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We estimate the growth of the meromorphic solutions of some complex 𝑞-difference equations and investigate the convergence
exponents of fixed points and zeros of the transcendental solutions of the second order 𝑞-difference equation. We also obtain a
theorem about the 𝑞-difference equation mixing with difference.

1. Introduction and Main Results

In this paper, we mainly use the basic notation of Nevanlinna
Theory, such as𝑇(𝑟, 𝑓),𝑁(𝑟, 𝑓), and𝑚(𝑟, 𝑓), and the notation
𝑆(𝑟, 𝑓) is defined to be any quantity satisfying 𝑆(𝑟, 𝑓) =

𝑜(𝑇(𝑟, 𝑓)) as 𝑟 → ∞ possibly outside a set of 𝑟 of finite linear
measure (see [1–3]). In addition, we use the notation 𝜌(𝑓)

to denote the order of growth of the meromorphic function
𝑓(𝑧) and 𝜆(𝑓) to denote the exponent of convergence of the
zeros. We also use the notation 𝜏(𝑓) to denote the exponent
of convergence of fixed points of 𝑓. We give the definition of
𝜏(𝑓) as following.

Definition 1. Let 𝑓 be a nonconstant meromorphic function.
The exponent of convergence of fixed points of 𝑓 is defined
by

𝜏 (𝑓) = lim sup
𝑟→∞

log𝑁(𝑟, 1/ (𝑓 − 𝑧))

log 𝑟
. (1)

Recently, a number of papers focused on complex differ-
ence equations, such as [4–6] and on difference analogues
of Nevanlinna’s theory, such as [7, 8]. Correspondingly, there
are many papers focused on the 𝑞-difference (or 𝑐-difference)
equations, such as [9–14].

Because of the intimate relations between iteration theory
and the functional equations of Schröder, Böttcher and Abel

and Bergweiler et al. [10] studied the following functional
equation

𝑛

∑

𝑗=0

𝑎
𝑗
(𝑧) 𝑓 (𝑞

𝑗

𝑧) = 𝑄(𝑧) , (2)

where 𝑞(0 < |𝑞| < 1) is a complex number and 𝑎
𝑗
(𝑧),

𝑗 = 0, 1, . . . , 𝑛 and 𝑄(𝑧) are rational functions, and 𝑎
0
(𝑧) ̸≡

0, 𝑎
𝑛
(𝑧) ≡ 1. They obtained the following two theorems.

Theorem A. All meromorphic solutions of (2) satisfy
𝑇(𝑟, 𝑓) = 𝑂((log 𝑟)2).

Theorem B. All transcendental meromorphic solutions of (2)
satisfy (log 𝑟)2 = 𝑂(𝑇(𝑟, 𝑓)).

What will happen if the right-hand side of (2) is a rational
function in 𝑓? That is, for the functional equation

𝑛

∑

𝑗=1

𝛾
𝑗
(𝑧) 𝑓 (𝑞

𝑗

𝑧) = 𝑅 (𝑧, 𝑓 (𝑧)) =
∑
𝑠

𝑖=0
𝛼
𝑖
(𝑧) 𝑓
𝑖

(𝑧)

∑
𝑡

𝑖=0
𝛽
𝑖
(𝑧) 𝑓𝑖 (𝑧)

, (3)

where 𝑞 (0 < |𝑞| < 1) is a complex number, 𝛼
𝑗
(𝑧) (𝑗 =

0, 1, . . . , 𝑠), 𝛼
𝑠
(𝑧) ̸≡ 0, 𝛽

𝑗
(𝑧) (𝑗 = 0, 1, . . . , 𝑡), 𝛽

𝑡
(𝑧) ̸≡ 0,

𝛾
𝑗
(𝑧) (𝑗 = 0, 1, . . . , 𝑛), and 𝛾

𝑛
= 1 are coefficients, and 𝑅(𝑧, 𝑓)

is irreducible in 𝑓. Gundersen et al. [12] studied the case that
𝑛 = 1 on the left-hand side of (3). Following the results in [12],
we continue to study the properties of the solutions of (3) in
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the case of 𝑛 > 1 on the left-hand side. In fact, we obtain the
following theorem.

Theorem 2. Suppose that 𝑓 is a nonconstant meromorphic
solution of equation of (3) and the coefficients are small
functions of 𝑓. Then, 𝑑 = max{𝑠, 𝑡} ≤ 𝑛 and 𝜌(𝑓) ≤

log(𝑛/𝑑)/(− log |𝑞|).

