) ds} 1

p−1 ≤ 0,
u′

n(a) = 0,

∆pun ∈ C(I) and

(3)
−∆pun(t) = −(|u′

n(t)|p−2u′
n(t))′

= ((−u′
n(t))p−1)′

= λp−1
n g(un(t)).

Note that by (2), u′
n(t) < 0 in ]a, b], so that un is decreasing.

Hence, for n > d, un(b) = −n. Multiplying the equation (3) by u′
n(t), we

obtain

(4) −p − 1
p

d

dt
(−u′

n(t))p = λp−1
n

d

dt
G(un(t)).

Indeed

((−u′
n(t))p)′ = (((−u′

n(t))p−1)
p

p−1 )′

= p
p−1((−u′

n(t))p−1)
p

p−1−1((−u′
n(t))p−1)′

= − p
p−1u

′
n(t)((−u′

n(t))p−1)′.

By (4) we have

(p − 1)(−u′
n(t))p = λp−1

n p[G(λnd) − G(un(t))]
≤ p[G(d) − G(un(t))]

since G is increasing. Hence (p − 1)
1
p (−u′

n(t)){p[G(d) − G(un(t))]}− 1
p ≤ 1.

Integrating from a to b and changing variable s = un(t) ( un(a) = λnd and
un(b) = −n ), we obtain

(p − 1)
1
p

∫ λnd

−n
[p(G(d) − G(s))]−

1
p ds ≤ b − a,

i.e.
0 ≤ (p − 1)

1
p

∫ λnd
0 [p(G(d) − G(s))]−

1
p ds

= (b − a) + (p − 1)
1
p

∫ −n
0 [p(G(d) − G(s))]−

1
p ds.

Since G(s) = sg(0) for s ≤ 0, we obtain

0 ≤ (b − a) + (p − 1)
1
p

∫ −n
0 [p(G(d) − sg(0))]−

1
p ds

= (b − a) − (p−1)
1
p

(p−1)g(0) [p(G(d) + ng(0))]
p−1

p + (pG(d))
p−1

p

(p−1)g(0) .

Letting n → +∞, we get a contradiction.

Let us denote by ud ∈ C(I) a fixed point of the mapping Td of Lemma 5.
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Lemma 6. ∃d > 0 such that ud(t) ≥ 0 ∀t ∈ [a, a+b
2 [.

Proof. We know that ud is decreasing and that ud(a) = d for all d > 0.
Let us distinguish two cases. First if ∃d > 0 such that ud(b) ≥ 0, then the
conclusion of Lemma 6 clearly follows.
So we can assume that ∀d > 0 : ud(b) < 0. Since ud(a) = d > 0, ∃δd ∈]a, b[
such that ud(δd) = 0. It is clear that ud(t) ≥ 0 ∀t ∈ [a, δd[, and so it is
sufficient to show that lim supd→+∞ δd > a+b

2 .
Processing as in the proof of Lemma 5 we obtain

(p − 1)
1
p (−u′

d(t)){p(G(d) − G(ud(t)))}− 1
p = 1.

Integrating from a to δd and changing variable s = ud(t), one gets,
(p − 1)

1
p τG(d) = δd − a, and consequently

lim sup
d→+∞

δd = a + (p − 1)
1
p lim sup

d→+∞
τG(d).

Now one easily deduces from Lemma 4 that lim sup
d→+∞

δd > a+ b−a
2 = a+b

2 .

Proof of Lemma 2 Continued. Denoting ud(t) by u(t), we have u ∈ C1(I),
∆pu ∈ C(I) and 


−∆pu(t) = g(u(t)) ∀t ∈ I,

u(t) ≥ 0 ∀t ∈ [a, a+b
2 ],

u′(a) = 0.

Define a function β1 from [a, b] to IR by

β1(t) =

{
u(3a+b

2 − t) if t ∈ [a, a+b
2 ],

u(t − b−a
2 ) if t ∈ [a+b

2 , b].

We will show that this function β fulfills the conditions of Lemma 2. To see
this it is sufficient to show that:
(a) β1 is nonegative in [a, b],
(b) β1 ∈ C1([a, b]),
(c) ∆pβ1 ∈ C([a, b]) and −∆pβ1(t) = g(β1(t)) ∀t ∈ [a, b].

Proof of (a). If a ≤ t ≤ a+b
2 , then a ≤ 3a+b

2 − t ≤ a+b
2 , and if a+b

2 ≤ t ≤ b,
then a ≤ t− b−a

2 ≤ a+b
2 , so that the conclusion follows from the sign of u on

[a, a+b
2 ].

Proof of (b). β1 ∈ C1([a, a+b
2 [), β1 ∈ C1(]a+b

2 , b]), and moreover
d

dt+β1(a+b
2 ) = u′(a) = 0 and d

dt− β1(a+b
2 ) = u′(a) = 0.

