ON A PROBLEM OF LOWER LIMIT
IN THE STUDY OF NONRESONANCE

A. ANANE AND O. CHAKRONE

ABSTRACT. We prove the solvability of the Dirichlet problem

—Apu = flu)+h in  Q,
u = 0 on 0N
for every given h, under a condition involving only the asymptotic behaviour
of the potential F' of f with respect to the first eigenvalue of the p-Laplacian
A,. More general operators are also considered.

1. INTRODUCTION
This paper is concerned with the existence of solutions for the problem

—Apu = f(u)+h in Q,
(Pp){ u = 0 on 00

where  is a bounded domain of RV, N > 1, A, denotes the p-Laplacian
Ayu = div(|VulP~2Vu), 1 < p < oo, f is a continuous function from IR to
IR and A is a given function on €.

A classical result, essentially due to Hammerstein [H], asserts that if f
satisfies a suitable polynomial growth restriction connected with the Sobolev
imbeddings and if

(F1) lim sup 2F (s)

s—too ‘5|2

< A17

then problem (P2) is solvable for any h. Here F' denotes the primitive
F(s) = [5 f(t)dt and Ay is the first eigenvalue of -A on H{}(f). Several
improvements of this result have been considered in the recent years.
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In 1989, the case N=1 and p=2 was considered in [Fe,O,Z]. It was shown
there that (P2) is solvable for any h € L>°(9) if

.. . 2F (s
(Fy) hminf 5() < A1.

If N > 1 and p=2, [F,G,Z] showed later that (Ps) is solvable for any h €
*(Q) if

.. .2F(s) T 9
F. 1 f
(F) iminf =2 < Gray)
where R(S2) denotes the radius of the smallest open ball B(f2) containing 2.
This result was extended to the p-laplacian case in [E,G.1], where solvability
of (P,) was derived under the condition

.. .pF(s) 1 L dt
Fy lim inf <(p—1 / P,
( ) S—s+00 ‘S|p ( ){R(Q) 0 (1_tp)%}
Note that (Fy) reducer to (F3) when p = 2.
The question now naturally arises whether (p — 1){ =k @ fo 71}? can

(1—P)
be replaced by A1 in (Fy), where A\; denotes the first elgenvalue of —A, on
W,y P(Q) (cf. Anane [A]).

Observe that for N > 1 and p = 2, (#(Q))2 < A1, and a similar strict
inequality holds when 1 < p < co. One of our purposes in this paper is to
show that the constants in (F3) and (Fy) can be inproved a little bit.

Denote by 1(2) = [ the length of the smallest edge of an arbitrary paral-
lelepiped containing 2. In the first part of the paper we assume

.. PF(s)
(F) lim fuf i <G
where C,(l) = Cp = (p — 1){% fo (1—tp) ¥ .

Observe that for N =1, C), = Ay is the first eigenvalue of -A, on Q =]0, {].
In particular: Co = (%)2, and we recover the result of [ Fe,0,Z]. It is clear
that (F5) is a weaker hypothesis than (Fy). The difference between (F5) and
(Fy) is particularly important when {2 is a rectangle or a triangle. However
Cp(l) < A1 when NV > 1, and the question raised above remains open.

In the second part of the paper we investigate the question of replacing
A, by the second order elliptic operator

Ap(u) = Z 0

1<i,j<N

where [Vull = i<, <y aij(z )37“887“ Observe that the method used in

D
6$j ’

([Vulhai; (@)

[F,G,Z], and [E,G.1] exploits the symmetry of the Laplacian or p-laplacian.
It is not clear whether it can be adapted to more general second order elliptic
operators like A4, above.

While this paper was being completed, we learned of a work by P.Omari
and Grossinho (Cf. [GR,0.1], [GR,0.2]), where a result of the same type as
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ours is established in the case of the linear operator As(u). The authors in
[GR,0.2] also consider parabolic operators.

2. THE CASE OF THE p-LAPLACIAN

In this section we will consider the problem (P,) where  is a bounded
domain of RV, N > 1,1 < p < oo, f is a continuous function from IR to IR
and h € L*(Q).

Denote by [AB] the smallest edge of an arbitrary parallelepiped containing
). Making an orthogonal change of variables, we can always suppose that
AB is parallel to one of the axis of RY. So Q Cc P = H;-Vzl[aj, b;] with, for
some i, |[AB| = b; —a; = minj<j<n{b; —a;}, a quantity which we denote by
Q) =1L

Theorem 1. Assume

F
(F) lim inf 2 () < Oy,
s—rtoo |3’P
where Cp = Cy(l) is defined in the introduction. Then for any h € L*(2)

(Pp) has a solution u € Wol’p(Q) NnCcHQ).

