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Copyright © 2013 Josef Dibĺık et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Nonhomogeneous system of linear differential equations of second order with multiple different delays and pairwise permutable
matrices defining the linear parts is considered. Solution of corresponding initial value problem is represented using matrix
polynomials.

1. Introduction

Motivated by delayed exponential representing a solution
of a system of differential or difference equations with
one or multiple fixed or variable delays [1–6], which has
many applications in theory of controllability, asymptotic
properties, boundary-value problems, and so forth [3–5, 7–
15], we extended representation of a solution of a system of
differential equations of second order with delay [1]

�̈� (𝑡) = −𝐵

2
𝑥 (𝑡 − 𝜏)

(1)

to the case of two delays

�̈� (𝑡) = −𝐵

2

1
𝑥 (𝑡 − 𝜏

1
) − 𝐵

2

2
𝑥 (𝑡 − 𝜏

2
) , (2)

where the linear partswere given by permutablematrices [16].
Equations (1), (2), and the below-stated (11) with 𝑓 ≡ 0 are
generalizations of the scalar equation

�̈� (𝑡) = −𝑏

2
𝑥 (𝑡)

(3)

representing linear oscillator, to 𝑁-dimensional space with
one ormultiple fixed delays. Clearly, each solution of the latter
equation is oscillating whenever 0 ̸= 𝑏 ∈ R. Analogically,
(1) with 𝑥 ∈ R𝑁 can have at least one oscillating solution
whenever 𝑁 is odd. Indeed, if 𝐵 is 𝑁 × 𝑁 matrix, 𝑁 ≥ 3 is
odd, and 𝐵 has a simple real nonzero eigenvalue 𝜆, then there
exists a regular matrix 𝑆 such that 𝑆−1𝐵𝑆 = 𝐽 = ( 𝜆 0

0 𝐽
) where

̃

𝐽 is (𝑁 − 1) × (𝑁 − 1)matrix. On letting 𝑥 = 𝑆𝑦, one gets

̈𝑦 = −𝐽

2
𝑦 (𝑡 − 𝜏)

(4)

or rewrites as the system

̈𝑦

1
= −𝜆

2
𝑦

1
(𝑡 − 𝜏) ,

̈𝑦

2
= −

̃

𝐽

2
𝑦

2
(𝑡 − 𝜏) ,

(5)

where 𝑦 = (𝑦

1
, 𝑦

2
) ∈ R × R𝑁−1. Note that the first

column V of 𝑆 is the eigenvector of 𝐵 corresponding to 𝜆.
Clearly, if solution 𝑦

1
of (5) is oscillating, then solution 𝑦 of

(4) is oscillating in the first coordinate whenever its initial



2 Abstract and Applied Analysis

condition satisfies {𝑦(𝑡) | 𝑡 ∈ [−𝜏, 0]} ⊂ R × {0}
𝑁−1.

Consequently, solution 𝑥 of (1) is oscillating in span{V}
whenever {𝑥(𝑡) | 𝑡 ∈ [−𝜏, 0]} ⊂ span{V}. Taking 𝑦

1
(𝑡) = 𝑒

𝜇𝑡,
one obtains characteristic equation 𝜇2 = −𝜆2𝑒−𝜇𝜏 of (5),
which has solutions 𝜇

1,2
= 𝛼 ± 𝚤𝛽 ∈ C with 𝛽 ̸= 0. Thus, 𝑦

1

is oscillating.
On the other hand, there can exist a nonoscillating

solution of the system (1) whenever 𝑥 ∈ R𝑁 and 𝑁 is even.
For instance, if𝑁 = 2 and 𝐵 = ( 0 1

−1 0
), then (1) has the form

�̈� (𝑡) = 𝑥 (𝑡 − 𝜏) (6)

with 𝑥 ∈ R2, which, obviously, does not have an oscillating
solution satisfying nonoscillating initial condition. Similarly,
it can be shown that system with odd dimension can possess
a nonoscillating solution satisfying an appropriate initial
condition.

For simplicity, we call the generalizations (1), (2), and (11)
with 𝑓 ≡ 0, of scalar equation (3), oscillating although their
solutions do not always have to be oscillating. Nevertheless, at
the end of this paper, in Corollary 8 we state the representa-
tion of a solution ofmore general system (86) without squares
of matrices.

We note that the delayed matrix exponential from [1–5]
as well as the representation of a solution of second-order
differential equations derived in [1, 16] and in this paper can
lead to new results in nonlinear boundary value problems for
impulsive functional differential equations considered in [17]
or stochastic delayed differential equations from [18].

So, in the present paper, we extend our result from
[16] to three and more delays by the assumption of pair-
wise permutable matrices defining linear parts. By such an
assumption, we are able to constructmatrix functions solving
homogeneous system of differential equations of second
order with any number of fixed delays, and, consequently,
we use these functions to represent a solution of the cor-
responding nonhomogeneous initial value problem. As will
be shown in the next sections, extending from two to more
delays brings many technical difficulties, for example, the
use of multinomial coefficients. Naturally, the results of the
present paper hold with one or two different delays as well.
However, these cases can by studied in a simpler way, which
was already done in [1, 16]. Thus, we focus our attention on
the case of three and more different delays.

First, we recall our result from [16].

Theorem 1. Let 𝜏
1
, 𝜏

2
> 0, 𝜏 := max{𝜏

1
, 𝜏

2
}, and 𝜑 ∈

𝐶

1
([−𝜏, 0],R𝑁). Let𝐵

1
, 𝐵

2
be𝑁×𝑁 permutablematrices; that

is,𝐵
1
𝐵

2
= 𝐵

2
𝐵

1
, and let𝑓 : [0,∞) → R𝑁 be a given function.

Solution 𝑥(𝑡) of

�̈� (𝑡) = −𝐵

2
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𝑥 (𝑡 − 𝜏

1
) − 𝐵

2

2
𝑥 (𝑡 − 𝜏

2
) + 𝑓 (𝑡)

(7)

satisfying initial condition

𝑥 (𝑡) = 𝜑 (𝑡) ,

�̇� (𝑡) = �̇� (𝑡) ,

−𝜏 ≤ 𝑡 ≤ 0 (8)

has the form
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{
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{

{

{

{

{
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{
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{
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{

{
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𝜑 (𝑡) , −𝜏 ≤ 𝑡 < 0,

X (𝑡) 𝜑 (0) +Y (𝑡) �̇� (0)

−𝐵
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∫
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2

2
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2
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2
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+∫

𝑡

0

Y (𝑡 − 𝑠) 𝑓 (𝑠) 𝑑𝑠, 0 ≤ 𝑡,

(9)

where

X (𝑡) = X
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2
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2

𝜏
1
,𝜏
2

(𝑡)

:= ∑
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1
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2
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𝑖 + 𝑗

𝑖

) 𝐵
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1
𝐵

2𝑗

2
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1
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2
)

2(𝑖+𝑗)

(2 (𝑖 + 𝑗))!