In particular, we concern the second-order 𝑞-difference
equation with rational coefficients, that is, in the case of
𝑛 = 2. From Theorem 2, we know that if 𝑓 is a nonconstant
meromorphic solution, then 𝑑 ≤ 2. Thus, the second-order
𝑞-difference equation is the following form:

𝑓 (𝑞
2

𝑧) + 𝛾
1
(𝑧) 𝑓 (𝑞𝑧)

=
𝛼
0
(𝑧) + 𝛼

1
(𝑧) 𝑓 (𝑧) + 𝛼

2
(𝑧) 𝑓
2

(𝑧)

𝛽
0
(𝑧) + 𝛽

1
(𝑧) 𝑓 (𝑧) + 𝛽

2
(𝑧) 𝑓2 (𝑧)

.

(4)

First of all, we give some remarks.

Remark 3. If 𝛼
2
(𝑧) and 𝛽

2
(𝑧) are not zero at the same time, by

Theorem 2, we derive that the solution of (4) is of order zero.

Remark 4. If 𝛼
2
(𝑧) = 𝛽

2
(𝑧) = 𝛽

1
(𝑧) ≡ 0, by Theorem A, the

solutions of (4) is also of order zero.

Remark 5. If 𝛼
2
(𝑧) = 𝛽

2
(𝑧) = 0, 𝛽

1
(𝑧) ̸= 0, by Theorem 2, the

order of the solutions is less than log(2)/(− log |𝑞|). Thus, a
question arises: does the equation have a solution which is of
order nonzero under this situation?This question is still open.

In [6], Chen and Shon proved some theorems about the
properties of solutions of the difference Painlevé I and II
equations, such as the exponents of convergence of fixed
points and the zeros of transcendental solutions. A natural
question arises: how about the exponents of convergence of
the fixed points and the zeros of transcendental solutions
of the 𝑞-difference equation (4)? Do the transcendental
solutions have infinitely many fixed points and zeros? The
following theorem, in which the coefficients are constants,
answers the above questions partly.

Theorem 6. Suppose that 𝑓 is a transcendental solution of the
equation

𝑓 (𝑞
2

𝑧) + 𝛾
1
𝑓 (𝑞𝑧) =

𝛼
0
+ 𝛼
1
𝑓 (𝑧) + 𝛼

2
𝑓
2

(𝑧)

𝛽
0
+ 𝛽
1
𝑓 (𝑧) + 𝛽

2
𝑓2 (𝑧)

, (5)

where |𝑞| < 1, the coefficients 𝛾
1
, 𝛼
0
, 𝛼
1
, 𝛼
2
, 𝛽
0
, 𝛽
1
, and 𝛽

2

are constants, and at least one of 𝛼
2
, 𝛽
2
is nonzero. Then,

𝜌(𝑓) = 0 and (i)𝑓 has infinitely many fixed points, and (ii)𝑓
has infinitely many zeros, whenever 𝛼

0
̸= 0.

In the rest of the paper, we consider (3) when |𝑞| > 1.
In [15], Heittokangas et al. considered the essential growth
problem for transcendental meromorphic solutions of com-
plex difference equations, which is to find lower bounds for
their characteristic functions. Following this idea, Zheng and
Chen [14] obtained the following theorem for 𝑞-difference
equations.

Theorem C. Suppose that 𝑓 is a transcendental solution of
equation

𝑛

∑

𝑗=1

𝑎
𝑗
(𝑧) 𝑓 (𝑞

𝑗

𝑧) = 𝑅 (𝑧, 𝑓 (𝑧)) =
𝑃 (𝑧, 𝑓 (𝑧))

𝑄 (𝑧, 𝑓 (𝑧))
, (6)

where 𝑞 ∈ C, |𝑞| > 1, the coefficients 𝑎
𝑗
(𝑧) are rational

functions, and 𝑃, 𝑄 are relatively prime polynomials in 𝑓 over
the field of rational functions satisfying 𝑝 = deg

𝑓
𝑃, 𝑡 = deg

𝑓
𝑄,

and 𝑑 = 𝑝 − 𝑡 ≥ 2. If 𝑓 has infinitely many poles, then for
sufficiently large 𝑟, 𝑛(𝑟, 𝑓) ≥ 𝐾𝑑

log 𝑟/(𝑛 log |𝑞|) holds for some
constant𝐾 > 0. Thus, the lower order of 𝑓, which has infinitely
many poles, satisfies 𝜇(𝑓) ≥ log 𝑑/(𝑛 log |𝑞|).

