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Abstract. We study the following bifurcation problem in any bounded
domain Ω in IRN :


Apu := −

N∑
i,j=1

∂

∂xi


( N∑

m,k=1

amk(x)
∂u

∂xm

∂u

∂xk

) p−2
2

aij(x)
∂u

∂xj


 =

λg(x)|u|p−2u + f(x, u, λ),
u ∈ W 1,p

0 (Ω).

We prove that the principal eigenvalue λ1 of the eigenvalue problem{
Apu = λg(x)|u|p−2u,

u ∈ W 1,p
0 (Ω),

is a bifurcation point of the problem mentioned above.

1. Introduction

In this paper we study the bifurcation problem

{
Apu = λg(x)|u|p−2u+ f(u, u, λ),
u ∈ W 1,p

0 (Ω),
(1.1)
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where Ω is a bounded domain in IRN , N ≥ 1; g ∈ L∞
loc(Ω) ∩ Lr(Ω) is an

indefinite weight function, with r = r(N, p) satisfying the conditions{
r > Np′ for 1 < p ≤ N,

r = 1 for p > N.
(1.2)

We assume that |Ω+| �= 0 with Ω+ = {x ∈ Ω; g(x) > 0}. The so–called
Ap-Laplacian is defined by

Apu = −
N∑

i,j=1

∂

∂xi




 N∑

m,k=1

amk(x)
∂u

∂xm

∂u

∂xk




p−2
2

aij(x)
∂u

∂xj




= −div(|∇u|p−2
a A(∇u)),

where A = (aij(x))1≤i,j≤N is a matrix satisfying the conditions

(1.3)



aij ≡ aji ∈ L∞(Ω) ∩ C1,γloc (Ω), 0 < γ ≤ 1,∀i, j = 1, . . . , N ,

|ξ|2a :=
N∑

i,j=1

aij(x)ξiξj ≥ |ξ|2, ∀x ∈ Ω,∀ξ ∈ IRN .

Nonlinearity f is a function satisfying some conditions to be specified later.
Problems involving the Ap-Laplacian, have been studied in [M, L-T, T,

E, E-Li-T]. We note that bifurcation problem is not considered there.
Bifurcation problem of the type (1.1), with aij ≡ δij , ∀i, j = 1, . . . , N , and

other conditions on g and f , were studied on bounded domains by [B-H],
[D1, D2] and [D-M]. The later authors consider the regular bounded domain
with ∂Ω of class C2,β for some β ∈]0, 1[ and g ≡ 1. This result was extended
for the bounded domain having the segment property and g ∈ L∞(Ω) by [E,
E-La-T]. The case Ω = IRN was studied by [D-H] (cf. also [D-K-N]) under
some appropriate conditions on f and g.

In this work we investigate the situation improving the conditions on f and
g for any bounded domain. This paper is organized as follows: in Section 2,
we introduce some assumptions and notations which we use later and prove
some technical preliminaries. In Section 3, we verify that the topological
degree is well defined for our operators. We also show that the topological
degree has a jump when λ crosses λ1, which implies the bifurcation result.

2. Assumptions, Definitions and Preliminaries

We first introduce some basic definitions, assumptions and notations. For
every x fixed in Ω denote

〈ξ, η〉a =
N∑

i,j=1

aij(x)ξiηj ,∀ξ, η ∈ IRN .

The symbol | · |a denotes the norm induced by 〈·, ·〉a. We use W 1,p
0 (Ω)-norm

defined by

‖v‖1,p = ‖|∇v|a‖p =
(∫

Ω
|∇v(x)|pa dx

) 1
p

.
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Denote for t ∈]1,+∞[, t′ =
t

t− 1
; t∗ =

Nt

N − t
if 1 < t < N and t∗ = ∞ if

N ≤ t < ∞.

2.1. Assumptions. We assume that
(f1) f : Ω × IR × IR → IR satisfies Caratheodory’s conditions in the first
two variables and

f(x, s, λ) = o(|s|p−1) for s → 0(2.1)

uniformly a.e. with respect to x and uniformly with respect to λ in bounded
sets of IR;
(f2) there is a q ∈]p, p∗[ such that

lim
|s|→+∞

|f(x, s, λ)|
|s|q−1 = 0,(2.2)

uniformly a.e. with respect to x and uniformly with respect to λ in bounded
sets.