,

Y (𝑡) = Y
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2
)
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(2 (𝑖 + 𝑗) + 1)!

.

(10)

We will denote Θ and 𝐸 the 𝑁 × 𝑁 zero and identity
matrix, respectively.

2. Systems with Multiple Delays

In this section, we derive the representation of a solution of

�̈� (𝑡) = −𝐵

2

1
𝑥 (𝑡 − 𝜏

1
) − ⋅ ⋅ ⋅ − 𝐵

2

𝑛
𝑥 (𝑡 − 𝜏

𝑛
) + 𝑓 (𝑡)

(11)

satisfying the initial condition (8), where 𝑛 ≥ 3, 𝜏
1
, . . . , 𝜏

𝑛
> 0,

𝜏 := max
𝑖=1,...,𝑛

𝜏

𝑖
, 𝐵
1
, . . . , 𝐵

𝑛
are 𝑁 × 𝑁 pairwise permutable

matrices; that is, 𝐵
𝑖
𝐵

𝑗
= 𝐵

𝑗
𝐵

𝑖
for each 𝑖, 𝑗 ∈ {1, . . . , 𝑛}, 𝜑 ∈

𝐶

1
([−𝜏, 0],R𝑁), and 𝑓 : [0,∞) → R𝑁 are given functions.

The solution 𝑥(𝑡) will be represented using matrix functions
analogical to (10) and will be stated in Section 3.We note that
the same problems with 𝑛 = 1, 2 were studied in [1, 16].

From now on, we assume the property of empty sum and
empty product; that is,

∑

𝑖∈0

𝑓 (𝑖) = 0, ∑

𝑖∈0

𝐹 (𝑖) = Θ,

∏

𝑖∈0

𝑓 (𝑖) = 1, ∏

𝑖∈0

𝐹 (𝑖) = 𝐸

(12)

for any function 𝑓 and matrix function 𝐹, whether they are
defined or not for indicated argument.
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We recall that (𝑗
1
, . . . , 𝑗

𝑛
)! is amultinomial coefficient [19]

given by

(𝑗

1
, . . . , 𝑗

𝑛
)! =

(𝑗

1
+ ⋅ ⋅ ⋅ + 𝑗

𝑛
)!

𝑗

1
! ⋅ ⋅ ⋅ 𝑗

𝑛
!

. (13)

Note that if 𝑛 = 2, then (𝑗
1
, 𝑗

2
) = (

𝑗
1
+𝑗
2

𝑗
1

) and (20) coincides
with (10).

We will need a property of multinomial coefficients
described in the next lemma.

Lemma 2. Let 𝑛 ≥ 2 be fixed. Then

(𝑖
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1
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𝑛
≥ 1.

Proof. If 𝑛 = 2, then the statement follows from the property
of binomial coefficients:

(𝑖

1
, 𝑖

2
)! = (

𝑖

1
+ 𝑖

2

𝑖

1

) = (

𝑖

1
+ 𝑖

2
− 1

𝑖

1
− 1

) + (

𝑖

1
+ 𝑖

2
− 1

𝑖

1

)

= (𝑖

1
− 1, 𝑖

2
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Let the statement be true for 𝑛 − 1. Next, we use the property
of multinomial coefficient
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with inductive hypothesis to derive
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Clearly, from (16), we get
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Applying the case 𝑛 = 2 (property of binomial coefficient)
and (16), we get

(𝑖

1
+ 𝑖

2
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3
, . . . , 𝑖

𝑛
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Putting (18) and (19) in (17), we obtain that the statement
holds for 𝑛 and the proof is complete.

In further work, we write ({𝑗 | 𝑗 ∈ 𝑀})! for the
multinomial coefficient of elements of the finite set 𝑀, and
(𝑖, {𝑗 | 𝑗 ∈ 𝑀})! for the multinomial coefficient of 𝑖 and
elements of the finite set𝑀; for example, if𝑀 = {1, 2}, then
(𝑎, {𝑗 | 𝑗 ∈ 𝑀})! = (𝑎, 1, 2)!. For the completeness, we define
({𝑗 | 𝑗 ∈ 0})! := 1.
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for any 𝑡 ∈ R.
Wewill need functionsX𝐵

2

𝜏
,Y𝐵

2

𝜏
: R → 𝐿(R𝑁) for 𝜏 > 0

and𝑁 ×𝑁 complex matrix 𝐵 (cf. [16]) defined as

X
𝐵
2

𝜏
(𝑡) := ∑

𝑖≥0

𝑖𝜏≤𝑡

(−1)

𝑖
𝐵

2𝑖 (𝑡 − 𝑖𝜏)
2𝑖

(2𝑖)!

,

Y
𝐵
2

𝜏
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𝑖≥0

𝑖𝜏≤𝑡

(−1)

𝑖
𝐵

2𝑖 (𝑡 − 𝑖𝜏)
2𝑖+1
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(21)

with the properties

̇X
𝐵
2

𝜏
(𝑡) = −𝐵

2
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𝐵
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𝜏
(𝑡 − 𝜏) ,
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(𝑡) = −𝐵
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𝐵
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̇Y
𝐵
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𝜏
(𝑡) = X
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2
Y
𝐵
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(𝑡 − 𝜏)

(22)

for any 𝑡 ∈ R, considering the one-sided derivatives at −𝜏, 0.
Some of properties of functionsX𝐵

2

1
,...,𝐵
2

𝑛

𝜏
1
,...,𝜏
𝑛

andY𝐵
2

1
,...,𝐵
2

𝑛

𝜏
1
,...,𝜏
𝑛

are
concluded in Lemma 4, but to prove it we will need the next
lemma.