Regarding Theorem C, they obtained the lower bound of
the order of solutions. Then, how about the upper bound of
the order of the solutions? Can the conditions of Theorem C
become a little more simple? In fact, we have the following
theorem.

Theorem 7. Suppose that 𝑓 is a transcendental solution of
(3), where |𝑞| > 1, 𝑛 < 𝑑 = max{𝑠, 𝑡} and the coefficients
are rational functions. Then, log(𝑑/𝑛)/(𝑛 log |𝑞|) ≤ 𝜌(𝑓) ≤

log(𝑑 + 𝑛 − 1)/(log |𝑞|).

We know that the difference analogues and 𝑞-difference
analogues of Nevanlinna’s theory have been investigated.
Consequently, many results on the complex difference equa-
tions and 𝑞-difference equations have been obtained respec-
tively.Thus, mixing the difference and 𝑞-difference equations
together is a natural idea. The following Theorem 8 is just a
simple application of the above idea, and further investigation
is required.

In what follows, we will consider difference products and
difference polynomials. By a difference product, we mean a
difference monomial, that is, an expression of type

𝑠

∏

𝑗

𝑓(𝑧 + 𝑐
𝑗
)
𝑛𝑗
, (7)

where 𝑐
1
, . . . , 𝑐

𝑠
are complex numbers and 𝑛

1
, . . . , 𝑛

𝑠
are

natural numbers. A difference polynomial is a finite sum of
difference products, that is, an expression of the form

𝑃 (𝑧, 𝑓) = ∑

{𝐽}

𝑏
𝐽
(𝑧)(∏

𝑗∈𝐽

𝑓 (𝑧 + 𝑐
𝑗
)) , (8)

where 𝑐
𝑗
(𝑗 ∈ 𝐽) is a set of distinct complex numbers

and the coefficients 𝑏
𝐽
(𝑧) of difference polynomials are small

functions as understood in the usual the Nevanlinna theory;
that is, their characteristic is of type 𝑆(𝑟, 𝑓).

Theorem 8. Suppose that 𝑓 is a nonconstant meromorphic
solution of the equation

𝑛

∑

𝑖=1

𝑎
𝑖
(𝑧) 𝑓 (𝑞

𝑖

𝑧) = ∑

{𝐽}

𝑏
𝐽
(𝑧)(∏

𝑗∈𝐽

𝑓 (𝑧 + 𝑐
𝑗
)) , (9)



Abstract and Applied Analysis 3

where |𝑞| > 1 and the index set 𝐽 consists of 𝑚 elements and
the coefficients 𝑎

𝑖
(𝑧) (𝑎

𝑛
(𝑧) = 1) and 𝑏

𝐽
(𝑧) are small functions

of 𝑓. If 𝑓 is of finite order, then |𝑞| < 𝑛 + 𝑚 − 1.

2. Some Lemmas

The following important result by Valiron andMohon’ko will
be used frequently, one can find the proof in Laine’s book [16,
page 29].

Lemma 9. Let 𝑓 be a meromorphic function. Then, for all
irreducible rational function in 𝑓,

𝑅 (𝑧, 𝑓 (𝑧)) =

∑
𝑝

𝑗=0
𝑎
𝑗
(𝑧) 𝑓(𝑧)

𝑗

∑
𝑞

𝑗=0
𝑏
𝑗
(𝑧) 𝑓(𝑧)

𝑗
, (10)

with meromorphic coefficients 𝑎
𝑗
(𝑧), 𝑏
𝑗
(𝑧), the characteristic

function of 𝑅(𝑧, 𝑓(𝑧)) satisfies

𝑇 (𝑟, 𝑅 (𝑧, 𝑓 (𝑧))) = 𝑑𝑇 (𝑟, 𝑓) + 𝑂 (Ψ (𝑟)) , (11)

where 𝑑 = max{𝑝, 𝑞} and

Ψ(𝑟) = max
𝑖,𝑗

{𝑇 (𝑟, 𝑎
𝑗
) , 𝑇 (𝑟, 𝑏

𝑗
)} . (12)

In the particular case when

𝑇 (𝑟, 𝑎
𝑗
) = 𝑆 (𝑟, 𝑓) , 𝑗 = 0, 1, . . . , 𝑝,

𝑇 (𝑟, 𝑏
𝑗
) = 𝑆 (𝑟, 𝑓) , 𝑗 = 0, 1, . . . , 𝑞,

(13)

One has 𝑇(𝑟, 𝑅(𝑧, 𝑓(𝑧))) = 𝑑𝑇(𝑟, 𝑓) + 𝑆(𝑟, 𝑓).

