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Abstract. We study the existence of nontrivial solutions to the following
problem:{

u ∈ W 1,N (RN ), u ≥ 0 and
−div(| ∇u |N−2 ∇u) + a (x) | u |N−2 u = f(x, u) in R

N (N ≥ 2),
where a is a continuous function which is coercive, i.e., a (x) → ∞ as
| x |→ ∞ and the nonlinearity f behaves like exp

(
α | u |N/(N−1)

)
when

| u |→ ∞.

1. Introduction

In this paper, we apply a mountain pass type argument to prove the
existence of nontrivial weak solutions to the following class of semilinear
elliptic problems in R

N (N ≥ 2) , involving critical growth:{
u ∈ W 1,N (RN ), u ≥ 0 and

−div(| ∇u |N−2 ∇u) + a (x) | u |N−2 u = f(x, u) in R
N ,

(1)

where a : R
N → R is a continuous function satisfying a (x) ≥ a0, ∀x ∈ R

N ,
and such that a (x) → ∞ as | x |→ ∞. It is assumed that the nonlinearity
f : R

N ×R → R is also continuous and f(x, 0) ≡ 0. Thus, u ≡ 0 is a solution
of (1) and has critical growth, i.e., f behaves like exp

(
α | u |N/(N−1)

)
when

| u |→ ∞.
For N = 2, problems of this type, that is, involving the Laplacian operator

and critical growth in the whole R
2, have been considered by Cao in [10] and

by Cao and Zhengjie in [11], under the decisive hypothesis that the function
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a be a constant. For that purpose, they used the concentration-compactness
principle of P. L. Lions.
Recently, Rabinowitz in [29], among other results, obtained a nontrivial

solution to the problem −∆u + a (x)u = f(x, u) in R
N , under the as-

sumption that a is coercive and that the potential F (x, u) =
∫ u
0 f(x, s)ds

is superquadratic and f(x, u) has subcritical growth, that is, | f(x, u) |≤
b1 + b2 | u |s, where s ∈ (1, (N + 2)/(N − 2)). This result was extended by
Costa [15] to a class of potentials F (x, u) which are nonquadratic at infin-
ity. Miyagaki, in [24], has treated this problem for N ≥ 3, involving critical
Sobolev exponent, namely for f(x, u) = λ | u |q−1 u+ | u |p−1 u, where
1 < q < p ≤ (N − 2)/(N + 2) and λ > 0. In [3], this result was generalized
by Alves to the p−Laplacian operator.
In this paper, we complement the results mentioned above by establishing

sufficient conditions for the existence of nontrivial solutions to (1). To treat
variationally this class of problems, with f behaving like exp

(
α | u | N

N−1

)
when | u |→ ∞, we introduce a Trudinger-Moser type inequality. On the
other hand, to overcome the lack of compactness that has arisen from the
critical growth and the unboundedness of the domain, we use some recent
ideas from [16, 19] together with a compact imbedding result essentially
given by the coerciveness of a (cf. [15]).
We would also like to mention that problems involving the Laplacian

operator with critical growth range in bounded domains of R
2 have been

investigated, among others, by [2, 5, 6, 9, 16, 17, 22, 23, 30]. We refer to
[1, 19, 26] for semilinear problems with critical growth for the N−Laplacian
in bounded domains of R

N .
Now we shall describe the conditions on the functions a and f. Namely,

for a we suppose that:

(a1) there exists a positive real number a0 such that a (x) ≥ a0, ∀x ∈ R
N ,

(a2) a (x) → ∞ as | x |→ ∞.

On the other hand, motivated by a Trudinger-Moser type inequality (cf.
Lemma 1 below), we assume the following growth condition on the nonlin-
earity f (x, u),

(f1) the function f : R
N ×R → R is continuous and for all (x, u) ∈ R

N ×R,

| f (x, u) |≤ b1 | u |N−1 +b2
[
exp

(
α0 | u | N

N−1

)
− SN−2 (α0, u)

]
,

for some constants α0, b1, b2 > 0, where

SN−2 (α0, u) =
N−2∑
k=0

αk
0

k!
| u | N

N−1k .