Lemma 3. Let 𝑛 ≥ 1 and 𝜏
1
, . . . , 𝜏

𝑛
> 0. Let 𝐵

1
, . . . , 𝐵

𝑛
be

𝑁 × 𝑁 pairwise permutable matrices, that is, 𝐵
𝑖
𝐵

𝑗
= 𝐵

𝑗
𝐵

𝑖
for

each 𝑖, 𝑗 ∈ {1, . . . , 𝑛}. Then for any 𝑡 ∈ R,

X
𝐵
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1
,...,𝐵
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𝑛

𝜏
1
,...,𝜏
𝑛

(𝑡) = ∑

𝑀⊂{1,...,𝑛}

𝑆

𝑀
(𝑡) ,

Y
𝐵
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1
,...𝐵
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𝑛

𝜏
1
,...,𝜏
𝑛

(𝑡) = ∑

𝑀⊂{1,...,𝑛}

̃

𝑆

𝑀
(𝑡) ,

(23)
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where the sums are taken over all subsets of {1, . . . , 𝑛} including
the trivial ones, and

𝑆

𝑀
(𝑡) := ∑

𝑗
𝑖
≥1,𝑖∈𝑀

∑
𝑖∈𝑀
𝑗
𝑖
𝜏
𝑖
≤𝑡
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∑
𝑖∈𝑀
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𝑖
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𝑗
𝑖
≥1,𝑖∈𝑀

∑
𝑖∈𝑀
𝑗
𝑖
𝜏
𝑖
≤𝑡

(−1)

∑
𝑖∈𝑀
𝑗
𝑖
({𝑗

𝑖
| 𝑖 ∈ 𝑀})!

× ∏

𝑖∈𝑀

𝐵

2𝑗
𝑖

𝑖

(𝑡 − ∑

𝑖∈𝑀
𝑗

𝑖
𝜏

𝑖
)

2∑
𝑖∈𝑀
𝑗
𝑖
+1

(2∑

𝑖∈𝑀
𝑗

𝑖
+ 1)!

.

(25)

Proof. Denote N
0
, N the set of all nonnegative, positive

integers, respectively; that is, N
0
= {0} ∪ N. Thus, we have

the trivial identity

N
0
× ⋅ ⋅ ⋅ × N

0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛

= ({0} × N
0
× ⋅ ⋅ ⋅ × N

0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛−1

) ∪ (N × N
0
× ⋅ ⋅ ⋅ × N

0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛−1

)

= ⋅ ⋅ ⋅ = ⋃

𝑀
1
,...,𝑀
𝑛
∈{{0},N}

𝑀

1
× ⋅ ⋅ ⋅ × 𝑀

𝑛
.

(26)

Analogically, for any 𝑡 ∈ R each 𝑛-tuple 𝑗
1
, . . . , 𝑗

𝑛
≥ 0

such that ∑𝑛
𝑖=1
𝑗

𝑖
𝜏

𝑖
≤ 𝑡 can be divided in two distinct sets of

𝑖-s so that 𝑗
𝑖
≥ 1 if 𝑖 ∈ 𝑀 ⊂ {1, . . . , 𝑛} and 𝑗

𝑖
= 0 if 𝑖 ∈

{1, . . . , 𝑛} \ 𝑀. That is,𝑀 denotes the set of all indices 𝑖 such
that 𝑗
𝑖
= 0. Moreover, ∑𝑛

𝑖=1
𝑗

𝑖
𝜏

𝑖
= ∑

𝑖∈𝑀
𝑗

𝑖
𝜏

𝑖
. Accordingly, we

can write

{(𝑗

1
, . . . , 𝑗

𝑛
) ∈ N
𝑛

0
|

𝑛

∑

𝑖=1

𝑗

𝑖
𝜏

𝑖
≤ 𝑡}

= ⋃

𝑀⊂{1,...,𝑛}

{ (𝑗

1
, . . . , 𝑗

𝑛
) ∈ N
𝑛

0
|

𝑗

𝑖
= 0 ∀𝑖 ∉ 𝑀, ∑

𝑖∈𝑀

𝑗

𝑖
𝜏

𝑖
≤ 𝑡} ,

(27)

where the union is taken over all subsets of {1, . . . , 𝑛}
including the trivial ones. So, in the view of definition (20),
the statement forX𝐵

2

1
,...,𝐵
2

𝑛

𝜏
1
,...,𝜏
𝑛

follows.
Statement forY𝐵

2

1
,...,𝐵
2

𝑛

𝜏
1
,...,𝜏
𝑛

can be proved in a similar way.

Lemma 4. Let 𝑛 ≥ 3 and 𝜏
1
, . . . , 𝜏

𝑛
> 0. Let 𝐵

1
, . . . , 𝐵

𝑛
be

𝑁 × 𝑁 pairwise permutable matrices; that is, 𝐵
𝑖
𝐵

𝑗
= 𝐵

𝑗
𝐵

𝑖
for

each 𝑖, 𝑗 ∈ {1, . . . , 𝑛}. Then the following holds for any 𝑡 ∈ R:

(1) if 𝐵
𝑖
= Θ for some 𝑖 ∈ {1, . . . , 𝑛}, then

X
𝐵
2

1
,...,𝐵
2

𝑖−1
,𝐵
2

𝑖
,𝐵
2

𝑖+1
,...,𝐵
2

𝑛

𝜏
1
,...,𝜏
𝑖−1
,𝜏
𝑖
,𝜏
𝑖+1
,...,𝜏
𝑛

(𝑡) = X
𝐵
2

1
,...,𝐵
2

𝑖−1
,𝐵
2

𝑖+1
,...,𝐵
2

𝑛

𝜏
1
,...,𝜏
𝑖−1
,𝜏
𝑖+1
,...,𝜏
𝑛

(𝑡) ,
(28)

(2) if 𝜏
𝑖
= 𝜏

𝑘
for 𝑖 < 𝑘, 𝑖, 𝑘 ∈ {1, . . . , 𝑛}, then

X
𝐵
2

1
,...,𝐵
2

𝑖−1
,𝐵
2

𝑖
,𝐵
2

𝑖+1
,...,𝐵
2

𝑘−1
,𝐵
2

𝑘
,𝐵
2

𝑘+1
,...,𝐵
2

𝑛

𝜏
1
,...,𝜏
𝑖−1
,𝜏
𝑖
,𝜏
𝑖+1
,...,𝜏
𝑘−1
,𝜏
𝑘
,𝜏
𝑘+1
,...,𝜏
𝑛

(𝑡)