The next lemma on the relationship between 𝑇(𝑟, 𝑓(𝑞𝑧))
and 𝑇(|𝑞|𝑟, 𝑓(𝑧)) is due to Bergweiler et al. [10, page 2].

Lemma 10. One case see that

𝑇 (𝑟, 𝑓 (𝑞𝑧)) = 𝑇 (
󵄨󵄨󵄨󵄨𝑞
󵄨󵄨󵄨󵄨 𝑟, 𝑓) + 𝑂 (1) (14)

holds for any meromorphic function 𝑓 and any constant 𝑞.

Lemma 11 (see [12]). Let Φ : (1,∞) → (0,∞) be a
monotone increasing function, and let 𝑓 be a nonconstant
meromorphic function. If for some real constant 𝛼 ∈ (0, 1),
there exist real constants 𝐾

1
> 0 and 𝐾

2
≥ 1 such that

𝑇 (𝑟, 𝑓) ≤ 𝐾
1
Φ (𝛼𝑟) + 𝐾

2
𝑇 (𝛼𝑟, 𝑓) + 𝑆 (𝛼𝑟, 𝑓) , (15)

then

𝜌 (𝑓) ≤
log𝐾
2

− log𝛼
+ lim sup
𝑟→∞

logΦ (𝑟)

log 𝑟
. (16)

Lemma 12 (see [9, Theorem 2.2]). Let 𝑓(𝑧) be a nonconstant
zero-order meromorphic solution of

𝑃 (𝑧, 𝑓) = 0, (17)

where 𝑃(𝑧, 𝑓) is a c-difference (or 𝑞-difference) equation in
𝑓(𝑧). If 𝑃(𝑧, 𝛼) ̸≡ 0, where 𝛼 is a zero-order meromorphic

function such that 𝑇(𝑟, 𝛼) = 𝑜(𝑇(𝑟, 𝑓)) on a set of logarithmic
density 1, and in particular, 𝛼 is a constant, then

𝑚(𝑟,
1

𝑓 − 𝛼
) = 𝑜 (𝑇 (𝑟, 𝑓)) , (18)

on a set of logarithmic density 1.

Lemma 13 (see [7]). Let𝑓 be ameromorphic function of finite
order, and let 𝑐 be a nonzero complex constant. Then one has

𝑚(𝑟,
𝑓 (𝑧 + 𝑐)

𝑓 (𝑧)
) + 𝑚(𝑟,

𝑓 (𝑧)

𝑓 (𝑧 + 𝑐)
) = 𝑆 (𝑟, 𝑓) . (19)

Lemma 14 (see [7]). Let𝑓 be ameromorphic function of finite
order 𝜌, and let 𝑐 is a nonzero complex constant.Then, for each
𝜀 > 0, one has

𝑇 (𝑟, 𝑓 (𝑧 + 𝑐)) = 𝑇 (𝑟, 𝑓) + 𝑂 (𝑟
𝜌−1+𝜀

) + 𝑂 (log 𝑟) . (20)

It is evident that 𝑆(𝑟, 𝑓(𝑧 + 𝑐)) = 𝑆(𝑟, 𝑓) from Lemma 14.
By (7), (8), and Lemmas 13 and 14, Laine and Yang

obtained the following lemma in [13].

Lemma 15. The characteristic function of a difference polyno-
mial 𝑃(𝑧, 𝑓) in (8) satisfies

𝑇 (𝑟, 𝑃 (𝑧, 𝑓)) ≤ 𝑛𝑇 (𝑟, 𝑓) + 𝑂 (𝑟
𝜌−1+𝜀

) + 𝑆 (𝑟, 𝑓) , (21)

provided that f is a meromorphic function of finite order 𝜌 and
the index set 𝐽 consists of n elements.