Moreover, f is assumed to satisfy the following conditions:

(f2) there is a constant µ > N such that, for all x ∈ R
N and u > 0,

0 ≤ µF (x, u) ≡ µ

∫ u

0
f(x, t)dt ≤ uf(x, u),
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(f3) there are constants R0, M0 > 0 such that, for all x ∈ R
N and u ≥ R0,

0 < F (x, u) ≤ M0f(x, u);

(f4) lim
u→+∞uf(x, u) exp

(
−α0 | u | N

N−1

)
≥ β0 > 0 uniformly on compact

subsets of R
N .

As usual, W 1,N (RN ) denotes the Sobolev space of functions in LN (RN )
such that their weak derivatives are also in LN (RN ) with the norm

‖ u ‖N
W 1,N

.=
∫

RN
(| ∇u |N + | u |N )dx,

and we consider the subspace E ⊂ W 1,N (RN ) given by

E = {u ∈ W 1,N
(
R

N
)
:
∫

RN
a(x) | u |N dx < ∞}

endowed with the norm

‖ u ‖N
E

.=
∫

RN
(| ∇u |N +a(x) | u |N )dx.

Since a(x) ≥ a0 > 0, we clearly see that the Banach space E is a continuously
embedded in W 1,N

(
R

N
)
and, moreover,

λ1(N) = inf
0 �=u∈E

‖ u ‖N
E

‖ u ‖N
LN

≥ a0 > 0.(2)

The main result of this paper is the following

Theorem 1. Suppose (a1)−(a2) and (f1)−(f4) are satisfied. Furthermore,
assume that

(f5) lim supu→0+
NF (x, u)

| u |N < λ1(N) uniformly in x ∈ R
N .

Then the problem (1) has a nontrivial weak solution u ∈ E.

Remark 1. The assumption (a2) implies that the Banach space E is com-
pactly immersed in Lq if N ≤ q < ∞. We observe that this compact embed-
ding result is used here only to prove that the Palais-Smale sequence obtained
by mountain pass type argument converges to a weak nontrivial solution.
Therefore, the same device can be applied when we have some assumption
which implies a compact embedding result as the cited above. For instance,
when the function a is a radially symmetric function, that is, a(x) = a(y) if
| x |=| y | (cf. [4, 18]).
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2. A Trudinger-Moser inequality

Let Ω be a bounded domain in R
N (N ≥ 2). The Trudinger-Moser in-

equality (cf. [25, 31]) asserts that

exp(α | u | N
N−1 ) ∈ L1(Ω), ∀u ∈ W 1,N

0 (Ω) , ∀α > 0

and that there exists a constant C(N) which depends on N only, such that

sup
‖u‖

W
1,N
0

≤1

∫
Ω
exp(α | u | N

N−1 ) ≤ C(N) | Ω |, if α ≤ αN ,

where | Ω |= ∫
Ω dx, αN = Nw

1
N−1
N−1 and wN−1 is the (N − 1)−dimensional

measure of the (N − 1)−sphere.
Inspired of this inequality and based on the related results [7, 10, 11, 12,

13, 14], we get the following result.

Lemma 1. If N ≥ 2, α > 0 and u ∈ W 1,N
(
R

N
)
, then∫

RN

[
exp

(
α | u | N

N−1

)
− SN−2 (α, u)

]
< ∞.(3)

Moreover, if ‖ ∇u ‖N
LN ≤ 1, ‖ u ‖LN ≤ M < ∞ and α < αN = Nw

1
N−1
N−1,

then there exists a constant C = C(N,M,α), which depends only on N,M
and α, such that∫

RN

[
exp

(
α | u | N

N−1

)
− SN−2 (α, u)

]
≤ C (N,M,α) .(4)