= X
𝐵
2

1
,...,𝐵
2

𝑖−1
,𝐵
2

𝑖
+𝐵
2

𝑘
,𝐵
2

𝑖+1
,...,𝐵
2

𝑘−1
,𝐵
2

𝑘+1
,...,𝐵
2

𝑛

𝜏
1
,...,𝜏
𝑖−1
,𝜏
𝑖
,𝜏
𝑖+1
,...,𝜏
𝑘−1
,𝜏
𝑘+1
,...,𝜏
𝑛

(𝑡) ,

(29)

(3) for any bijective mapping 𝜎 : {1, . . . , 𝑛} → {1, . . . , 𝑛}

we get

X
𝐵
2

1
,...,𝐵
2

𝑛

𝜏
1
,...,𝜏
𝑛

(𝑡) = X
𝐵
2

𝜎(1)
,...,𝐵
2

𝜎(𝑛)

𝜏
𝜎(1)
,...,𝜏
𝜎(𝑛)
(𝑡) ,

(30)

(4) taking the one-sided derivatives at 0, 𝜏
1
, . . . , 𝜏

𝑛
, then

̈X
𝐵
2

1
,...,𝐵
2

𝑛

𝜏
1
,...,𝜏
𝑛

(𝑡) = −𝐵

2

1
X
𝐵
2

1
,...,𝐵
2

𝑛

𝜏
1
,...,𝜏
𝑛

(𝑡 − 𝜏

1
)

− ⋅ ⋅ ⋅ − 𝐵

2

𝑛
X
𝐵
2

1
,...,𝐵
2

𝑛

𝜏
1
,...,𝜏
𝑛

(𝑡 − 𝜏

𝑛
) ,

(31)

(5) considering the one-sided derivatives at 0 (they both
equal Θ), then

̇Y
𝐵
2

1
,...,𝐵
2

𝑛

𝜏
1
,...,𝜏
𝑛

(𝑡) = X
𝐵
2

1
,...,𝐵
2

𝑛

𝜏
1
,...,𝜏
𝑛

(𝑡) .
(32)

Statements (1)–(4) hold withY instead ofX.

Proof. Statement (1) follows easily fromdefinition ofX𝐵
2

1
,...,𝐵
2

𝑛

𝜏
1
,...,𝜏
𝑛

,
because Θ2𝑖 = 𝐸 if 𝑖 = 0 and Θ2𝑖 = Θ whenever 𝑖 > 0. Next, if
𝜏

𝑖
= 𝜏

𝑘
, then

∑

𝑗
1
,...,𝑗
𝑛
≥0

𝑗
1
𝜏
1
+⋅⋅⋅+𝑗

𝑛
𝜏
𝑛
≤𝑡

𝐹 (𝑗

1
, . . . , 𝑗

𝑛
)

= ∑

𝑗
1
,...,𝑗
𝑖−1
,𝑙,𝑗
𝑖+1
,...,𝑗
𝑘−1
,𝑗
𝑘+1
,...,𝑗
𝑛
≥0

𝑗
1
𝜏
1
+⋅⋅⋅+𝑗

𝑖−1
𝜏
𝑖−1
+𝑙𝜏
𝑖
+𝑗
𝑖+1
𝜏
𝑖+1

+⋅⋅⋅+𝑗
𝑘−1
𝜏
𝑘−1
+𝑗
𝑘+1
𝜏
𝑘+1
+⋅⋅⋅+𝑗

𝑛
𝜏
𝑛
≤𝑡

∑

𝑗
𝑖
,𝑗
𝑘
≥0

𝑗
𝑖
+𝑗
𝑘
=𝑙

𝐹 (𝑗

1
, . . . , 𝑗

𝑛
)

(33)

for any matrix function 𝐹. Thus, using the property of
multinomial coefficient (see (16))

(𝑗

1
, . . . , 𝑗

𝑛
)!

= (𝑗

1
, . . . , 𝑗

𝑖−1
, 𝑗

𝑖
+ 𝑗

𝑘
, 𝑗

𝑖+1
, . . . , 𝑗

𝑘−1
, 𝑗

𝑘+1
, . . . , 𝑗

𝑛
)! (𝑗

𝑖
, 𝑗

𝑘
)!,

(34)
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for (2), we obtain

X
𝐵
2

1
,...,𝐵
2

𝑛

𝜏
1
,...,𝜏
𝑛

(𝑡)

= ∑

𝑗
1
,...,𝑗
𝑖−1
,𝑙,𝑗
𝑖+1
,...,𝑗
𝑘−1
,𝑗
𝑘+1
,...,𝑗
𝑛
≥0

𝑗
1
𝜏
1
+⋅⋅⋅+𝑗

𝑖−1
𝜏
𝑖−1
+𝑙𝜏
𝑖
+𝑗
𝑖+1
𝜏
𝑖+1

+⋅⋅⋅+𝑗
𝑘−1
𝜏
𝑘−1
+𝑗
𝑘+1
𝜏
𝑘+1
+⋅⋅⋅+𝑗

𝑛
𝜏
𝑛
≤𝑡

(−1)

∑
𝑠∈{1,...,𝑛}

𝑠 ̸= 𝑖,𝑘

𝑗
𝑠
+𝑙

× (𝑗

1
, . . . , 𝑗

𝑖−1
, 𝑙, 𝑗

𝑖+1
, . . . , 𝑗

𝑘−1
, 𝑗

𝑘+1
, . . . , 𝑗

𝑛
)!

×( ∑

𝑗
𝑖
,𝑗
𝑘
≥0

𝑗
𝑖
+𝑗
𝑘
=𝑙

(𝑗

𝑖
, 𝑗

𝑘
)!𝐵

2𝑗
𝑖

𝑖
𝐵

2𝑗
𝑘

𝑘
)

× ∏

𝑠∈{1,...,𝑛}

𝑠 ̸= 𝑖,𝑘

𝐵

2𝑗
𝑠

𝑠

(𝑡 − ∑ 𝑠∈{1,...,𝑛}

𝑠 ̸= 𝑖,𝑘

∑𝑗

𝑠
𝜏

𝑠
− 𝑙𝜏

𝑖
)

2(∑
𝑠∈{1,...,𝑛}

𝑠 ̸= 𝑖,𝑘

𝑗
𝑠
+𝑙)

(2(∑ 𝑠∈{1,...,𝑛}

𝑠 ̸= 𝑖,𝑘

∑𝑗

𝑠
+ 𝑙))!