2.2. Definitions. 1. By a solution of (1.1) we understand a pair (λ, u) in
IR ×W 1,p

0 (Ω) satisfying (1.1) in the weak sense, i.e., such that

(2.3)
∫
Ω

|∇u|p−2
a 〈∇u,∇v〉a dx =

∫
Ω
[λg(x)|u|p−2u+ f(x, u, λ)]v dx,

for all v ∈ W 1,p
0 (Ω). We note that the pair (λ, 0) is a solution of (1.1) for

every λ ∈ IR. The pairs of this form will be called the trivial solutions of (1.1).
We say that P = (λ, 0) is a bifurcation point of (1.1) if in any neighborhood
of P in IR ×W 1,p

0 (Ω) there exists a nontrivial solution of (1.1).

2. Let X be a real reflexive Banach space and let X∗ stand for its dual
with respect to the pairing 〈·, ·〉. We shall deal with mappings T acting
form X into X∗. The strong convergence in X (and in X∗) is denoted by
→ and the weak convergence by ⇀, respectively. T is demicontinuous at
u in X, if un → u in X, implies that Tun ⇀ Tu in X∗. T is said to
belong to the class (S+), if for any sequence {un} in X with un ⇀ u and
lim sup
n→+∞

〈Tun, un − u〉 ≤ 0, it follows that un → u in X. We write T ∈ (S+).

2.3. Degree theory. If T ∈ (S+) and T is demicontinuous, then it is pos-
sible to define the degree Deg [T ;D, 0], where D ⊂ X is a bounded open set
such that Tu �= 0 for any u ∈ ∂D. Its properties are analogous to the ones
of the Leray-Schauder degree (cf. [B], [S] or [B-P]).

A point u0 ∈ X will be called a critical point of T if Tu0 = 0. We say
that u0 is an isolated critical point of T if there exists ε > 0 such that for
any u ∈ Bε(u0), Tu �= 0 if u �= u0. Then the limit

Ind (T, u0) = lim
ε→0+

Deg [T ;Bε(u0), 0]

exists and is called the index of the isolated critical point u0.
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Assume, furthermore, that T is a potential operator, i.e. for some contin-
uously differentiable functional Φ : X → IR, Φ′(u) = Tu, u ∈ X. Then we
have the following two lemmas which we can find in [D1], [D2] or [D-H].

Lemma 2.1. Let u0 be a local minimum of Φ and an isolated critical point
of T . Then

Ind (T, u0) = 1.

Lemma 2.2. Assume that 〈Tu, u〉 > 0 for all u ∈ X, ‖u‖X = ρ. Then

Deg [T ;Bρ(0), 0] = 1.

2.4. Preliminaries. Define operators Ap, G : W 1,p
0 (Ω) → W−1,p′

(Ω) and
F : IR ×W 1,p

0 (Ω) → W−1,p′
0 (Ω), by

〈Apu, v〉 =
∫
Ω

|∇u(x)|p−2
a 〈∇u(x),∇v(x)〉adx

〈Gu, v〉 =
∫
Ω
g(x)|u(x)|p−2u(x)v(x) dx

〈F (λ, u), v〉 =
∫
Ω
f(x, u(x), λ)v(x) dx

for any u, v ∈ W 1,p
0 (Ω).

Remark 2.3. (i) Due to (2.3) the function u is a weak solution of (1.1) if
and only if

Apu− λGu− F (λ, u) = 0 in W−1,p′
(Ω).(2.4)

(ii) The operator Ap has the following properties: Ap is odd, (p−1)-homogene-

ous, strictly monotone, i.e.,

〈Apu−Apv, u− v〉 > 0 for all u �= v,(2.5)

and Ap ∈ (S+) (cf. [T]). We have also

(2.6) ‖Apu‖W −1,p′ (Ω) = ‖|∇u|a‖p−1
p

for any u ∈ W 1,p
0 (Ω).

Lemma 2.4. G is compact, odd and (p− 1)-homogeneous.

Proof. Step 1 Definition of G.
First case: if 1 < p < N , r > Np′. Let u, v ∈ W 1,p

0 (Ω). By Hölder’s
inequality, we have∣∣∣∣

∫
Ω
g(x)|u(x)|p−2u(x)v(x)dx

∣∣∣∣ ≤ ‖g‖r‖u‖p−1
s ‖v‖p∗ ,

where s is given by
p− 1
s

+
1
p∗ +

1
r
= 1.
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Therefore
p− 1
s

= 1 − 1
r

− 1
p∗ > 1 − 1

Np′ − 1
p∗ > 1 − p

N
− 1
p∗ =

p− 1
p∗ .

i.e.
p− 1 < s < p∗.