3. Proof of Theorems

Proof of Theorem 2. Set Φ(𝑟) = max
𝑖,𝑗,𝑘

{𝑇(𝑟, 𝛼
𝑖
(𝑧)), 𝑇(𝑟,

𝛽
𝑗
(𝑧)), 𝑇(𝑟, 𝛾

𝑘
(𝑧))} = 𝑆(𝑟, 𝑓). From (3) and Lemmas 9 and

10 and noting 0 < |𝑞| < 1, we immediately obtain

𝑇 (𝑟, 𝑅 (𝑧, 𝑓 (𝑧))) = 𝑑𝑇 (𝑟, 𝑓) + 𝑂 (Φ (𝑟))

= 𝑇(𝑟,

𝑛

∑

𝑗=1

𝛾
𝑗
(𝑧) 𝑓 (𝑞

𝑗

𝑧))

≤

𝑛

∑

𝑖=1

𝑇 (
󵄨󵄨󵄨󵄨𝑞
󵄨󵄨󵄨󵄨
𝑖

𝑟, 𝑓) + 𝑂 (Φ (𝑟))

≤ 𝑛𝑇 (
󵄨󵄨󵄨󵄨𝑞
󵄨󵄨󵄨󵄨 𝑟, 𝑓) + 𝑆 (𝑟, 𝑓)

≤ 𝑛𝑇 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓) ,

(22)

and so we have 𝑑 ≤ 𝑛. From (22), we have

𝑇 (𝑟, 𝑓) ≤
𝑛

𝑑
𝑇 (

󵄨󵄨󵄨󵄨𝑞
󵄨󵄨󵄨󵄨 𝑟, 𝑓) + 𝑆 (𝑟, 𝑓) . (23)

Since 𝑆(𝑟, 𝑓) = 𝑜(𝑇(𝑟, 𝑓)), we have

𝑇 (𝑟, 𝑓) ≤
𝑛

𝑑 (1 − 𝜀)
𝑇 (

󵄨󵄨󵄨󵄨𝑞
󵄨󵄨󵄨󵄨 𝑟, 𝑓) , (24)

for each 𝜀. From (24) and Lemma 11, we have 𝜌(𝑓) ≤

log(𝑛/𝑑)/(− log |𝑞|).
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Proof of Theorem 6. Assume that 𝑓(𝑧) is a transcendental
solution of (5). Since at least one of 𝛼

2
, 𝛽
2
is non-zero, by

Remark 3, we obtain that 𝜌(𝑓) = 0.
(I) Set 𝑔(𝑧) = 𝑓(𝑧) − 𝑧. Substituting 𝑓(𝑧) = 𝑔(𝑧) + 𝑧 into

(5), we obtain that

𝑔 (𝑞
2

𝑧) + 𝛾
1
𝑔 (𝑞𝑧) + 𝑞

2

𝑧 + 𝛾
1
𝑞𝑧

=
𝛼
0
+ 𝛼
1
𝑔 (𝑧) + 𝛼

1
𝑧 + 𝛼
2
(𝑔 (𝑧) + 𝑧)

2

𝛽
0
+ 𝛽
1
𝑔 (𝑧) + 𝛽

1
𝑧 + 𝛽
2
(𝑔 (𝑧) + 𝑧)

2
.

(25)

By (25), we may define

𝑃
1
(𝑧, 𝑔 (𝑧)) := (𝑔 (𝑞

2

𝑧) + 𝛾
1
𝑔 (𝑞𝑧) + 𝑞

2

𝑧 + 𝛾
1
𝑞𝑧)

× (𝛽
0
+ 𝛽
1
𝑔 (𝑧) + 𝛽

1
𝑧 + 𝛽
2
(𝑔 (𝑧) + 𝑧)

2

)

− 𝛼
0
+ 𝛼
1
𝑔 (𝑧) + 𝛼

1
𝑧 + 𝛼
2
(𝑔 (𝑧) + 𝑧)

2

.

(26)

By (26), we see that

𝑃
1
(𝑧, 0) = (𝑞

2

+ 𝑞𝛾
1
) 𝛽
2
𝑧
3

+ [(𝑞
2

+ 𝑞𝛾
1
) 𝛽
1
− 𝛼
2
] 𝑧
2

+ [(𝑞
2

+ 𝑞𝛾
1
) 𝛽
0
− 𝛼
1
] 𝑧 − 𝛼

0
.

