EXISTENCE OF A POSITIVE SOLUTION FOR AN NTH
ORDER BOUNDARY VALUE PROBLEM FOR NONLINEAR
DIFFERENCE EQUATIONS

JOHNNY HENDERSON AND SUSAN D. LAUER

ABSTRACT. The nth order eigenvalue problem:
Az(t) = (=1)""Nf(t2(t), t€0,T],

is considered, where n > 2 and k € {1,2,... ,n — 1} are given. Eigenvalues
A are determined for f continuous and the case where the limits fo(¢) =
lim w and foo(t) = lim w exist for all ¢ € [0, T]. Guo’s fixed point

n—0t n— oo
theorem is applied to operators defined on annular regions in a cone.

1. INTRODUCTION
Define the operator A to be the forward difference
Au(t) = u(t+ 1) — u(t),
and then define
Alu(t) = A(AT u(t)),i > 1.

For a < b integers define the discrete interval [a,b] = {a,a+1,... ,b}. Let
the integers n, T' > 2 be given, and choose k € {1,2,... ,n — 1}. Consider
the nth order nonlinear difference equation

(1) Az (t) = (=1)"FAf (8 2(1),t € [0, T,
satisfying the boundary conditions
(2) z(0)=z(l)=---=zk—-1)=z(T+k+1)=---=z(T+n)=0.
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We determine eigenvalues A that yield a solution to (1) and (2), where
(A)f:]0,T] x RT — KT

is continuous, where R denotes the nonnegative reals,

(B) For all t € [0,T1, fo(t) = lim AGED) and fo(t) = lim f(t,u)

u—0t u n— o0 u

both exist.

We apply Guo’s fixed point theorem using cone methods, Guo and Lak-
shmikantham [14], and Krasnosel’skii [19], to accomplish this. This method
was first applied to differential equations in the landmark paper by Erbe
and Wang [12]. Our proof will follow along the lines of those in Henderson
[16], Lauer [17], and Merdivenci [20], additionally utilizing techniques from
Peterson [21], Hartman [15], Eloe and Kaufmann [11], Agarwal and Wong
[6,7], Agarwal and Henderson [1], and Agarwal, Henderson and Wong [2].
A key to applying this fixed point theorem involves discrete concavity of
solutions of the boundary value problem in conjunction with a lower bound
on an appropriate Green’s function. Extensive use of the results by Eloe [§]
concerning a lower bound for the Green’s function will be made. Related re-
sults for nth order differential equation may be found in Agarwal and Wong
[3,4], Eloe and Henderson [9,10], and Fang [13].

2. PRELIMINARIES

Let G(t,s) be the Green’s funtion for the disconjugate boundary value
problem

(3) La(t) = A"z(t) = 0,t € [0,T],

and satisfying (2), where, as shown in Kelly and Peterson [18], G(¢, s) is the
unique function satisfying:
(a) G(t,s) is defined for all t € [0,T 4+ n], s € [0,T]
(b) LG(t,s) = 04 for all t € [0,T], s € [0, T] where §;s =1 if t = 5,015 =0
if t # s,
(c) For all s € [0,T], G(t, s) satisfies the boundary conditions (2) in ¢.

We will use G(t, s) as the kernel of an integral operator preserving a cone
in a Banach space. This is the setting for our fixed point theorem.

Let B be a Banach space and let P C B be such that P is closed and
non-empty. Then P is a cone provided (i) au + bv € P for all u,v € P and
for all a,b > 0, and (ii) u, —u € P implies u = 0.

Applying the following fixed point theorem from Guo, Guo and Laksh-
mikantham [14], will yield solutions of (1), (2) for certain .

Theorem 1. Let B be a Banach space, and let P C B be a cone. Let ()
and Qs be two bounded open sets in B such that 0 € Q1 C Q1 C Qo, and let

H : Pﬂ(ﬁQ\Ql) — P

be a completely continuous operator such that, either
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(i) [|Hz|| < ||z||,z € PNOQ, and ||Hz| > ||z||,x € P NONe,
or

(i) [|Hz| > ||z|l,z € PN O, and |Hz| < ||z||,z € P N INs.
Then H has a fized point in P N (22\Q1).