= ∑

𝑗
1
,...,𝑗
𝑖−1
,𝑙,𝑗
𝑖+1
,...,𝑗
𝑘−1
,𝑗
𝑘+1
,...,𝑗
𝑛
≥0

𝑗
1
𝜏
1
+⋅⋅⋅+𝑗

𝑖−1
𝜏
𝑖−1
+𝑙𝜏
𝑖
+𝑗
𝑖+1
𝜏
𝑖+1

+⋅⋅⋅+𝑗
𝑘−1
𝜏
𝑘−1
+𝑗
𝑘+1
𝜏
𝑘+1
+⋅⋅⋅+𝑗

𝑛
𝜏
𝑛
≤𝑡

(−1)

∑
𝑠∈{1,...,𝑛}

𝑠 ̸= 𝑖,𝑘

𝑗
𝑠
+𝑙

× (𝑗

1
, . . . , 𝑗

𝑖−1
, 𝑙, 𝑗

𝑖+1
, . . . , 𝑗

𝑘−1
, 𝑗

𝑘+1
, . . . , 𝑗

𝑛
)!(𝐵

2

𝑖
+ 𝐵

2

𝑘
)

𝑙

× ∏

𝑠∈{1,...,𝑛}

𝑠 ̸= 𝑖,𝑘

𝐵

2𝑗
𝑠

𝑠

(𝑡 − ∑ 𝑠∈{1,...,𝑛}

𝑠 ̸= 𝑖,𝑘

∑𝑗

𝑠
𝜏

𝑠
− 𝑙𝜏

𝑖
)

2(∑
𝑠∈{1,...,𝑛}

𝑠 ̸= 𝑖,𝑘

𝑗
𝑠
+𝑙)

(2(∑ 𝑠∈{1,...,𝑛}

𝑠 ̸= 𝑖,𝑘

∑𝑗

𝑠
+ 𝑙))!

= X
𝐵
2

1
,...,𝐵
2

𝑖−1
,𝐵
2

𝑖
+𝐵
2

𝑘
,𝐵
2

𝑖+1
,...,𝐵
2

𝑘−1
,𝐵
2

𝑘+1
,...,𝐵
2

𝑛

𝜏
1
,...,𝜏
𝑖−1
,𝜏
𝑖
,𝜏
𝑖+1
,...,𝜏
𝑘−1
,𝜏
𝑘+1
,...,𝜏
𝑛

(𝑡) .

(35)

Property (3) is trivial.
Now, we prove the statement (4). If 𝜏 := 𝜏

1
= ⋅ ⋅ ⋅ = 𝜏

𝑛
,

then

̈X
𝐵
2

1
,...,𝐵
2

𝑛

𝜏
1
,...,𝜏
𝑛

(𝑡) =

̈X
𝐵
2

1
+⋅⋅⋅+𝐵

2

𝑛

𝜏
(𝑡)

= − (𝐵

2

1
+ ⋅ ⋅ ⋅ + 𝐵

2

𝑛
)X
𝐵
2

1
+⋅⋅⋅+𝐵

2

𝑛

𝜏
(𝑡 − 𝜏)

= −𝐵

2

1
X
𝐵
2

1
,...,𝐵
2

𝑛

𝜏
1
,...,𝜏
𝑛

(𝑡 − 𝜏

1
)

− ⋅ ⋅ ⋅ − 𝐵

2

𝑛
X
𝐵
2

1
,...,𝐵
2

𝑛

𝜏
1
,...,𝜏
𝑛

(𝑡 − 𝜏

𝑛
)

(36)

by (2) and from the property ofX𝐵
2

1
+⋅⋅⋅+𝐵

2

𝑛

𝜏
(𝑡) (see (22)).

Hence, without any loss of generality, we assume that
𝜏

𝑖
̸= 𝜏

𝑗
for each 𝑖 ̸= 𝑗, 𝑖, 𝑗 ∈ {1, . . . , 𝑛} (in the other case, we

collect matrices as stated in (2)). Note the case 𝑛 = 2 was
proved in [16, Lemma 2.3.] Now, assume that X𝐵

2

1
,...,𝐵
2

𝑛−1

𝜏
1
,...,𝜏
𝑛−1

(𝑡)

solves

�̈� (𝑡) = −𝐵

2

1
𝑥 (𝑡 − 𝜏

1
) − ⋅ ⋅ ⋅ − 𝐵

2

𝑛−1
𝑥 (𝑡 − 𝜏

𝑛−1
) , (37)

that is, that the statement is fulfilled for 𝑛 − 1 different delays.

Let 𝜏
𝑘
:= max

𝑖=1,...,𝑛
𝜏

𝑖
. If 𝑡 < 𝜏

𝑘
, then 𝑡 − 𝜏

𝑘
< 0, that is,

X
𝐵
2

1
,...,𝐵
2

𝑛

𝜏
1
,...,𝜏
𝑛

(𝑡 − 𝜏

𝑘
) = Θ,

(38)

and from definition (20) it holds

X
𝐵
2

1
,...,𝐵
2

𝑛

𝜏
1
,...,𝜏
𝑛

(𝑡) = X
𝐵
2

1
,...,𝐵
2

𝑘−1
,𝐵
2

𝑘+1
,...,𝐵
2

𝑛

𝜏
1
,...,𝜏
𝑘−1
,𝜏
𝑘+1
,...,𝜏
𝑛

(𝑡)
(39)

for such 𝑡. Consequently,

̈X
𝐵
2

1
,...,𝐵
2

𝑛

𝜏
1
,...,𝜏
𝑛

(𝑡) =

̈X
𝐵
2

1
,...,𝐵
2

𝑘−1
,𝐵
2

𝑘+1
,...,𝐵
2

𝑛

𝜏
1
,...,𝜏
𝑘−1
,𝜏
𝑘+1
,...,𝜏
𝑛

(𝑡)

= − ∑

𝑖=1,...,𝑛

𝑖 ̸= 𝑘

𝐵

2

𝑖
X
𝐵
2

1
,...,𝐵
2

𝑘−1
,𝐵
2

𝑘+1
,...,𝐵
2

𝑛

𝜏
1
,...,𝜏
𝑘−1
,𝜏
𝑘+1
,...,𝜏
𝑛

(𝑡 − 𝜏

𝑖
)

= −

𝑛

∑

𝑖=1

𝐵

2

𝑖
X
𝐵
2

1
,...,𝐵
2

𝑛

𝜏
1
,...,𝜏
𝑛

(𝑡 − 𝜏

𝑖
)

(40)

by the inductive hypothesis.
Now, let 𝑡 ≥ max

𝑖=1,...,𝑛
𝜏

𝑖
. Applying Lemma 3, we get

X
𝐵
2

1
,...,𝐵
2

𝑛

𝜏
1
,...,𝜏
𝑛

(𝑡) = ∑

𝑀⊂{1,...,𝑛}

𝑆

𝑀
(𝑡) (41)

with 𝑆
𝑀
(𝑡) given by (24) and the sum taken over all subsets

of {1, . . . , 𝑛} including the trivial ones. Note that

𝑆

0
(𝑡) = ∑

𝑗
𝑖
≥1,𝑖∈0

0≤𝑡

(−1)

0
({𝑗

𝑖
| 𝑖 ∈ 0})!𝐸

(𝑡 − 0)

0

0!