(27)

Suppose that 𝑃
1
(𝑧, 0) ≡ 0, and we split into two cases. If

𝑞
2

+ 𝑞𝛾
1
= 0, then we obtain 𝛼

0
= 𝛼
1
= 𝛼
2
= 0. Thus,

the right-hand side of (5) is vanishing. This contradicts to
our assumption. If 𝑞2 + 𝑞𝛾

1
̸= 0, we obtain 𝛼

0
= 𝛽
2
= 0 and

𝛼
2
/𝛽
1
= 𝛼
1
/𝛽
0
= 𝑞
2

+ 𝑞𝛾
1
. Then, the right-hand side of (5)

becomes (𝑞2 +𝑞𝛾
1
)𝑓; this also contradicts to our assumption.

Thus, we have 𝑃
1
(𝑧, 0) ̸≡ 0. By Lemma 12, we obtain that

𝑚(𝑟,
1

𝑔
) = 𝑜 (𝑇 (𝑟, 𝑓)) , (28)

on a set of logarithmic density 1. Thus,

𝑁(𝑟,
1

𝑓 − 𝑧
) = 𝑁(𝑟,

1

𝑔
) = (1 − 𝑜 (1)) 𝑇 (𝑟, 𝑓) , (29)

on a set of logarithmic density 1. Hence, by (29), 𝑓 has
infinitely many fixed points and

𝜏 (𝑓) = 𝜆 (𝑔) = 𝜌 (𝑓) . (30)

(II) By (5), we derive that

𝑃
2
(𝑧, 𝑓) := [𝑓 (𝑞

2

𝑧) + 𝛾
1
𝑓 (𝑞𝑧)] [𝛽

0
+ 𝛽
1
𝑓 (𝑧) + 𝛽

2
𝑓
2

(𝑧)]

− [𝛼
0
+ 𝛼
1
𝑓 (𝑧) + 𝛼

2
𝑓
2

(𝑧)] .

(31)

By (31) and the assumption 𝛼
0

̸= 0, we obtain that

𝑃
2
(𝑧, 0) := 𝛼

0
̸≡ 0. (32)

By Lemma 12 and (32), we have

𝑚(𝑟,
1

𝑓
) = 𝑜 (𝑇 (𝑟, 𝑓)) , (33)

on a set of logarithmic density 1. Thus,

𝑁(𝑟,
1

𝑓
) = (1 − 𝑜 (1)) 𝑇 (𝑟, 𝑓) , (34)

on a set of logarithmic density 1. Hence, by (34), 𝑓 has
infinitely many zeros and

𝜆 (𝑓) = 𝜌 (𝑓) . (35)

Proof of Theorem 7. From (3), we have

𝑓 (𝑞
𝑛

𝑧) =
∑
𝑠

𝑖=0
𝛼
𝑖
(𝑧) 𝑓
𝑖

(𝑧)

∑
𝑡

𝑖=0
𝛽
𝑖
(𝑧) 𝑓𝑖 (𝑧)

−

𝑛−1

∑

𝑗=1

𝛾
𝑗
(𝑧) 𝑓 (𝑞

𝑗

𝑧) . (36)

By the properties of the Nevanlinna characteristic function
and Lemma 9, we have

𝑇 (𝑟, 𝑓 (𝑞
𝑛

𝑧)) ≤ 𝑑𝑇 (𝑟, 𝑓) +

𝑛−1

∑

𝑗=1

𝑇 (𝑟, 𝛾
𝑗
(𝑧) 𝑓 (𝑞

𝑗

𝑧))

+ 𝑂 (log 𝑟) .

(37)

By |𝑞| > 1 and Lemma 10, we obtain

𝑇 (
󵄨󵄨󵄨󵄨𝑞
󵄨󵄨󵄨󵄨
𝑛

𝑟, 𝑓 (𝑧)) ≤ 𝑑𝑇 (𝑟, 𝑓 (𝑧))

+

𝑛−1

∑

𝑗=1

𝑇 (
󵄨󵄨󵄨󵄨𝑞
󵄨󵄨󵄨󵄨
𝑗

𝑟, 𝑓 (𝑧)) + 𝑂 (log 𝑟)

≤ (𝑑 + 𝑛 − 1) 𝑇 (
󵄨󵄨󵄨󵄨𝑞
󵄨󵄨󵄨󵄨
𝑛−1

𝑟, 𝑓 (𝑧))

+ 𝑂 (log󵄨󵄨󵄨󵄨𝑞
󵄨󵄨󵄨󵄨
𝑛−1

𝑟) .