Then it suffices that

max(1, p− 1) < s < p∗(2.7)

and G is well defined.
Second case: if p = N , r > NN ′ = N +N ′. In this case

W 1,N
0 (Ω) ↪→ Lq(Ω),

for any q ∈ [1,+∞[. Since r > N , there is q > 1 such that
1
q
+

1
r
+

1
N ′ = 1.

We obtain that

q =
1

1 −
(

r+N ′
rN ′

) .(2.8)

By Hölder’s inequality, we arrive at∣∣∣∣
∫
Ω
g(x)|u(x)|N−2u(x)v(x)dx

∣∣∣∣ ≤ ‖g‖r‖u‖N−1
N ‖v‖q ,

for any u, v in W 1,N
0 (Ω). Then in this case G is well defined.

Third case: if p > N , r = 1. In this case

W 1,p
0 (Ω) ↪→ C(Ω) ∩ L∞(Ω).

Then for any u, v ∈ W 1,p
0 (Ω), we have∣∣∣∣
∫
Ω
g(x)|u(x)|p−2u(x)v(x)dx

∣∣∣∣ < ∞,

with g ∈ L1(Ω), and G is well defined also in this case.
Step 2 Compactness of G. Let (un) ⊂ W 1,p

0 (Ω) be a sequence such that
un ⇀ u weakly in W 1,p

0 (Ω). We must show that Gun → Gu strongly in
W 1,p
0 (Ω), i.e.

sup
v∈W

1,p
0 (Ω)

‖|∇v|a‖p≤1

∣∣∣∣
∫
Ω
g[|un|p−2un − |u|p−2u]v dx

∣∣∣∣ = 0(1), n → +∞.

If 1 < p < N , r > Np′: Let s be as in (2.7). Then

sup
v∈W

1,p
0 (Ω)

‖|∇v|a‖p≤1

∣∣∣∣
∫
Ω
g[|un|p−2un − |u|p−2u]v dx

∣∣∣∣
≤ sup

v∈W
1,p
0 (Ω)

‖|∇v|a‖p≤1

[
‖g‖r‖|un|p−2un − |u|p−2u‖ s

p−1
‖v‖p∗

]

≤ c‖g‖r‖|un|p−2un − |u|p−2u‖ s
p−1

,
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where c is the constant of Sobolev’s embedding. We have

‖|un|p−2un − |u|p−2u‖ s
p−1

= o(1), as n → +∞
due to the continuity of Nemytskii’s operator u �→ |u|p−2u from Ls(Ω) into
L

s
p−1 (Ω). Rellich’s theorem yields that un ⇀ u weakly in W 1,p

0 (Ω) implies
that un → u strongly in Ls(Ω) because max(1, p − 1) < s < p∗. The
compactness of G then follows.

If p = N , r > N +N ′ = NN ′:∣∣∣∣
∫
Ω
g[|un|N−2un − |u|Nu]v dx

∣∣∣∣ ≤ ‖g‖r‖|un|N−2un − |u|N−2u‖N−1
N ‖v‖q ,

where q is given by (2.8). By Sobolev’s embedding, there is c > 0 such that

‖v‖q ≤ c‖|∇v|a‖N , ∀v ∈ W 1,N
0 (Ω).

Thus

sup
‖|∇v|a‖N ≤1

v∈W
1,p
0 (Ω)

∣∣∣∣
∫
Ω
g[|un|N−2un − |u|N−2u]v dx

∣∣∣∣
≤ C‖g‖r‖|un|N−2un − |u|N−2u‖N−1

N .

From the continuity of u �→ |u|N−2u from LN (Ω) into LN ′
(Ω), and from the

compact embedding of W 1,N
0 (Ω) in LN (Ω), we have the desired result.

If p > N , r = 1. By Rellich’s embedding theorem of W 1,p
0 (Ω) into C(Ω),

we obtain

sup
‖|∇v|a‖p≤1

v∈W
1,p
0 (Ω)

∣∣∣∣
∫
Ω
g[|un|p−2un − |u|p−2u]v dx

∣∣∣∣
≤ C‖g‖1 sup

Ω

∣∣∣||un|p−2un − |u|p−2u
∣∣∣ ,

where C is the constant given by embedding of W 1,p
0 (Ω) in C(Ω) ∩ L∞(Ω).

It is clear that

sup
Ω

∣∣∣|un|p−2un − |u|p−2u
∣∣∣ = o(1), as n → +∞.

The oddness and (p − 1)-homogeneity of G is obvious. Thus the lemma is
proved.