= ∑

0≤𝑡

𝐸 = 𝐸𝜒

[0,∞)
(𝑡)

(42)

with a characteristic function 𝜒
�̃�
of a set ̃𝑀 given by

𝜒

�̃�
(𝑡) = {

1, 𝑡 ∈

̃

𝑀,

0, 𝑡 ∉

̃

𝑀.

(43)

Since each𝑀 ⊂ {1, . . . , 𝑛} is a finite set, Lemma 2 yields

({𝑗

𝑖
| 𝑖 ∈ 𝑀})! = ∑

𝑖∈𝑀

(𝑗

𝑖
− 1, {𝑗

𝑘
| 𝑘 ∈ 𝑀 \ {𝑖}})!. (44)

We apply this identity to derive a formula for the second
derivative of 𝑆

𝑀
for any 0 ̸=𝑀 ⊂ {1, . . . , 𝑛}:

𝑆

󸀠󸀠

𝑀
(𝑡)

= ∑

𝑗
𝑖
≥1,𝑖∈𝑀

∑
𝑖∈𝑀
𝑗
𝑖
𝜏
𝑖
≤𝑡

(−1)

∑
𝑖∈𝑀
𝑗
𝑖
({𝑗

𝑖
| 𝑖 ∈ 𝑀})!

× ∏

𝑖∈𝑀

𝐵

2𝑗
𝑖

𝑖

(𝑡 − ∑

𝑖∈𝑀
𝑗

𝑖
𝜏

𝑖
)

2(∑
𝑖∈𝑀
𝑗
𝑖
−1)

(2 (∑

𝑖∈𝑀
𝑗

𝑖
− 1))!

= ∑

𝑖∈𝑀

∑

𝑗
𝑘
≥1,𝑘∈𝑀

∑
𝑘∈𝑀
𝑗
𝑘
𝜏
𝑘
≤𝑡

(−1)

∑
𝑘∈𝑀
𝑗
𝑘
(𝑗

𝑖
− 1, {𝑗

𝑘
| 𝑘 ∈ 𝑀 \ {𝑖}})!

×∏

𝑘∈𝑀

𝐵

2𝑗
𝑘

𝑘

(𝑡 − 𝜏

𝑖
− ∑

𝑘∈𝑀\{𝑖}
𝑗

𝑘
𝜏

𝑘
− (𝑗

𝑖
− 1) 𝜏

𝑖
)

2(∑
𝑘∈𝑀
𝑗
𝑘
−1)

(2 (∑

𝑘∈𝑀
𝑗

𝑘
− 1))!

.

(45)
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Next, for any fixed 𝑖 ∈ {1, . . . , 𝑛} we split the second sum to
𝑗

𝑖
= 1 and 𝑗

𝑖
≥ 2, that is,

∑

𝑗
𝑘
≥1,𝑘∈𝑀

∑
𝑘∈𝑀
𝑗
𝑘
𝜏
𝑘
≤𝑡

𝐹 (𝑗

1
, . . . , 𝑗

𝑖−1
, 𝑗

𝑖
, 𝑗

𝑖+1
, . . . , 𝑗

𝑛
)

= ∑

𝑗
𝑘
≥1,𝑘∈𝑀\{𝑖}

∑
𝑘∈𝑀\{𝑖}
𝑗
𝑘
𝜏
𝑘
≤𝑡−𝜏
𝑖

𝐹 (𝑗

1
, . . . , 𝑗

𝑖−1
, 1, 𝑗

𝑖+1
, . . . , 𝑗

𝑛
)

+ ∑

𝑗
𝑘
≥1,𝑘∈𝑀\{𝑖}

𝑗
𝑖
≥2

∑
𝑘∈𝑀
𝑗
𝑘
𝜏
𝑘
≤𝑡

𝐹 (𝑗

1
, . . . , 𝑗

𝑖−1
, 𝑗

𝑖
, 𝑗

𝑖+1
, . . . , 𝑗

𝑛
) ,

(46)

and use the equality

∑

𝑗
𝑘
≥1,𝑘∈𝑀\{𝑖}

𝑗
𝑖
≥2

∑
𝑘∈𝑀
𝑗
𝑘
𝜏
𝑘
≤𝑡

𝐹 (𝑗

1
, . . . , 𝑗

𝑖−1
, 𝑗

𝑖
, 𝑗

𝑖+1
, . . . , 𝑗

𝑛
)

= ∑

𝑗
𝑘
≥1,𝑘∈𝑀

∑
𝑘∈𝑀
𝑗
𝑘
𝜏
𝑘
≤𝑡−𝜏
𝑖

𝐹 (𝑗

1
, . . . , 𝑗

𝑖−1
, 𝑗

𝑖
+ 1, 𝑗

𝑖+1
, . . . , 𝑗

𝑛
)

(47)

since
∑

𝑘∈𝑀

𝑗

𝑘
𝜏

𝑘
≤ 𝑡 ⇐⇒ ∑

𝑘∈𝑀\{𝑖}

𝑗

𝑘
𝜏

𝑘
+ (𝑗

𝑖
− 1) 𝜏

𝑖
≤ 𝑡 − 𝜏

𝑖
. (48)

So we obtain
𝑆

󸀠󸀠

𝑀
(𝑡) = −∑

𝑖∈𝑀

𝐵

2

𝑖
(𝑆

𝑀\{𝑖}
(𝑡 − 𝜏

𝑖
) + 𝑆

𝑀
(𝑡 − 𝜏

𝑖
)) (49)

for each 0 ̸=𝑀 ⊂ {1, . . . , 𝑛}. Obviously, 𝑆󸀠󸀠
0
(𝑡) = Θ.