(38)

Setting 𝛼 = 1/|𝑞|, 𝑅 = |𝑞|
𝑛

𝑟, we have

𝑇(𝑅, 𝑓 (𝑧)) ≤ (𝑑 + 𝑛 − 1) 𝑇 (𝛼𝑅, 𝑓(𝑧)) + 𝑂(log𝛼𝑅) . (39)

Applying Lemma 11 to (39) yields

𝜌 (𝑓) ≤
log(𝑑 + 𝑛 − 1)

log󵄨󵄨󵄨󵄨𝑞
󵄨󵄨󵄨󵄨

. (40)

We now prove the lower bound of the order of the solutions.
From (3), by the properties of the Nevanlinna characteristic
function and Lemma 9, we have

𝑛

∑

𝑗=1

𝑇 (𝑟, 𝑓 (𝑞
𝑗

𝑧)) ≥ 𝑑𝑇 (𝑟, 𝑓) + 𝑂 (log 𝑟) . (41)

By Lemma 10 and noting |𝑞| > 1, we obtain

𝑇 (
󵄨󵄨󵄨󵄨𝑞
󵄨󵄨󵄨󵄨
𝑛

𝑟, 𝑓) ≥ 𝑘𝑇 (𝑟, 𝑓) + 𝑔 (𝑟) , (42)

where 𝑘 = 𝑑/𝑛 and |𝑔(𝑟)| < 𝐾 log 𝑟 for some 𝐾 and all 𝑟
greater than some 𝑟

0
. Hence, for 𝑟 > 𝑟

0
,

𝑇 (
󵄨󵄨󵄨󵄨𝑞
󵄨󵄨󵄨󵄨
𝑛𝑗

𝑟, 𝑓) ≥ 𝑘𝑇 (
󵄨󵄨󵄨󵄨𝑞
󵄨󵄨󵄨󵄨
𝑛(𝑗−1)

𝑟, 𝑓) + 𝑔 (
󵄨󵄨󵄨󵄨𝑞
󵄨󵄨󵄨󵄨
𝑛(𝑗−1)

𝑟)

≥ ⋅ ⋅ ⋅

≥ 𝑘
𝑗

𝑇 (𝑟, 𝑓) + 𝐸
𝑗
(𝑟) ,

(43)
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where
󵄨󵄨󵄨󵄨󵄨
𝐸
𝑗
(𝑟)
󵄨󵄨󵄨󵄨󵄨
=
󵄨󵄨󵄨󵄨󵄨󵄨
𝑘
𝑗−1

𝑔 (𝑟) + 𝑘
𝑗−2

𝑔 (
󵄨󵄨󵄨󵄨𝑞
󵄨󵄨󵄨󵄨
𝑛

𝑟) + ⋅ ⋅ ⋅ + 𝑔 (
󵄨󵄨󵄨󵄨𝑞
󵄨󵄨󵄨󵄨
𝑛(𝑗−1)

𝑟)
󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝐾𝑘
𝑗−1

𝑗−1

∑

𝑖=0

log 󵄨󵄨󵄨󵄨𝑞
󵄨󵄨󵄨󵄨
𝑛𝑖

𝑟

𝑘𝑖

≤ 𝐾𝑘
𝑗−1

(log 󵄨󵄨󵄨󵄨𝑞
󵄨󵄨󵄨󵄨
𝑛

∞

∑

𝑖=0

𝑖

𝑘𝑖
+ log 𝑟

∞

∑

𝑖=0

1

𝑘𝑖
) .

(44)

For 𝑟 sufficiently large and 𝑖, we note that since 𝑘 = 𝑑/𝑛 > 1,
the two series converge, and hence

󵄨󵄨󵄨󵄨󵄨
𝐸
𝑗
(𝑟)
󵄨󵄨󵄨󵄨󵄨
≤ 𝐶𝑘
𝑗 log 𝑟, (45)

where 𝐶 is a positive constant. Since 𝑓 is a transcendental
meromorphic function, we can choose 𝑟