Lemma 2.5. F (λ, ·) is compact, F (λ, 0) = 0 and we have

lim
‖|∇u|a‖p→0

F (λ, u)
‖|∇u|a‖p−1

p

= 0 in W−1,p′
(Ω),(2.9)

uniformly for λ is in a bounded subset of IR.

Proof. (2.1) and (2.2) imply that for any ε > 0, there are two reals δ = δ(ε)
and M =M(δ) such that for a.e. x ∈ Ω, we have

|f(x, s, λ)| ≤ ε|s|p−1 for |s| ≤ δ(2.10)
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and

|f(x, s, λ)| ≤ M |s|q−1 for |s| ≥ δ.(2.11)

Therefore, for 0 < ε ≤ 1, we obtain∫
Ω

|f(x, u(x), λ)|q′
dx

=
∫

{x,|u(x)|≤δ}
|f(x, u(x), λ)|q′

dx+
∫

{x,|u(x)|≥δ}
|f(x, u(x), λ)|q′

dx

≤
∫
Ω

|u(x)|q′(p−1)dx+M

∫
Ω

|u(x)|qdx.

We have q′(p− 1) ≤ p′(p− 1) = p < q. So Lq(Ω) ↪→ Lq′(p−1)(Ω) and there is
c > 0 such that ∫

Ω
|u(x)|q′(p−1)dx ≤ c

∫
Ω

|u(x)|qdx.
We deduce that∫

Ω
|f(x, u(x), λ)|q′

dx ≤ (c+M)
∫
Ω

|u(x)|qdx.

Hence u �→ F (λ, u) maps Lq(Ω) into Lq′
(Ω). Moreover, if un ⇀ u inW 1,p

0 (Ω),
un → u in Lq(Ω) (because p < q < p∗) and F (λ, un) → F (λ, u) in Lq′

(Ω).
Since Lq′

(Ω) ↪→ W−1,p′
(Ω), we have F (λ, un) → F (λ, u) in W−1,p′

(Ω). This
proves that F (λ, ·) is compact. It is clear that F (λ, 0) = 0 for any λ ∈ IR.

By (f2), we have
F (λ, u)

‖|∇u|a‖p−1
p

→ 0 in Lq′
(Ω). Indeed, set v =

u

‖|∇u|a‖p
.

Then
F (λ, u)

‖|∇u|a‖p−1
p

=
F (λ, u)
|u|p−1 |v|p−1.(2.12)

From (2.12) and Hölder’s inequality, we deduce that

∫
Ω

∣∣∣∣∣ F (λ, u)
‖|∇u|a‖p−1

p

∣∣∣∣∣
q′

dx ≤
(∫

Ω

∣∣∣∣F (λ, u)|u|p−1

∣∣∣∣
q′t
dx

) 1
t (∫

Ω
|v|(p−1)q′t′dx

) 1
t′
,

for some t > 0 which satisfies
q′(q − p)

p∗ <
1
t
<
p∗ − (p− 1)q′

p∗ .(2.13)

This is always possible, since p < q < p∗. By (2.10) and (2.11), we obtain
that ∥∥∥∥∥

∣∣∣∣F (λ, u)|u|p−1

∣∣∣∣
q′∥∥∥∥∥

t

t

≤ ε|Ω| +M q′t
∫
Ω

|u|q′t(q−p)dx, ∀ε > 0.

From this inequality and since u → 0 in W 1,p
0 (Ω), we have by (2.13) that∥∥∥∥∥

∣∣∣∣F (λ, u)|u|p−1

∣∣∣∣
q′∥∥∥∥∥

t

t

→ 0, as u → 0 in W 1,p
0 (Ω).
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On the other hand, v belongs to Lp∗
(Ω) (because ‖|∇v|a‖p = 1). Then we

find a constant c > 0 so that ∥∥∥|v|(p−1)q′∥∥∥
t′

≤ c,

since q′t′(p− 1) < p∗ by (2.13). This concludes the proof.

Remark 2.6. Note that every continuous map T : X → X∗ is also demi-
continuous. Note also, that if T ∈ (S+) then (T+K) ∈ (S+) for any compact
operator K : X → X∗.

Remark 2.7. λ is an eigenvalue of

(P )

{
Apu = λg(x)|u|p−2u,
u ∈ W 1,p

0 (Ω),

if and only if the equation

Apu− λGu = 0(2.14)

has a solution u ∈ W 1,p
0 (Ω)\{0}.

Now we take Tλ = Ap−λG−F (λ, ·). By Lemma 2.4, Lemma 2.5, Remark
2.3 and Remark 2.6, the degree

Deg [Tλ;D, 0],(2.15)

(where D is a bounded open set in W 1,p
0 (Ω) such that Tλu �= 0 for any

u ∈ ∂D) is well defined for any λ > 0.
By the same argument as used in proof of Lemma 2.4, we can show the

following proposition.