Proof of (c). We know that, −(|u′(t)|p−2u′(t))′ = g(u(t)) for t ∈ [a, b]
therefore

−|u′(t)|p−2u′(t) =
∫ t

a
g(u(s)) ds.
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If a+b
2 ≤ t ≤ b then a ≤ t − b−a

2 ≤ a+b
2 , which gives

−(|u′(t − b − a

2
)|p−2u′(t − b − a

2
)) =

∫ t− b−a
2

a
g(u(s)) ds.

Changing variable u = s + b−a
2 , this implies

−|β′
1(t)|p−2β′

1(t) =
∫ t

a+b
2

g(β1(s)) ds,

hence −∆pβ1(t) = g(β1(t)) for all t ∈ [a+b
2 , b]. The proof is similar for all

t ∈ [a, a+b
2 ].

3. The case of a more general operator.

Let Ω be a bounded domain in IRN and let Ap be an elliptic operator of
the form

Ap(u) =
∑

1≤i,j≤N

∂

∂xi
(|∇u|p−2

a aij(x)
∂u

∂xj
)

where (aij(x))1≤i,j≤N are real-valued L∞(Ω)
functions verifying aij(x) = aji(x) for all i, j and

(∗)
∑

1≤i,j≤N

aij(x)ξiξj = |ξ|2a ≥ |ξ|2 a.e.x ∈ Ω and for all ξ ∈ IRN .

We now consider the problem

(P ′
p)

{ −Apu = f(u) + h in Ω,
u = 0 on ∂Ω.

Note that Ap is defined from W 1,p
0 (Ω) to W−1,p′

(Ω). Note also that (∗)
implies that for each i, ai,i(x) > 0 a.e. in Ω. We suppose that:

(A0)




∃i′ ∈ {1, 2, ..., N} such that ai′i′ = cte ∈ IR and
div(a1,i′(x), ..., aN,i′(x)) =

∑
i	=i′

∂
∂xi

ai,i′(x) = 0.

We observe that (A0) holds in particular when ai,i′ i = 1, ..., N , are fixed
constants.

Denote by b = bi′ and a = ai′ where [ai′ , bi′ ] is an edge of an arbitrary
parallelepiped containing Ω such that [ai′ , bi′ ] is parallel to the xi′-axis and
by

Cp(b − a) = Cp = (p − 1){ 2
b − a

∫ 1

0

dt

(1 − tp)
1
p

}p

Theorem 2. Assume (A0) and

(F2) lim inf
s→±∞

pF (s)
|s|p < (ai′i′)

p
2Cp.

Then (P ′) has a solution u ∈ W 1,p
0 (Ω) ∩ L∞(Ω) for any h ∈ L∞(Ω).

The proof of Theorem 2 follows as in Theorem 1. Upper and lower solu-
tions are defined for Ap in the same way as in definition 1 relative to ∆p.
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Lemma 7. Assume that (P ′) admits an upper solution β and a lower solu-
tion α, then (P ′) admits a solution u ∈ W 1,p

0 (Ω) ∩ L∞(Ω) with
α(x) ≤ u(x) ≤ β(x).

The proof of Lemma 7 follows similar lines as Lemma 1. It sufficis to
remark that -Ap is strictly monotone.

Proof of Theorem 2. Let us describe the construction of the upper solution
(that of lower solution is similar).
Let g be the continuous function defined by

g(s) =
f(s)

(ai′i′)
p
2

and denote G(s) =
∫ s

0
g(t) dt.

Then (F2) implies that lim inf
s→±∞

pG(s)
|s|p < Cp. By Lemma 2 with M > ‖h‖∞

(ai′i′ )p−1 ,

there exists β1 ∈ C1(I) such that ∆pβ1 ∈ C(I) and{ −∆pβ1(t) ≥ g(β1(t)) + M ∀t ∈ I
β1(t) ≥ 0 ∀t ∈ I.

Writing β(x) = β1(xi) for all x ∈ Ω, we have β(x) ≥ 0 ∀x ∈ Ω, β ∈ C1(Ω).
Morever, by (A0)

Ap(u) =
∑

1≤i,j≤N

∂
∂xi

(|∇β|p−2
a aij(x) ∂β

∂xj
)

= (ai′i′)
p
2 (|β′

1(xi′)|p−2β′
1(xi′))′ + |β′

1(xi′)|p−2β′
1(xi′)

∑
i	=i′

∂
∂xi

aii′(x)

= (ai′i′)
p
2 ∆pβ(x).

Hence
Apβ ∈ C(Ω) and −Apβ(x) = −(ai′i′)

p
2 ∆pβ(x) ≥ f(β(x)) + h(x) a.e.in Ω,

which shows that β is an upper solution.