Proof. We may assume u ≥ 0, since we can replace u by | u | without caus-
ing any increase in the integral of the gradient. Since we shall use Schwarz
symmetrization method, we recall briefly some of theirs basic properties (cf.
[20, 27]). Let 1 ≤ p ≤ ∞ and u ∈ Lp(RN ) such that u ≥ 0. Thus, there is a
unique nonnegative function u∗ ∈ Lp(RN ), called the Schwarz symmetriza-
tion of u, such that it depends only on | x |, u∗ is a decreasing function of
| x |; for all λ > 0

| {x : u∗ (x) ≥ λ} |=| {x : u (x) ≥ λ} |
and there exists Rλ > 0 such that {x : u∗ ≥ λ} is the ball B (0, Rλ) of radius
Rλ centered at origin. Moreover, suppose that G : [0,+∞) → [0,+∞) is a
continuous and increasing function such that G (0) = 0. Then, we have∫

RN
G (u∗ (x)) dx =

∫
RN

G (u (x)) dx.

Further, if u ∈ W 1,p
0

(
R

N
)
then u∗ ∈ W 1,p

0

(
R

N
)
and∫

RN
| ∇u∗ |p (x) dx ≤

∫
RN

| ∇u |p (x) dx.
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Thus, we can write∫
RN

[
exp

(
α | u | N

N−1

)
−SN−2 (α, u)]

=
∫

RN

[
exp

(
α | u∗ | N

N−1

)
− SN−2 (α, u∗)

]
,

and, for a real number r > 1 to be determined, we have∫
RN

[
exp

(
α | u∗ | N

N−1

)
− SN−2 (α, u∗)

]
=
∫

|x|<r

[
exp

(
α | u∗ | N

N−1

)
− SN−2 (α, u∗)

]
+
∫

|x|≥r

[
exp

(
α | u∗ | N

N−1

)
− SN−2 (α, u∗)

]
≤
∫

|x|<r
exp

(
α | u∗ | N

N−1

)
+
∫

|x|≥r

[
exp

(
α | u∗ | N

N−1

)
− SN−2 (α, u∗)

]
.

Let us recall two elementary inequalities. Using the fact that the function
h : (0,+∞) → R given by h (t) = [(t+ 1)

N
N−1 − t

N
N−1 − 1]/t

1
N−1 is bounded,

we have a positive constant A = A(N) such that

(u+ v)
N

N−1 ≤ u
N

N−1 +Au
1

N−1 v + v
N

N−1 , ∀u, v ≥ 0.(5)

If γ and γ′ are positive real numbers such that γ+γ′ = 1, then for all ε > 0,
we have

uγvγ′ ≤ εu+ ε
− γ

γ′ v, ∀u, v ≥ 0,(6)

because g : [0,+∞) → R, given by g (t) = tγ − εt, is bounded.

Let v (x) = u∗ (x) − u∗ (rx0) where x0 is some fixed unit vector in R
N .

Notice that v ∈ W 1,N
0 (B (0, r)) . Here, B(0, r) denotes the ball of radius r

centered at the origin of R
N . Now, from (5) and (6), we have, respectively,

| u∗ | N
N−1=| v + u∗ (rx0) | N

N−1 ≤ v
N

N−1 +Av
1

N−1u∗ (rx0) + u∗ (rx0)
N

N−1 ,

v
1

N−1u∗ (rx0) =
(
v

N
N−1

) 1
N
(
u∗ (rx0)

N
N−1

)N−1
N

≤ ε

A
v

N
N−1 +

(
ε

A

) 1
1−N

u∗ (rx0)
N

N−1 ,

and hence,

| u∗ | N
N−1 ≤ (1 + ε) v

N
N−1 +K(ε,N)u∗ (rx0)

N
N−1 ,

where K(ε,N) = A
N

N−1 ε
1

1−N + 1. Therefore,∫
|x|≤r exp

(
α | u∗ | N

N−1

)
≤

exp
(
K(ε,N)u∗ (rx0)