Consequently,

̈X
𝐵
2

1
,...,𝐵
2

𝑛

𝜏
1
,...,𝜏
𝑛

(𝑡)

= − ∑

0 ̸=𝑀⊂{1,...,𝑛}

∑

𝑖∈𝑀

𝐵

2

𝑖
(𝑆

𝑀\{𝑖}
(𝑡 − 𝜏

𝑖
) + 𝑆

𝑀
(𝑡 − 𝜏

𝑖
))

= − ∑

0 ̸=𝑀⊂{1,...,𝑛}

∑

𝑖∈𝑀

𝐵

2

𝑖
𝑆

𝑀\{𝑖}
(𝑡 − 𝜏

𝑖
)

− ∑

0 ̸=𝑀⊂{1,...,𝑛}

∑

𝑖∈𝑀

𝐵

2

𝑖
𝑆

𝑀
(𝑡 − 𝜏

𝑖
) .

(50)
Now, we add and subtract

∑

0 ̸=𝑀⊂{1,...,𝑛}

∑

𝑖∉𝑀

𝐵

2

𝑖
𝑆

𝑀
(𝑡 − 𝜏

𝑖
) (51)

to the right-hand side of (50) to get

̈X
𝐵
2

1
,...,𝐵
2

𝑛

𝜏
1
,...,𝜏
𝑛

(𝑡)

= − ∑

0 ̸=𝑀⊂{1,...,𝑛}

𝑛

∑

𝑖=1

𝐵

2

𝑖
𝑆

𝑀
(𝑡 − 𝜏

𝑖
)

+ ∑

0 ̸=𝑀⊂{1,...,𝑛}

∑

𝑖∉𝑀

𝐵

2

𝑖
𝑆

𝑀
(𝑡 − 𝜏

𝑖
)

− ∑

0 ̸=𝑀⊂{1,...,𝑛}

∑

𝑖∈𝑀

𝐵

2

𝑖
𝑆

𝑀\{𝑖}
(𝑡 − 𝜏

𝑖
)

(52)

and apply𝑀 = 𝑀 \ {𝑖} whenever 𝑖 ∉ 𝑀:

̈X
𝐵
2

1
,...,𝐵
2

𝑛

𝜏
1
,...,𝜏
𝑛

(𝑡)

= − ∑

0 ̸=𝑀⊂{1,...,𝑛}

𝑛

∑

𝑖=1

𝐵

2

𝑖
𝑆

𝑀
(𝑡 − 𝜏

𝑖
)

+ ∑

0 ̸=𝑀⊂{1,...,𝑛}

∑

𝑖∉𝑀

𝐵

2

𝑖
𝑆

𝑀\{𝑖}
(𝑡 − 𝜏

𝑖
)

− ∑

0 ̸=𝑀⊂{1,...,𝑛}

∑

𝑖∈𝑀

𝐵

2

𝑖
𝑆

𝑀\{𝑖}
(𝑡 − 𝜏

𝑖
) .

(53)

Denoting #𝑀 the number of elements of the set𝑀, we split
the last two terms of the right-hand side of the latter equality
with respect to

∑

0 ̸=𝑀⊂{1,...,𝑛}

= ∑

𝑀⊂{1,...,𝑛}

1≤#𝑀≤𝑛−1

+ ∑

𝑀⊂{1,...,𝑛}

#𝑀=𝑛

= ∑

𝑀⊂{1,...,𝑛}

#𝑀=1

+ ∑

𝑀⊂{1,...,𝑛}

2≤#𝑀≤𝑛

.

(54)

Hence, we have

∑

0 ̸=𝑀⊂{1,...,𝑛}

∑

𝑖∉𝑀

𝐵

2

𝑖
𝑆

𝑀\{𝑖}
(𝑡 − 𝜏

𝑖
)

− ∑

0 ̸=𝑀⊂{1,...,𝑛}

∑

𝑖∈𝑀

𝐵

2

𝑖
𝑆

𝑀\{𝑖}
(𝑡 − 𝜏

𝑖
)

= ∑

𝑀⊂{1,...,𝑛}

1≤#𝑀≤𝑛−1

∑

𝑖∉𝑀

𝐵

2

𝑖
𝑆

𝑀\{𝑖}
(𝑡 − 𝜏

𝑖
)

+ ∑

𝑀={1,...,𝑛}

∑

𝑖∉𝑀

𝐵

2

𝑖
𝑆

𝑀\{𝑖}
(𝑡 − 𝜏

𝑖
)

− ∑

𝑀∈{{1},...,{𝑛}}

∑

𝑖∈𝑀

𝐵

2

𝑖
𝑆

𝑀\{𝑖}
(𝑡 − 𝜏

𝑖
)

− ∑

𝑀⊂{1,...,𝑛}

2≤#𝑀≤𝑛

∑

𝑖∈𝑀

𝐵

2

𝑖
𝑆

𝑀\{𝑖}
(𝑡 − 𝜏

𝑖
) .

(55)

Now, we show that

∑

𝑀⊂{1,...,𝑛}

1≤#𝑀≤𝑛−1

∑

𝑖∉𝑀

𝐵

2

𝑖
𝑆

𝑀\{𝑖}
(𝑡 − 𝜏

𝑖
)

= ∑

𝑀⊂{1,...,𝑛}

2≤#𝑀≤𝑛

∑

𝑖∈𝑀

𝐵

2

𝑖
𝑆

𝑀\{𝑖}
(𝑡 − 𝜏

𝑖
) .

(56)

Let𝑀 ⊂ {1, . . . , 𝑛}, and let 𝑖 ∉ 𝑀 be arbitrary and fixed such
that 1 ≤ #𝑀 ≤ 𝑛 − 1. Then, clearly,

𝐵

𝑖
𝑆

𝑀\{𝑖}
(𝑡 − 𝜏

𝑖
) = 𝐵

𝑖
𝑆

(𝑀∪{𝑖})\{𝑖}
(𝑡 − 𝜏

𝑖
) (57)

and 2 ≤ #(𝑀 ∪ {𝑖}) ≤ 𝑛, 𝑖 ∈ 𝑀 ∪ {𝑖}. Moreover, if𝑀
1
,𝑀

2
⊂

{1, . . . , 𝑛}, 𝑖 ∉ 𝑀
1,2

are such that𝑀
1
̸=𝑀

2
, 1 ≤ #𝑀

1,2
≤ 𝑛 − 1,

then𝑀
1
∪ {𝑖} ̸=𝑀

2
∪ {𝑖}.