4. Comments

1. It is easy to give an example of a continuous function f : IR → IR such
that

lim sup
±∞

pF (s)
|s|p = +∞ and lim inf±∞

pF (s)
|s|p = 0.

(See the work of [Fe.O.Z] in the case p = 2).

2. The problem (Pp) has at least one solution for any given
h ∈ L∞(Ω) if we assume that:

(f0) lim sup
±∞

f(s)
|s|p−2s

≤ λ1

and

(F0) lim inf±∞
pF (s)
|s|p < λ1.

This result was proved by Del Santo and Omari [S.O] for p = 2, and
was generalized by Elhachimi and Gossez [H,G.2] for p > 1.
It is clear that (f0) is not verified in the example of comment 1 above.
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3. Positive density condition. Let η > 0 and define
E = {s ∈ IR∗; pF (s)

|s|p < Cp − η}, Ẽ = {s ∈ IR∗; pF (s)
|s|p < λ1 − η}.

Theorem 3. (Defigueiredo and Gossez [D,G]) Assume

(f0) ∃a, b > 0 such that |f(s)| ≤ a|s|p−1 + b ∀s ∈ IR,

(F0) lim sup
±∞

pF (s)
|s|p ≤ λ1,

(d)




lim inf
r→+∞

meas(Ẽ∩[0,r])
r > 0,

lim inf
r→−∞

meas(Ẽ∩[r,0])
−r > 0.

Then, for any h ∈ W−1,p′
(Ω), there exists u ∈ W 1,p

0 (Ω) solution of
(Pp).

One says that Ẽ has a positive density at +∞ and −∞ if (d) above
is verified. This condition was introduced in [D,G].

The question now naturally arises whether nonresonance still occurs
in (Pp) when the ”liminf” condition (d) is weakened into a ”limsup”
condition. We have:

Corollary to Theorem 1. Assume

(d′)




lim sup
r→+∞

meas(E∩[0,r])
r > 0,

lim sup
r→−∞

meas(E∩[r,0])
−r > 0.

Then, for any h ∈ L∞(Ω), there exists u ∈ W 1,p
0 (Ω)

solution of (Pp).

Proof. Obviously (d′) implies that E∩IR− and E∩IR+ are unbounded,
so that (F ) is satisfied.

Remarks 1. (a) We have not supposed (f0) nor (F0) in the corollary.
(b) The question whether we may assume only

(d̃)




lim sup
r→+∞

meas(Ẽ∩[0,r])
r > 0,

lim sup
r→−∞

meas(Ẽ∩[r,0])
−r > 0,

remains open. Note that the condition lim infs→±∞
pF (s)
|s|p < λ1 is

weaker than (d̃).
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[A] A. Anane, Simplicité et isolation de la première valeur propre du p-Laplacien
avec poids, C. R. Acad. Sci. Paris Sr. I Math. 305 (1987), 725–728.

[B] E. di Benedetto, C1+α local regularity of weak solutions of degenerate elliptic
equations, Nonlinear Anal. 7 (1983), 827–850.

[D,G] D. G. de Figueiredo and J.-P.Gossez, Nonresonance below the first eigenvalue
for a semilinear elliptic problem, Math. Ann. 281 (1988), 589–610.

[E,G.1] A. El Hachimi and J.-P. Gossez, A note on a nonresonance condition for a
quasilinear elliptic problem, Nonlinear Anal. 22 (1994), p229–236.

[E,G.2] A. El Hachimi and J.-P.Gossez, On a nonresonance condition near the first
eigenvalue for a quasilinear elliptic problem, Partial Differential Equations (Han-
sur-Lesse, 1993), 144–151, Math. Res., #82, Akademie-Verlag, Berlin, 1994.

[Fe,O,Z] M. Fernandes, P. Omari and F. Zanolin, On the solvability of a semilinear two-
point BVP around the first eigenvalue, Differential Integral Equations, 2 (1989),
63–79.

[F,G,Z] A. Fonda, J.-P.Gossez and F. Zanolin, On a nonresonance condition for a semi-
linear elliptic problem, Differential Integral Equations, 4 (1991), 945–951.

[GR,O.1] M. R. Grossinho and P. Omari, Solvabitity of the Dirichlet problem for a non-
linear parabolic equation under conditions on the potential, to appear.

[GR,O.2] M. R. Grossinho and P. Omari, A Hammerstein-type result for a semilinear
parabolic problem, to appear.

[H] A. Hammerstein, Nichtlineare Integralgleichungen nebst Anwendungen, Acta
Math. 54 (1930), 117–176.

[S,O] D. Del Santo and P.Omari, Nonresonance conditions on the potential for a semi-
linear elliptic problem, J. Differential Equations, 108 (1994), 120–138.
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