N
N−1

) ∫
|x|≤r exp

(
α | (1 + ε) v | N

N−1

)
,
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which, in view of Trudinger-Moser inequality, implies,∫
|x|≤r

exp
(
α | u∗ | N

N−1

)
< ∞, ∀u ∈ W 1,N

(
R

N
)
, ∀α > 0.(7)

Furthermore, taking ε > 0 such that (1 + ε)α < αN , we obtain

(8)

∫
|x|≤r

exp
(
α | u∗ | N

N−1

)
≤ C (N)

wN−1rN

N
exp

(
K(ε,N)u∗ (rx0)

N
N−1

)
≤ C (N)

wN−1rN

N
exp

(NMN

wN−1

) 1
N−1 K(ε,N)

r
N

N−1

 ,

for all u ∈ W 1,N
(
R

N
)
such that ‖ ∇u ‖N

LN ≤ 1 and ‖ u ‖LN ≤ M , where in
the last inequality we have used Radial Lemma A.IV in [8]:

| u∗ (x) |≤| x |−1
(

N

wN−1

) 1
N ‖ u∗ ‖LN (RN ), ∀x �= 0.

On the other hand, we have

(9)

∫
|x|≥r

[
exp

(
α | u∗ | N

N−1

)
− SN−2 (u∗)

]
=

αN−1

(N − 1)!

∫
|x|≥r

| u∗ |N +
∞∑

k=N

αk

k!

∫
|x|≥r

| u∗ | N
N−1k .

Now, notice that the estimate∫
|x|≥r

1

| x | N
N−1k

dx = wN−1
∫ ∞

r

tN−1

t
N

N−1k
dt

=

(
wN−1

N
N−1k − N

)
rN− N

N−1k ≤ wN−1rN

r
N

N−1k
, ∀k ≥ N,

together with Radial Lemma, lead to

(10)

∞∑
k=N

αk

k!

∫
|x|≥r

| u∗ | N
N−1k

≤ wN−1rN
∞∑

k=N

αk

k!

[(
N

wN−1

) 1
N

(‖ u∗ ‖LN (RN )

r

)] N
N−1k

.

Finally, (7), (9) and (10) imply the existence of the integral in (3). Fur-
thermore, in the case that α < αN and ‖ u ‖LN ≤ M , if we choose r =

M
(

N
wN−1

) 1
N , we have∫
|x|≥r

[
exp

(
α | u∗ | N

N−1

)
− SN−2 (u)

]
≤ NMN exp (αN ) ,

which, in combination with (8), implies (4).
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3. The variational formulation

First, we observe that since we are interested in obtaining nonnegative
solutions, it is convenient to define

f(x, u) = 0, ∀(x, u) ∈ R
N × (−∞, 0].

From (f1), we obtain for all (x, u) ∈ R
N × R,

| F (x, u) |≤ b3
[
exp

(
α1 | u | N

N−1

)
− SN−2 (α1, u)

]
,(11)

for some constants α1, b3 > 0. Thus, by lemma 1, we have F (x, u) ∈ L1(RN )
for all u ∈ W 1,N

(
R

N
)
. Therefore, the functional I : E → R given by

I(u) =
1
N

‖ u ‖N
E −

∫
RN

F (x, u)dx

is well defined. Furthermore, using standard arguments (cf. Theorem A.VI
in [8]) as well as the fact that for any given strong convergent sequence (un)
in W 1,N

(
R

N
)
there is a subsequence (unk

) and there exists h ∈ W 1,N
(
R

N
)

such that | unk
(x) |≤ h(x) almost everywhere in R

N , we see that I is a C1

functional on E with

I ′(u)v =
∫

RN

(| ∇u |N−2 ∇u∇v+a(x) | u |N−2 uv)dx−
∫

RN

f(x, u)vdx, ∀v ∈ E.