Definition 1. An upper solution for (P,) is defined as a function 3 : @ — IR
such that:

o 3 CY(9)

° A3 EC(Q)

o —A,B(x)> f(B(z)) + h(zr) aex in Q
A lower solution « is defined by reversing the inequalities above.

Lemma 1. Assume that (P,) admits an upper solution 3 and a lower solu-
tion a with a(x) < B(x) in Q. Then (Pp) admits a solution u € Wol’p(Q) N
CH(), with a(z) < u(x) < B(x) in Q.

Proof. This lemma is well known when p = 2 (see, e.g., [F.G.Z]). We sketch
a proof in the general case 1 < p < co.

Define
3 { f(B(x)) if s> p(x)
fles)=4q [fls) if alz)<s
fla(z)) if s <az).
By a simple fixed point argument and the results of Di Benedetto [B], there
is a solution u € Wy™*(Q) N CY(Q) of

(75){ —Apu = f(z,u) + h(z) in Q,

< B(x)

v = 0 on 0.

We claim that a(x) < u(x) < B(x) in Q, which clearly implies the conclusion.
To prove the first inequality, one multiplies the equation (P) by

W = u—1Uqy, where uy () = max(u(x), a(x)), integrates by parts and uses the
fact that o is a lower solution we obtain ((—A,u) — (—Ay(u —w)),w) <0,

which implies w = 0 (since —A,, is strictly monotone). =
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Lemma 2. Let a <b and M > 0, and assume

(F1) lim inf ——= pF(s) < Cp(b—a).

s—+00 ‘3‘
Then there exists 31 € C1(I) such that A,B € C(I) and

{—Apﬂl(t) = [f(Bu(t)+M Viel,
Bi(t) > 0 vt e,

where I = [a,b]

Lemma 3. Assume

(F™) hmlnpr( s) < Cp(b—a).

S—>—00 ‘3‘
Then there exists oy € CH(I) such that Ayaq € C(I) and
“Ajoa(t) < flaal®) - M Vel
ar(t) < 0 vtel.

Accepting for a moment the conclusion of these two lemmas, let us turn
to the

Proof of Theorem 1. By Lemma 1 it suffices to show the existence of an
upper solution and a lower solution for (P,). Let us describe the construction
of the upper solution (that of the lower solution is similar).

Let M > ||h||sc and ¢ € {1,2, ..., N} such that b—a = b;—a; = min b; — a;.
1<j<N

By Lemma 2 there exists 81 : I — IR such that 3; € CY(I), A,B € C(I)

and
{ —0pBu(t) = f(Bu(t)+ M Vtel
Bi(t) = 0 vtel.
Writing 3(z) = B1(x;) for all z € €, it is clear that 3 € C1(Q), —A,B8(z) =
—A,B1(x;) € C(Q), and we have:

_Apﬂ(x) _APIB]. (551)

f(Bi(xi)) + M

f(B(x)) + M

f(B(z)) + h(z) a.ex e

The proof of Theorem 1 is thus complete. m

1V

v

Proof of Lemma 2. The proof of Lemma 3 follows simiarly.

First case.
Suppose iI>1£ f(s) = —oo. Then 33 € IR} such that f(8) < —M, and the
5>

constant function 3 provides a solution to the problem in Lemma 2.

Second case.
Suppose now inf f(s) > —oo. Let K > M such that mf f(s) > —K + 1.

Thus f(s )+K>1foralls>0 Define g : IR — IR by:

_ [ fe)+K if s>0,
9(S>—{f(o)+K if s<0
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and denote G(s) = [ g(t) dt for all s in IR. It is easy to see that
g(s) > 1Vs € R and that

timinf P9 imine PEG) ¢

s——+00 sp s——+00 sp

Now it is clearly sufficient to prove the existence of a function 3; : I — R

such that 81 € CY(I), ApB1 € C(I) and

{—Apﬂl(t) = g(Bi(t) Vvtel,
pi(t) > 0 vtel.

For that purpose we will need the following three lemmas.