We now apply Theorem 1 to the eigenvalue problem (1), (2), following
along the lines of methods incorporated by Henderson [16]. Note that x(t)
is a solution of (1), (2) if, and only if,

T
2(t) = (=1)"FAD "Gt 9) f(s,2(s)), €0, T).
s=0
Hartman [15] extensively studied the boundary value problem (1), (2),
with (—=1)""*\f(t,u) > 0. We begin by stating three Lemmas from Hart-
man.

Lemma 1. Let G(t,s) denote the Green’s function of (3), (2). Then
(—1)"kG(t,s) >0, (t,s) € [k,T+k x][0,T).

Lemma 2. Assume that wu  satisfies the  difference  inequality
(—1)""kA™u(t) > 0,t € [0,T], and the homogeneous boundary conditions,
(2). Then u(t) > 0,t € [0,T + k.

Lemma 3. Suppose that the finite sequence u(0), ... ,u(j) has N; nodes and
the sequence Au(0),... ,Au(j — 1) has M; nodes. Then M; > N; — 1.

Eloe [8] employed these three lemmas to arrive at the following theorem
that gives a lower bound for the solution to the class of boundary value
problems studied by Hartman.

Theorem 2. Assume that u satisfies the difference inequality
(—1)""kA™u(t) > 0,t € [0,T], and the homogeneous boundary conditions,
(2). Then fort e [k, T + k|,

v!

(T+1)-(T+v)

where ||u|| = te[rl?%)ik] |u(t)| and u = max{k,n — k}.

(—1)" " u(t) 2

[l

We remark that Agarwal and Wong [5] have recently sharpened the in-
equality of Theorem 2. However, this sharper inequality is of little conse-
quence for this work.

Eloe also contributed the following corollary.

Corollary 1. Let G(t,s) denote the Green’s function for the boundary value
problem, (3), (2). Then for all s € [0,T),t € [k, T + k],
V!

(T+1) (T +v)] 1G9,

where [|G(-, s)|| = tef]?%“)ik] |G(t,s)| and v = max{k,n — k}.

(~1)" Gt s) 2
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To fulfill the hypotheses of Theorem 1, let

B={u:[0,T+n—-R u0)=u(l)=---=ulk—1)
=u(T+k+1)=---=u(T +n) =0},
with ||u]| = max |u(t)]. Now, (B, ]| -]|) is a Banach space.
telt,T+k]
Let
|
(4) > V!

(T+1)---(T+v)]

and define a cone

P={ueBlu(t)>0on [0,7+n|and min u(t) > olul}.

te(k,T+k]
Also choose 7,1 € [k, T + k] such that
T T
_1\n—k _
B UGl =, 3Gl

te(k,T+k]

T T
6)  (=D"FY Gns)fo(s) = max (=1)"F Y Gt 5)fols),
s=k s=k

3. MAIN RESULTS

Theorem 3. Assume conditions (A) and (B) are satisfied. Then, for each
A satisfying

1 1
7 <A<

S E Y Grafels) X GEA)

s=0

there exists at least one solution of (1), (2) in P.

Proof. Let A be given as in Theorem 3. Let € > 0 be such that

1 S>> 1

P Gl =) X [GEfals) +

Define a summation operator H : P — B by

T
(7) Hz(t) = (=1)" " AN G(t,9)f(s,2(s), z€P.
s=0

We seek a fixed point of H in the cone P. By the nonnegativity of f
and (—1)""*G, Hz(t) > 0 on [0,T + n], and from the properties of G, Hzx
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satisfies the boundary conditions. Now if we choose x € P, we have

T
Haz(t) = (-1)" k) Z G(t,s)f(s,z(s))

s=0
</\ZHG )£ (s, 2(s)),t € [k, T + k.

So

p— <
[Hal = | max, |Ha() AZHG S (s, 2(5)).

Hence, if 2 € P, (-=1)"*G(t,s) > UHG(-,S)H, for t € [k, T + k] and
s € [0, 7], and thus,

T
. _ . _1\n—k
ftin Ha(t) = min (~1) A;)G(t, s)f (s, (s))

>0)\ZHG s)||f(s,z(s))
ZO’HH:L‘H.