Consequently, critical points of the functional I are precisely the weak so-
lutions of problem (1). Here, like in [29, 24, 19], we are going to use a
Mountain-Pass Theorem without a compactness condition such as the one
of Palais-Smale type. This version of Mountain -Pass Theorem is a conse-
quence of Ekeland’s variational principle (cf. [21]). In the next two lem-
mas we check that the functional I satisfies the geometric conditions of the
Mountain-Pass Theorem (cf. [28]).

Lemma 2. Assume that (a1), (f1) , (f2) and (f3) are satisfied. Then for any
u ∈ W 1,N

(
R

N
)
−{0} with compact support and u ≥ 0, we have I (tu) → −∞

as t → ∞.

Proof. Let u ∈ W 1,N
(
R

N
)

− {0} with compact support and u ≥ 0. By
(f2) and (f3) there are positive constants c, d such that

F (x, s) ≥ csµ − d, ∀x ∈ supp (u) ,∀s ∈ [0,+∞).

Thus,

I (tu) ≤ tN

N
‖ u ‖N

E −ctµ
∫

RN

uµ + d | supp (u) |,

which implies that I (tu) → −∞ as t → ∞, since µ > N.

Lemma 3. Suppose that (a1), (f1) and (f5) hold. Then there exist α, ρ > 0
such that

I (u) ≥ α if ‖ u ‖E= ρ.
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Proof. From (f5), there exist ε, δ > 0 in such a way that | u |≤ δ implies

F (x, u) ≤ (λ1(N)− ε)
N

| u |N

for all x ∈ R
N . On the other hand, for q > N , by (f1), there are positive

constants β, C = C(q, δ) such that | u |≥ δ implies

F (x, u) ≤ C | u |q
[
exp

(
β | u | N

N−1

)
− SN−2 (β, u)

]
for all x ∈ R

N . These two estimates yield,

F (x, u) ≤ (λ1(N)− ε)
N

| u |N +C | u |q
[
exp

(
β | u | N

N−1

)
− SN−2 (β, u)

]
,

for all (x, u) ∈ R
N × R. In what follows we make use of the inequality

(12)
∫

RN
| u |q

[
exp

(
β | u | N

N−1

)
− SN−2 (β, u)

]
≤ C(β,N) ‖ u ‖q

E ,

to be proved later, assuming that ‖ u ‖E≤ M holds, where M is sufficiently
small. Under the assumption we have just done, by means of (2) and the
continuous imbedding E ↪→ LN (RN ), we achieve

I (u) ≥ 1
N

‖ u ‖N
E −(λ1(N)− ε)

N
‖ u ‖N

LN −C ‖ u ‖q
E

≥ 1
N
(1− (λ1(N)− ε)

λ1(N)
) ‖ u ‖N

E −C ‖ u ‖q
E .

Thus, since ε > 0 and q > N , we may choose α, ρ > 0 such that I (u) ≥
α if ‖ u ‖E= ρ.

Now, let us obtain inequality (12). As it has been done in the proof of
lemma 1, we use shall the method of symmetrization. Letting R(β, u) =
exp

(
β | u | N

N−1

)
− SN−2(β, u), we have∫

RN

R(β, u) | u |q dx =
∫

RN

R(β, u∗) | u∗ |q dx

and∫
RN

R(β, u∗) | u∗ |q dx =
∫

|x|≤σ
R(β, u∗) | u∗ |q dx+

∫
|x|≥σ

R(β, u∗) | u∗ |q dx,

where σ is a number to be determined later. Using the Hölder inequality,
we obtain∫

|x|≤σ R(β, u∗) | u∗ |q dx ≤ ∫
|x|≤σ[exp(β | u∗ | N

N−1 )] | u∗ |q dx

≤
(∫

|x|≤σ exp(βr | u∗ | N
N−1 )