Lemma 4. Define

d dt
ra(d) = [ .
0 (p{G(d) —G(s)})»
for d > 0. Then
1 —
lim sup 7¢(d) > (/ Ll)(limmf pG(s ))?1
d——+oo 0 (1 _ tp); s—400 |5|P
In particular (F+) implies lim sup TG(d) > (p o 1)—% (bga)

d—+o00

Proof. Let be a positive number such that liminf, pi,(,s) < p < .

Then limsup,_,, . (K(s)) = +oo where K(s) = p|s|’ — pG(s). Let wy,
be the smallest number in [0,7n]| such that maxo<s<, K(s) = K(wy); it is
easily seen that w, is increasing with respect to n. Since p|s|P — pG(s) <
pwb — pG(wy,) Vs € [0, w,], we have

_1
Ta(wn) > p pfow" o T
) (wh—sP)P
—= rl dt
prg P
P fo (1_51))%
and therefore
1 1 dt
timsup ro(d) > p > [ —"
d—+o0 0 (1—sP)p

pG( )

for all p such that hm mf < p < (), which clearly implies the lemma. =

Lemma 5. Let d > 0 and consider the mapping Ty defined by

—d- / / )) ds|7T) dr

in the Banach space C(I). Then T, has a fixed point.

Proof. Clearly by Ascoli’s theorem T} is compact. The proof of Lemma 5
uses a homotopy argument based on the Leray Schauder topological degree.
So T will have a fixed point if the following condition holds:

Ir > 0 such that (I—\Ty)(u) # 0Vu € 9B(0,r) VYA € [0, 1], where 0B(0,r) =
{ueC); llulloc =7}
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To prove that this condition holds, suppose by contradiction that Vn =
2,... Ju, € 0B(0,n), I\, € [0,1] such that: u, = \,Ty(uyn). The latter
relation means

) an = M=o [ ([ gn(s)) s}
Therefore u, € C*(I) and we have successively
(1) = ~M{flgu(s)ds}7T <0,
2 L 2
Apu, € C(I) and
—Apun(t) = —(lup, (P 2u, (1))
(3) = ((—up(@®))P~1)

(_
= 3 g(un(t)).

Note that by (2), u),(t) <0 in ]a,b], so that u, is decreasing.
Hence, for n > d, u,(b) = —n. Multiplying the equation (3) by u! (t), we
obtain

“1d,

@ e ) = M Glun(1).

Indeed

By (4) we have

(p = D) (=un (1)) NG (And) — Glun(t))]

< plG(d) - Clun(t))]

since G is increasing. Hence (p — 1)%(—ug(t)){p[G(d) - G(un(t))]}fi <1.
Integrating from a to b and changing variable s = u,(t) (up(a) = \,d and
un(b) = —n ), we obtain

1 [And 1
0= [ (G -G Fds<b—a

-n

l.e.

ja)

< -V (G - G T ds
= (b—a)+ (-1 ;" (G(d) = G(s))] ¥ ds
Since G(s) = sg(0) for s < 0, we obtain

0 < (b-a)+(p-1)7 J; " PG —sgO)]) 7ds

= (b—a)— o 1)9(0)[]3( ()+n9(0))]%+%'

Letting n — +00, we get a contradiction. m

Let us denote by ug € C(I) a fixed point of the mapping Ty of Lemma 5.
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Lemma 6. 3d >0 such that ug(t) >0 Vt € [a, 0],

Proof. We know that wug is decreasing and that ug(a) = d for all d > 0.
Let us distinguish two cases. First if 3d > 0 such that u4(b) > 0, then the
conclusion of Lemma 6 clearly follows.

So we can assume that Vd > 0: ug4(b) < 0. Since ug(a) =d >0, o4 €la,b]
such that ug(dq) = 0. It is clear that uy(t) > 0 Vt € [a,d4[, and so it is
sufficient to show that limsup,_,, ., 04 > C‘TH’.

Processing as in the proof of Lemma 5 we obtain

1 _1
(p = )7 (~ug()){p(G(d) — G(ua(1)))} 7 = 1.
Integrating from a to d4 and changing variable s = ug4(t), one gets,

(p— 1)%7'0(61) = 4 — a, and consequently

limsup 0 =a+ (p — 1)% limsup 7¢(d).

d—+o0 d—+o0

Now one easily deduces from Lemma 4 that limsup d4 > a + b_T“ = . m
d—+o00

Proof of Lemma 2 Continued. Denoting ug(t) by u(t), we have u € C*(I),
Apu e C(I) and

We will show that this function § fulfills the conditions of Lemma 2. To see
this it is sufficient to show that:

(a) fB1 is nonegative in [a, b],

(b) p1 € C'([a,b]),

(c) ApBi € C([a,b]) and —A,B1(t) = g(Bi(2)) Vt € [a, b].