Thus H : P — P. Additionally, H is completely continuous.
Now consider fo(t). For each t € [0,7T], there exists k; > 0 such that

ft,u) < (fo(t) +€)ufor 0 < u < ki Let Ky = n[lgr%] ki. So, for x € P with
telo,

|lz|| = K1, we have

T
Hzx(t) = (—1)”_kA Z G(t,s)f(s,z(s))

s=0

<AZIIG s)l|(fo(s) + €)x(s)

<>\ZHG $)|[(fo(s) +e)llz|

< ||a:|], €k, T+ k.
Therefore, ||[H(z)|| < ||z||. Hence, if we set
O ={u e Bl||u]| < K1}
then
(8) |Hz|| < ||z| for all x € PN oQy.

Next consider foo(t). For each t € [0,T], there exists k; > 0 such

that f(t,u) > (foolt) — €)u for all u > k. Let Ko = II%(E)%)]E] k; and Ky =
t€o,
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max {2K7, %f@} Define
Oy = {u S B|HUH < KQ}

If z € P with ||z|| = Ky, then min () > o||z|| > Kb, and
telk,T+k]

T
Hzx(r) = (—1)"_k)\ Z G(t,8)f(s,z(s))

s=0

T
< (=1)"FAYG(r,8) f (s, 2(5))
s=0

T
> (~1)"EAY (7, 8) fao(s) — €)z(s) (s, 2(s))

s=0
T
> a(=1)"FAYG(7,8)(foo(s) — )]
s=k
2 -
Thus, ||[Hz| > ||z||, and so
9) |Hz| > ||z]|| for all x € P NI

So with (8) and (9) we have shown that H satisfies the first condition of
Theorem 1. Thus we can conclude that H has a fixed point u(t) € PN
(22\Q1). This fixed point, u(t), is a solution of (1), (2) corresponding to the
given value of \. m

Theorem 4. Assume conditions (A) and (B) are satisfied. Then, for each
A satisfying

1 1
<AL ,

SEE GOl X 60 fel)

there exists at least solution of (1), (2) in P.

Proof. Let X\ be given as stated above. Let € > 0 be such that

1 <A< 1

ST G O X [GE(ls) + )

Let H be the cone preserving, completely continuous operator defined in (7).
Consider fy(t). For each t € [0,T] there exists k; > 0 such that f(¢,u) >

(fo(t)—€)ufor 0 < u < ky. Let K1 = trr[loir%] k:. So, for x € P with [|z| = K7,
€10,
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we have

T
Ha(n) = (=1)""*AY_ G(n, 5)f(5,2(s))

T
> (—=1)"FAY G, 2) f(a,a(s))

s=k

T
D"FAY G, s)(fols) — €)a(s)
s=0

T
"N G, ) (fo(s) — )l
=k

> .
Therefore, ||Hz| > ||z|. Hence, if we set

O = {u e Bll|lull < K1},

(10) |Hz| > ||, for all z € P N IQ;.

Next consider fuo(t). For each t € [0,T] there exists k; > 2K such that
f(t,u) < (foolt) + €)u for all u > k;. There exists sets I,.J C [0,T], with
I'uJ =10,T], such that for all ¢ € I, f(¢,u) is bounded as a function of u,
and for all ¢ € J, f(¢,u) is unbounded as a function of u.

Choose M > 0 such that for all positive u and for all t € I, f(t,u) < M.

Let
Ve e
K¢ = max , ————
! ’ j;o(t)4"€

For each ¢ € J choose r; > ky such that f(t,u) < f(t, k), for 0 < u < k.
Let Ky = H[laX k¢. By the continuity of f, for all t € J there exists py,
te

)

where k¢ < puy < Ky, such that f(t,u) < f(t, ) for all 0 < u < Ky. Now

T
Haz(t) = (=1)" k) Z G(t,s)f(s,z(s))

s=0
<A NGCOIM + XD NGC, )1 £ (s, ps)
seJ sel
<A NG 8)(Fo(s) + €ris + A D NGC, 8)lI(fo(s) + €)ps
sel seJ

</\ZHG $)||(foo(s) + €) Ko

—AZHG $)[[(foo(s) + )l

=< HHJH €[k T+k],
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for x € P with ||z|| = K2. Now if we take

0, = {u € Bllull < K},
then
(11) |Hz|| < ||z| for all z € P U 0Qs.