) 1
r
(∫

|x|≤σ | u∗ |qs
) 1

s ,

where 1/r+1/s = 1. Now, proceeding as in the proof of lemma 1, we obtain∫
|x|≤σ

exp(βr | u∗ | N
N−1 )dx ≤ C(β,N)
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if ‖ u ‖E≤ M, where M is such that βrM
N

N−1 < αN . Thus, using the
continuous imbedding E ↪→ Lqs(RN ), we have∫

|x|≤σ
R(β, u∗) | u∗ |q dx ≤ C(β,N) ‖ u ‖q

E .(13)

On the other hand, the Radial Lemma leads to∫
|x|≥σ

| u∗ | N
N−1k| u∗ |q dx

≤
((

N

wN−1

) 1
N ‖ u∗ ‖LN (RN )

) N
N−1k ∫

|x|≥σ

| u∗ |q
| x | N

N−1k
dx

≤
((

N

wN−1

) 1
N ‖ u∗ ‖LN (RN )

) N
N−1k

∫
|x|≥σ

1

| x | N
N−1kr

 1
r (∫

|x|≥σ
| u∗ |qs

) 1
s

≤ wN−1σN


(

N
wN−1

) 1
N ‖ u∗ ‖LN (RN )

σr


N

N−1k

‖ u ‖q
Lsq(RN )

≤ C(N,M) ‖ u ‖q
E ,

for all k ≥ N , if we choose σr = M0

(
N

wN−1

) 1
N where ‖ u ‖LN (RN )≤ M0 =

λ1(N)1/NM . We also have that∫
|x|≥σ | u∗ |N | u∗ |q dx ≤

(∫
|x|≥σ | u∗ |Nr dx

) 1
r
(∫

|x|≥σ | u∗ |qs dx
) 1

s

≤‖ u∗ ‖N
LNr(RN )‖ u∗ ‖q

Lqs(RN )

≤ C (N,M) ‖ u∗ ‖q
E ,

if ‖ u∗ ‖q
E≤ M, via the continuous imbedding E ↪→ W 1,N (RN ) ↪→ LNr(RN ).

Therefore, ∫
|x|≥R

RN (β, u∗) | u∗ |q dx ≤ C(N,M) exp(β) ‖ u ‖q
E .(14)

Finally, the combination of estimates (13) and (14) leads to (12).

In order to get a more precise information about the minimax level ob-
tained by the Mountain Pass Theorem, let us consider the following sequence
of nonnegative functions

M̃n(x, r) = w
− 1

N
N−1


(log n)

N−1
N if | x |≤ r/n

log(
r

| x |)/(log n)
1
N if r/n ≤| x |≤ r

0 if | x |≥ r.

Notice that: M̃n(·, r) ∈ W 1,N (RN ), the support of M̃n(x, r), is the ball
B[0, r] of radius r centered at zero,

∫
RN | ∇M̃n(x, r) |N dx = 1 and
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RN | M̃n(x, r) |N dx = O(1/ log n) as n → ∞. Moreover, let Mn(x, r) =

M̃n(x, r)/ ‖ M̃n ‖E . Thus, it is not difficult to see that

M
N

N−1
n (x, r) = w

− 1
N−1

N−1 log n+ dn, ∀ | x |≤ r/n,(15)

where dn is a bounded sequence of nonnegative numbers.

Lemma 4. Suppose that (a1) and (f1) − (f5) hold true. Then there exists
Mn(·, r) such that

max{I(tMn) : t ≥ 0} <
1
N
(
αN

α0
)N−1.

Proof. Let r be a fixed positive real number such that

β0 >
1
rN

(
N

α0

)N−1
.(16)

Suppose, by contradiction, that for all n we have

max{I(tMn) : t ≥ 0} ≥ 1
N
(
αN

α0
)N−1,

where Mn(x) = Mn(x, r). In view of Lemma 2, given n there exists tn > 0
such that

I (tnMn) = max{I (tMn) : t ≥ 0}.
So,

I (tnMn) =
tNn
N

−
∫

RN
F (x, tnMn) dx ≥ 1

N
(
αN

α0
)N−1,(17)

and using the fact that F (x, u) ≥ 0, we obtain

tNn ≥ (
αN

α0
)N−1.(18)

Since at t = tn, we have
d

dt
I (tMn) = 0, it follows that

(19) tNn =
∫

RN
tnMnf (x, tnMn) dx =

∫
|x|≤r

tnMnf (x, tnMn) dx.