Proposition 2.8. If (λ, 0) is a bifurcation point of problem (1.1), then λ is
an eigenvalue of (P).

3. Bifurcation from λ1

We recall that λ1 can be characterized variationally as follows:

(3.1) λ1 = min

{∫
Ω |∇u|padx∫
Ω g|u|pdx

; u ∈ W 1,p
0 (Ω),

∫
Ω
g|u|pdx > 0

}
.

Recall for our problem (P ), (cf., [L-T]), that λ1 is the principal eigenvalue
and it is simple and isolated.

Let E = IR ×W 1,p
0 (Ω) be equipped with the norm

‖(λ, u)‖ = (|λ|2 + ‖|∇u|a‖2p)
1
2 , (λ, u) ∈ IR ×W 1,p

0 (Ω).

Definition 3.1. We say that

C = {(λ, u) ∈ E : (λ, u) solves (1.1), u �= 0}
is a continuum of nontrivial solutions of (1.1), if it is a connected set in E.
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Theorem 3.2. Under the assumptions (1.2), (1.3), (f1) and (f2), the pair
(λ1, 0) is a bifurcation point of (1.1). Moreover, there is a continuum of non-
trivial solutions C of (1.1) such that (λ1, 0) ∈ C and C is either unbounded
in E or there is λ �= λ1, an eigenvalue of (P ), with (λ, 0) ∈ C.

Proof. We will give only sketch of the proof since it follows the lines of the
proof of Theorem 14.18 in [D2] or Theorem 3.7 in [D-K-N]. The key point
in the proof is the fact that the value of

Deg [Ap − λG;Bε(0), 0](3.2)

changes when λ crosses λ1. If this fact is proved then the result follows
exactly as in the classical bifurcation result of Rabinowitz [R]. Choose δ > 0
such that (λ1, λ1 + δ) does not contain any eigenvalue of (P ). Then the
variational characterization (3.1) of λ1 and Lemma 2.2 yield

Deg [Ap − λG;Bε(0), 0] = 1,(3.3)

when λ ∈ (λ1 − δ, λ1). To evaluate (3.2) for λ ∈ (λ1, λ1 + δ) we use the
following trick. Fix a number K > 0 and define a function ψ : IR → IR by

ψ(t) =



0 for t ≤ K,
2δ
λ1

(t− 2K) for t ≥ 3K,

and ψ is positive and strictly convex in (K, 3K). Define a functional

Ψλ(u) =
1
p
〈Apu, u〉 − λ

p
〈Gu, u〉 + ψ

(
1
p
〈Apu, u〉

)
.

Then Ψλ is continuously Fréchet differentiable and its critical point u0 ∈
W 1,p
0 (Ω) corresponds to a solution of the equation

Apu0 − λ

1 + ψ′
(
1
p〈Apu0, u0〉

)Gu0 = 0.

However, since λ ∈ (λ1, λ1 + δ), the only nontrivial critical points of Ψ′
λ

occur if

ψ′
(
1
p
〈Apu0, u0〉

)
=

λ

λ1
− 1.(3.4)

Due to the definition of ψ we then have
1
p
〈Apu0, u0〉 ∈ (K, 3K)

and due to (3.4) and the simplicity of λ1, either u0 = −u1 or u0 = u1, where
u1 is the principal eigenfunction. So, for λ ∈ (λ1, λ1 + δ), the derivative Ψ′

λ

has precisely three isolated critical points

−u1, 0, u1.
It is not difficult to prove that Ψλ is weakly lower semicontinuous and

lim
‖u‖1,p→∞

Ψλ(u) = ∞
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due to the definition of ψ. So, Ψλ attains local minima at u1 and −u1. It
follows from Lemma 2.1 that

Ind (Ψ′
λ, u1) = Ind (Ψ′

λ,−u1) = 1.(3.5)

Since also
〈Ψ′

λ(u), u〉 > 0
for ‖u‖1,p = R, with R > 0 sufficiently large, we have according to Lemma
2.2 that

Deg [Ψ′;BR(0), 0] = 1.(3.6)

Additivity property of the degree, (3.5) and (3.6) yield

Deg [Ap − λG;Bε(0), 0] = −1(3.7)

for λ ∈ (λ1, λ1 + δ) and ε > 0 sufficiently small. Since (3.3) and (3.7)
establish the “jump” of the degree the proof is complete.
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