Thus, with (10) and (11), we have shown that H satisfies the hypotheses
to Theorem 1(ii), which yields a fixed point of H belonging to P N (22\1).
this fixed point is a solution of (1), (2) corresponding to the given \. =

REFERENCES

[1] R. P. Agarwal and J. L. Henderson, Positive solutions and nonlinear eigenvalue
problems for third order difference equations, Comput. Math. Appl. (to appear).

[2] R. P. Agarwal, J. L. Henderson, and P. J. Y. Wong, On superlinear and sublinear
(n, p) boundary value problems, Nonlinear World (in press).

[3] R. P. Agarwal and P. J. Y. Wong, Eigenvalue characterization for (n,p) boundary
value problems, Journal Austral. Math. Soc. Ser. B, (to appear).

[4] R.P. Agarwal and P. J. Y. Wong, Eigenvalues of boundary value problems for higher
order differential equations, Math. Probl. Engineering, (to appear).

[5] R. P. Agarwal and P. J. Y. Wong, Extension of continuous and discrete inequalities
due to Eloe and Henderson, Nonlinear Anal. (to appear).

[6] R. P. Agarwal and P. J. Y. Wong, On the existence of positive solutions of higher
order difference equations, Topol. Methods Nonlinear Anal. (to appear).

[7] R.P. Agarwal and P. J. Y. Wong, On the existence of solutions of singular boundary
value problems for higher order difference equations, Nonlinear Anal. 28 (1997),
277-287.

[8] P. W. Eloe, A generalization of concavity for finite differences, Comput. Math. Appl.
(to appear).

[9] P. W. Eloe and J. L. Henderson, Positive solutions and nonlinear multipoint conju-
gate eigenvalue problems, Electron. J. Differential Equations, 3 (1997), 1-11.

[10] P. W. Eloe and J. L. Henderson, Positive solutions for higher order ordinary differ-
ential equations, Electron. J. Differential Equations, 3 (1995) 1-8.

[11] P. W. Eloe and E. R. Kaufmann, A unique limiting Green’s function for a class of
singular boundary value problems, Comput. Math. Appl. 28 (1994), 93-99.

[12] L. H. Erbe and H. Wang, On the existence of positive solutions of ordinary differential
equations, Proc. Amer. Math. Soc. 120 (1994), 743-748.

[13] F. Fang, Positive Solutions of a Class of Boundary Value Problems, Ph.D. Dissert.,
Auburn University, 1997.

[14] D. Guo and V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Academic
Press, San Diego, 1988.

[15] P. Hartman, Difference equations: Disconjugacy, principal solutions, Green’s func-
tions, complete monotonicity, Trans. Amer. Math. Soc. 2465 (1978), 1-30.

[16] J. L. Henderson, Positive solutions for nonlinear difference equations, Nonlinear Stud.
(to appear).

[17] S. D. Lauer, Positive Solutions for nonlinear difference equations, etc. Comm. Appl.
Nonlinear Anal. 4, (1997), Number 3.

[18] W. G. Kelley and A. C. Peterson, Difference Equations, An Introduction with Ap-
plications, Academic Press, San Diego, 1991.

[19] M. A. Krasnosel’skii, Positive Solutions of Operator Equations, Noordhoff, Gronin-
gen, The Netherlands, 1964.

[20] F. Merdivenci, Two positive solutions of a boundary value problem for difference
equations, J. Differ. Equations Appl. 1 (1995), 263-270.



NTH ORDER BOUNDARY VALUE PROBLEM 279

[21] A. C. Peterson, Boundary value problems for an nth order linear difference equation,
SIAM J. Math. Anal. 15 (1984), 124-132.

JOHNNY HENDERSON
DEPARTMENT OF MATHEMATICS
AUBURN UNIVERSITY
AUBURN, ALABAMA 38649, USA

E-mail address: hendej2@mail.auburn.edu
SUSAN D. LAUER
DEPARTMENT OF MATHEMATICS

TUSKEGEE UNIVERSITY
TUSKEGEE, ALABAMA 36088, USA

E-mail address: lauersd@auburn.campus.mci.net