Proof of (a). If a <t < %t then a < 3%t — ¢ < 2Eb and if 220 < ¢ <,

thena <t— ZVTa < aTJ“b, so that the conclusion follows from the sign of u on

0, %52,

”m“f@>m€@@f?Dﬂ C(242,8)), and moreover
461 (%L) =/ (a) = 0 and &6 (%2) = u/(a) = 0.

Proof of (c). We know that, —(|u/(t)[P~2/(t)) = g(u(t)) for t € [a,b]

therefore
t

(P2 (0) = [ glu(s) ds.

a
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IfaTH’ §t§bthena§t—b*T“ < aT*b,whichgives

b—a b—a

=7 stute)ds,

Changing variable u = s + Z’_Ta, this implies
t
80251 0) = [, 9(Bi(5) s
=

hence —A,B1(t) = g(B1(t)) for all t € [%F2,b]. The proof is similar for all
t € [a, %’_b] n

—(j'(t - )P~ (¢~

3. THE CASE OF A MORE GENERAL OPERATOR.

Let © be a bounded domain in IRV and let Ap be an elliptic operator of
the form 5 5
_ u
Ap(w) = D =Vl 2%’(56)%)
J

1<ij<N 9T

where (a;;(2))1<i j<n are real-valued L>(12)
functions verifying a;;(x) = a;;(x) for all 7, j and
(%) Z aij(2)&& = €2 > € a.ex € Q and for all £ € RV,
1<i,j<N
We now consider the problem

/ —Apu = f(u)+h in Q,
UDP){ u = 0 on 0fd.

Note that A, is defined from Wol’p(Q) to W17 (Q). Note also that (x)
implies that for each 4, a;;(x) > 0 a.e. in . We suppose that:

' € {1,2,..., N} such that ayy = cte € R and
(Ao) div(ay 4 (x),...,anq(x)) = ;:/ %aml (x) =0.

We observe that (Ag) holds in particular when a;; @ = 1,..., N, are fixed
constants.

Denote by b = by and a = ay where [a;y,by] is an edge of an arbitrary
parallelepiped containing € such that [a;, by] is parallel to the z-axis and
by

1
G —a) = Cy= - 15— [ (1_d’;);}p

Theorem 2. Assume (Ag) and

F )
(Fy) lim inf 2 (5) < (ayir)2Cp.

s—to0 ’5’
Then (P') has a solution u € Wy (Q) N L=(Q) for any h € L®(1).

The proof of Theorem 2 follows as in Theorem 1. Upper and lower solu-
tions are defined for A, in the same way as in definition 1 relative to A,.
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Lemma 7. Assume that (P') admits an upper solution 3 and a lower solu-
tion «, then (P') admits a solution u € Wol’p(ﬂ) N L>*(Q) with
a(z) <wu(x) < p(x).

The proof of Lemma 7 follows similar lines as Lemma 1. It sufficis to
remark that - A, is strictly monotone.

Proof of Theorem 2. Let us describe the construction of the upper solution
(that of lower solution is similar).
Let g be the continuous function defined by

(al’/i/) 2

g(s) = f(s)p and denote G(s) = /Os g(t) dt.

Then (F) implies that lim inf pGs) Cp. By Lemma 2 with M > oo
S—>ITO0

[s[P (a;;1)P= 17
there exists 3; € C*(I) such that A,B3; € C(I) and
—ApBi(t) = g(Bu(t)+M Vtel
pi(t) = 0 Vtel
Writing 8(x) = B1(x;) for all x € Q, we have B(z) >0 Vz € Q, 3 € CH(Q).
Morever, by (Ap)

Aplw) = > o IV 2ai; (@) 52)

(air) 2 (185 (i) P2 81 (230)) + |81 (i) P2 (i) ;/ - ()
= (agin) 28y B(2).

Hence
A,B € CQ) and —A,B(z) = —(agy)2A,8(x) > F(B(x)) + h(z) a.cin Q,

which shows that 3 is an upper solution. m

4. COMMENTS
1. It is easy to give an example of a continuous function f : IR — IR such

that . .
lim sup PF(s) =+o0o and liminf pF(s)
P T T sl

(See the work of [Fe.O.Z] in the case p = 2).

2. The problem (P,) has at least one solution for any given
h € L>*(Q) if we assume that:

=0.