0
sufficiently large

such that for all 𝑟 ≥ 𝑟
0
, by the increasing property of 𝑇(𝑟, 𝑓),

we have 𝑇(𝑟, 𝑓) ≥ 𝐶 log 𝑟 for some constant 𝐶. Hence, we get

𝑇 (
󵄨󵄨󵄨󵄨𝑞
󵄨󵄨󵄨󵄨
𝑛𝑗

𝑟, 𝑓) > 𝐶𝑘
𝑗 log 𝑟, (46)

for some constant 𝐶. By the definition of the order of 𝑓, we
have

𝜌 (𝑓) = lim sup
𝑗→∞, 𝑟→∞

log𝑇 (󵄨󵄨󵄨󵄨𝑞
󵄨󵄨󵄨󵄨
𝑛𝑗

𝑟, 𝑓)

log 󵄨󵄨󵄨󵄨𝑞
󵄨󵄨󵄨󵄨
𝑛𝑗

𝑟

≥
log𝐶 + 𝑗 log 𝑘 + log log 𝑟

𝑗𝑛 log 󵄨󵄨󵄨󵄨𝑞
󵄨󵄨󵄨󵄨 + log 𝑟

.

(47)

Sowe have 𝜌(𝑓) ≥ log(𝑑/𝑛)/(𝑛 log |𝑞|).Thus, we complete the
proof.

Proof of Theorem 8. Suppose that the order of 𝑓 is 𝜌 < ∞.
We rewrite (9) as

𝑓 (𝑞
𝑛

𝑧) = ∑

{𝐽}

𝑏
𝐽
(𝑧)(∏

𝑗∈𝐽

𝑓 (𝑧 + 𝑐
𝑗
)) −

𝑛−1

∑

𝑖=1

𝑎
𝑖
𝑧𝑓 (𝑞
𝑖

𝑧) . (48)

By the property of the Nevanlinna characteristic function, we
have

𝑇 (𝑟, 𝑓 (𝑞
𝑛

𝑧)) ≤ 𝑇(𝑟,∑

{𝐽}

𝑏
𝐽
(𝑧)(∏

𝑗∈𝐽

𝑓 (𝑧 + 𝑐
𝑗
)))

+

𝑛−1

∑

𝑖=1

𝑇 (𝑟, 𝑎
𝑖
(𝑧) 𝑓 (𝑞

𝑖

𝑧)) + 𝑂 (1) .

(49)

By Lemmas 10 and 15, we obtain

𝑇 (
󵄨󵄨󵄨󵄨𝑞
󵄨󵄨󵄨󵄨
𝑛

𝑟, 𝑓 (𝑧)) ≤ 𝑚𝑇 (𝑟, 𝑓 (𝑧)) +

𝑛−1

∑

𝑖

𝑇 (
󵄨󵄨󵄨󵄨𝑞
󵄨󵄨󵄨󵄨
𝑖

𝑟, 𝑓 (𝑧))

+ 𝑂 (𝑟
𝜌−1+𝜀

) + 𝑆 (𝑟, 𝑓) ,

(50)

for each 𝜀. Since |𝑞| > 1, we derive

𝑇 (
󵄨󵄨󵄨󵄨𝑞
󵄨󵄨󵄨󵄨
𝑛

𝑟, 𝑓 (𝑧)) ≤ (𝑚 + 𝑛 − 1) 𝑇 (
󵄨󵄨󵄨󵄨𝑞
󵄨󵄨󵄨󵄨
𝑛−1

𝑟, 𝑓 (𝑧))

+ 𝑂((
󵄨󵄨󵄨󵄨𝑞
󵄨󵄨󵄨󵄨
𝑛−1

𝑟)
𝜌−1+𝜀

) + 𝑆 (
󵄨󵄨󵄨󵄨𝑞
󵄨󵄨󵄨󵄨
𝑛−1

𝑟, 𝑓)

(51)

for each 𝜀. Setting 𝛼 = 1/|𝑞|, 𝑅 = |𝑞|
𝑛

𝑟, Φ(𝑅) = 𝑂((𝛼𝑅)
𝜌−1+𝜀

)

and applying Lemma 11 to (51), yield

𝜌 (𝑓) = 𝜌 ≤
log(𝑚 + 𝑛 − 1)

log 󵄨󵄨󵄨󵄨𝑞
󵄨󵄨󵄨󵄨

+ 𝜌 − 1 + 𝜀, (52)

for each 𝜀. Thus, we obtain
󵄨󵄨󵄨󵄨𝑞
󵄨󵄨󵄨󵄨 < 𝑚 + 𝑛 − 1. (53)
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