Now, using hypothesis (f5), given ε > 0 there exists Rε > 0 such that for all
u ≥ Rε and for all | x |≤ r,

uf(x, u) ≥ (β0 − ε) exp(α0 | u | N
N−1 ).(20)

From (19) and (20), for large n, we obtain,

tNn ≥ (β0 − ε)
∫

|x|≤ r
n

exp(α0 | tnMn | N
N−1 )dx

= (β0 − ε)
wN−1
N

(
r

n

)N

exp(α0tn
N

N−1w
− 1

N−1
N−1 log n+ α0tn

N
N−1dn).

Thus,

1 ≥ (β0−ε)
wN−1
N

rN exp[
α0N log n

αN
tn

N
N−1 +α0tn

N
N−1dn −N log tn −N log n].
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Therefore, the sequence tn is bounded, since otherwise, up to subsequences,
we would have

lim
n→∞

α0N log n
αN

tn
N

N−1 + α0tn
N

N−1dn − N log tn − N log n = +∞,

which leads to a contradiction. Moreover, by (18) and

tNn ≥ (β0 − ε)
wN−1
N

rN exp[(
α0tn

N
N−1

αN
− 1)N log n+ α0tn

N
N−1dn]

it follows that

tNn → (
αN

α0
)N−1, as n → ∞.(21)

Now, in order to estimate (19) more precisely, we consider the sets

An = {x ∈ B[0, r] : tnMn ≥ Rε} and Bn = B[0, r]− An.

From (19) and (20) we arrive at

tNn ≥ (β0 − ε)
∫

|x|≤r
exp(α0 | tnMn | N

N−1 )dx+
∫

Bn

tnMnf (x, tnMn) dx

− (β0 − ε)
∫

Bn

exp(α0 | tnMn | N
N−1 )dx.

Notice that Mn(x) → 0 and the characteristic functions χBn → 1 for almost
every x such that | x |≤ r. Therefore, the Lebesgue Dominated Convergence
Theorem implies∫

Bn

tnMnf (x, tnMn) dx → 0 and∫
Bn

exp(α0 | tnMn | N
N−1 )dx → wN−1

N
rN as n → ∞.

Note also that, by (18), tNn ≥ (αN
α0

)N−1,∫
|x|≤r

exp(α0 | tnMn | N
N−1 )dx ≥

∫
|x|≤r

exp(αN | Mn | N
N−1 )dx

=
∫

|x|≤ r
n

exp(αN | Mn | N
N−1 )dx+

∫
r
n

≤|x|≤r
exp(αN | Mn | N

N−1 )dx,

∫
|x|≤ r

n

exp(αN | Mn | N
N−1 )dx =

∫
|x|≤ r

n

exp[αNω
− 1

N−1
N−1 log n+ dnαN ]

=
ωN−1
N

rN

nN
exp[N log n] exp[dnαN ]

=
ωN−1rN

N
exp[dnαN ] ≥ ωN−1rN

N
,
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since dn ≥ 0. Using the change of variable τ = log r
s/(ζn log n), with

ζn =‖ M̃n ‖E , we have, by straightforward computation,∫
r/n≤|x|≤r

exp(αN | Mn | N
N−1 )dx

= wN−1rNζn log n
∫ ζ−1

n

0
exp[N log n(τ

N
N−1 − ζnτ)]dτ → wN−1rNas n → ∞

Finally, passing to limits, using (21) and the latter fact we obtain

(
αN

α0
)N−1 ≥ (β0 − ε)

ωN−1rN

N
{exp[d0αN ]− 1}

+(β0 − ε)wN−1rN ,

where d0 = lim infn→∞ dn is a nonnegative number. Thus,

(
αN

α0
)N−1 ≥ (β0 − ε)wN−1rN ,

which implies

β0 ≤ 1
rN

(
N

α0

)N−1
,

contradicting (16).