. f(s)
(fo) hnilgoup W <\
and
.. PF(s)
(Fp) hrerlolonf S|P < A1

This result was proved by Del Santo and Omari [S.O] for p = 2, and
was generalized by Elhachimi and Gossez [H,G.2] for p > 1.
It is clear that (fy) is not verified in the example of comment 1 above.
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3. Positive density condition. Let n > 0 and define

(fo)

(Fo)

(d)

E ={seR% p‘i‘(f) <Cp—n}, E={scR¥ pf;‘(j) <A —n}

Theorem 3. (Defigueiredo and Gossez [D,G]) Assume
Ja,b >0 such that |f(s)] <als|P"'4+b VselR,

F
lim supp () < A1,
too |s|P

hI_IE infw > 0,
ligl_inf 7meas(im[r’0b > 0.

Then, for any h € W5 (Q), there exists u € WyP() solution of
(Pp)-

One says that F has a positive density at +o0o and —oo if (d) above
is verified. This condition was introduced in [D,G].

The question now naturally arises whether nonresonance still occurs
in (Pp) when the ”liminf” condition (d) is weakened into a ”limsup”
condition. We have:

Corollary to Theorem 1. Assume

lim sup 7meas(€ﬂ[0,r]) > 0,
r—+00
lim sup 7"16‘15(5? LUV )
r——00

Then, for any h € L(Q), there exists u € Wy (Q)
solution of (Pp).

Proof. Obviously (d') implies that ENIR_ and ENIR4 are unbounded,
so that (F) is satisfied. m

Remarks 1. (a) We have not supposed (fo) nor (Fp) in the corollary.
(b) The question whether we may assume only

lim sup meas(EN[0,r]) > 0,
r—-+00 7;
lim sup meas(EN[r,0]) > 0,
r——00 -
remains open. Note that the condition liminf, 4o 2 \il(;) < A s

weaker than (d).

Acknowledgment. The authors wish to express their thanks to Professor
Jean-Pierre Gossez for various interesting discussions on the subject of this

paper.



[A]

(B]
[D,G]
E,G.1]

E,G.2]

[Fe,0,Z]

F,G.Z]
[GR,0.1]
[GR,0.2]
[H]

[5,0]

ON A PROBLEM OF LOWER LIMIT 237

REFERENCES

A. Anane, Simplicité et isolation de la premiére valeur propre du p-Laplacien
avec poids, C. R. Acad. Sci. Paris Sr. I Math. 305 (1987), 725-728.

E. di Benedetto, C*T% local reqularity of weak solutions of degenerate elliptic
equations, Nonlinear Anal. 7 (1983), 827-850.

D. G. de Figueiredo and J.-P.Gossez, Nonresonance below the first eigenvalue
for a semilinear elliptic problem, Math. Ann. 281 (1988), 589-610.

A. El Hachimi and J.-P. Gossez, A note on a nonresonance condition for a
quasilinear elliptic problem, Nonlinear Anal. 22 (1994), p229-236.

A. El Hachimi and J.-P.Gossez, On a nonresonance condition near the first
ergenvalue for a quasilinear elliptic problem, Partial Differential Equations (Han-
sur-Lesse, 1993), 144-151, Math. Res., #82, Akademie-Verlag, Berlin, 1994.
M. Fernandes, P. Omari and F. Zanolin, On the solvability of a semilinear two-
point BVP around the first eigenvalue, Differential Integral Equations, 2 (1989),
63-79.

A. Fonda, J.-P.Gossez and F. Zanolin, On a nonresonance condition for a semi-
linear elliptic problem, Differential Integral Equations, 4 (1991), 945-951.

M. R. Grossinho and P. Omari, Solvabitity of the Dirichlet problem for a non-
linear parabolic equation under conditions on the potential, to appear.

M. R. Grossinho and P. Omari, A Hammerstein-type result for a semilinear
parabolic problem, to appear.

A. Hammerstein, Nichtlineare Integralgleichungen nebst Anwendungen, Acta
Math. 54 (1930), 117-176.

D. Del Santo and P.Omari, Nonresonance conditions on the potential for a semi-
linear elliptic problem, J. Differential Equations, 108 (1994), 120-138.

DEPARTEMENT DE MATHEMATIQUES
UNIVERSITE MOHAMED I
OuJipAa, MOROCCO

E-mail addresses: anane@sciences.univ-oujda.ac.ma, chakrone@sciences.univ-oujda.ac.ma