4. Proof of Theorem 1.1

In view of lemmas 2 and 3 we can apply the Mountain-Pass Theorem to
obtain a sequence (un) ⊂ E such that I(un) → c > 0 and I ′(un) → 0, that
is,

1
N

‖ un ‖N
E −

∫
RN

F (x, un)dx → c, as n → ∞,(22)

(23)
|
∫

RN

[
| ∇un |N−2 ∇un∇v − a(x) | un |N−2 unv

]
−
∫

RN
f(x, un)v |

≤ εn ‖ v ‖E ,

for all v ∈ E, where εn → 0 as n → ∞. Furthermore, by lemma 4, the level
c is less than 1

N (αN
α0

)N−1). From now on, we shall be working in order to
prove that (un) converges to a weak nontrivial solution u of problem (1).
From (22), (23) and (f2),

C + εn ‖ un ‖E ≥ (
µ

N
− 1) ‖ un ‖E −

∫
RN

(µF (x, un)− f(x, un)un)dx

≥ (
µ

N
− 1) ‖ un ‖N

E ,

which implies that

‖ un ‖E≤ C,

∫
RN

f(x, un)undx ≤ C,

∫
RN

F (x, un)dx ≤ C.

Now, using the same argument as in Proposition 2.1 of [15], in view of
Sobolev’s Theorem together with conditions (a1) − (a2), the Banach space
E is compactly immersed in Lq if N ≤ q < ∞, (cf. [3]). Therefore, up to
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subsequences, we have un ⇀ u weakly in E, un → u in Lq(RN ), ∀q ≥ N
and un(x) → u(x) almost everywhere in R

N . Moreover, arguing as in lemma
4 of [19], we get

(24)


f(x, un) → f(x, u) in L1(B(0, R)),
| ∇un |N−2 ∇un →| ∇u |N−2 ∇u

weakly in
(
LN/(N−1)(B(0, R))

)N
,

for all R > 0. Therefore, by (23), passing to the limit,∫
RN

(
| ∇u |N−2 ∇u∇ϕ − a(x) | u |N−2 uϕ

)
dx =

∫
RN

f(x, u)ϕdx

for all ϕ ∈ C∞
0 (RN ), that is, u is a weak solution of (1). Let us show that u

is nontrivial. Assume, by contradiction, that u ≡ 0. Using the Generalized
Lebesgue Dominated Convergence Theorem (cf. [20]), by (f3) and the first
result in (24), we conclude that F (x, un) → 0 in L1(B(0, R)), for all R > 0.
Thus, using (11), in view of Radial Lemma, we obtain F (x, un) → 0 in
L1(RN ). This together with (22) imply

lim
n→∞

∫
RN

| ∇un |N= Nc,(25)

and hence given ε > 0, we have ‖ ∇un ‖N
LN ≤ Nc+ ε, for large n. Using c <

1
N (αN

α0
)N−1 and choosing q > 1 sufficiently close to 1 and ε sufficiently small,

we obtain qα0 ‖ ∇un ‖
N

N−1
LN < αN . Hence, by the same kind of argument as

it has been done in the proof of lemma 1, we conclude that∫
RN

[
exp

(
α | un | N

N−1

)
− SN−2 (α, un)

]
≤ C, ∀n,

which, in combination with the Hölder inequality and (f1), implies that

lim
n→∞

∫
RN

| f(x, un) |q dx = 0.

Therefore, from (23) with v = un, we achieve

lim
n→∞

∫
RN

| ∇un |N= 0,

which contradicts (25) since c > 0. Thus, u is nontrivial and the proof of our
main result is complete.
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