Abstract and Applied Analysis 7

On the other side, if𝑀 ⊂ {1, . . . , 𝑛}, 𝑖 ∈ 𝑀 are arbitrary
and fixed such that 2 ≤ #𝑀 ≤ 𝑛, then

𝐵

𝑖
𝑆

𝑀\{𝑖}
(𝑡 − 𝜏

𝑖
) = 𝐵

𝑖
𝑆

(𝑀\{𝑖})\{𝑖}
(𝑡 − 𝜏

𝑖
) (58)

and 1 ≤ #(𝑀 \ {𝑖}) ≤ 𝑛 − 1, 𝑖 ∉ 𝑀 \ {𝑖}. Furthermore, if
𝑀

1
,𝑀

2
⊂ {1, . . . , 𝑛}, 𝑖 ∈ 𝑀

1,2
are such that 𝑀

1
̸=𝑀

2
, 2 ≤

#𝑀
1,2
≤ 𝑛, then,𝑀

1
\ {𝑖} ̸=𝑀

2
\ {𝑖}. In conclusion, there is

1−1 correspondence between the terms on the left-hand side
of (56) and the terms on the right-hand side. So (56) is valid.

Putting (56) in (55) we obtain

∑

0 ̸=𝑀⊂{1,...,𝑛}

∑

𝑖∉𝑀

𝐵

2

𝑖
𝑆

𝑀\{𝑖}
(𝑡 − 𝜏

𝑖
)

− ∑

0 ̸=𝑀⊂{1,...,𝑛}

∑

𝑖∈𝑀

𝐵

2

𝑖
𝑆

𝑀\{𝑖}
(𝑡 − 𝜏

𝑖
)

= ∑

𝑀={1,...,𝑛}

∑

𝑖∉𝑀

𝐵

2

𝑖
𝑆

𝑀\{𝑖}
(𝑡 − 𝜏

𝑖
)

− ∑

𝑀∈{{1},...,{𝑛}}

∑

𝑖∈𝑀

𝐵

2

𝑖
𝑆

𝑀{𝑖}
(𝑡 − 𝜏

𝑖
) .

(59)

Next, by the property of empty sum, we get

∑

𝑀={1,...,𝑛}

∑

𝑖∉𝑀

𝐵

2

𝑖
𝑆

𝑀\{𝑖}
(𝑡 − 𝜏

𝑖
) = ∑

𝑀={1,...,𝑛}

Θ = Θ. (60)

Moreover, it holds

∑

𝑀∈{{1},...,{𝑛}}

∑

𝑖∈𝑀

𝐵

2

𝑖
𝑆

𝑀\{𝑖}
(𝑡 − 𝜏

𝑖
)

=

𝑛

∑

𝑖=1

𝐵

2

𝑖
𝑆

0
(𝑡 − 𝜏

𝑖
) = ∑

𝑀=0

𝑛

∑

𝑖=1

𝐵

2

𝑖
𝑆

𝑀
(𝑡 − 𝜏

𝑖
) .

(61)

Therefore, putting (60) and (61) in (59) and the result in (53),
we obtain

̈X
𝐵
2

1
,...,𝐵
2

𝑛

𝜏
1
,...,𝜏
𝑛

(𝑡) = − ∑

0 ̸=𝑀⊂{1,...,𝑛}

𝑛

∑

𝑖=1

𝐵

2

𝑖
𝑆

𝑀
(𝑡 − 𝜏

𝑖
)

− ∑

𝑀=0

𝑛

∑

𝑖=1

𝐵

2

𝑖
𝑆

𝑀
(𝑡 − 𝜏

𝑖
)

= −

𝑛

∑

𝑖=1

𝐵

2

𝑖
∑

𝑀⊂{1,...,𝑛}

𝑆

𝑀
(𝑡 − 𝜏

𝑖
)

= −

𝑛

∑

𝑖=1

𝐵

2

𝑖
X
𝐵
2

1
,...,𝐵
2

𝑛

𝜏
1
,...,𝜏
𝑛

(𝑡 − 𝜏

𝑖
) .

(62)

Hence, X𝐵
2

1
,...,𝐵
2

𝑛

𝜏
1
,...,𝜏
𝑛

(𝑡) solves (31) for all 𝑡 ≥ 0. Clearly, the same
is true for 𝑡 < 0.

For Y𝐵
2

1
,...,𝐵
2

𝑛

𝜏
1
,...,𝜏
𝑛

(𝑡), statements (1)–(3) can be proved as for
X𝐵
2

1
,...,𝐵
2

𝑛

𝜏
1
,...,𝜏
𝑛

(𝑡). Next, if 𝜏 := 𝜏
1
= ⋅ ⋅ ⋅ = 𝜏

𝑛
, we apply the point (2)

of this lemma and property (22) forY𝐵
2

1
+⋅⋅⋅+𝐵

2

𝑛

𝜏
(𝑡) to see that

̈Y
𝐵
2

1
,...,𝐵
2

𝑛

𝜏
1
,...,𝜏
𝑛

(𝑡) =

̈Y
𝐵
2

1
+⋅⋅⋅+𝐵

2

𝑛

𝜏
(𝑡)

= − (𝐵

2

1
+ ⋅ ⋅ ⋅ + 𝐵

2

𝑛
)Y
𝐵
2

1
+⋅⋅⋅+𝐵

2

𝑛

𝜏
(𝑡 − 𝜏)

= −𝐵

2

1
Y
𝐵
2

1
,...,𝐵
2

𝑛

𝜏
1
,...,𝜏
𝑛

(𝑡 − 𝜏

1
)

− ⋅ ⋅ ⋅ − 𝐵

2

𝑛
Y
𝐵
2

1
,...,𝐵
2

𝑛

𝜏
1
,...,𝜏
𝑛

(𝑡 − 𝜏

𝑛
) .

(63)

So, Y𝐵
2

1
,...,𝐵
2

𝑛

𝜏
1
,...,𝜏
𝑛

(𝑡) is a solution of (31) when all delays are the
same.

Again, the case 𝑛 = 2 with different delays was proved
in [16]; thus, we assume that the statement is fulfilled for 𝑛 −
1, 𝑛 ≥ 3 and that 𝜏

𝑖
̸= 𝜏

𝑗
for each 𝑖 ̸= 𝑗, 𝑖, 𝑗 ∈ {1, . . . , 𝑛}. As

before, if 𝑡 < 𝜏
𝑘
and 𝜏
𝑘
:= max

𝑖=1,...,𝑛
𝜏

𝑖
, then

Y
𝐵
2

1
,...,𝐵
2

𝑛

𝜏
1
,...,𝜏
𝑛

(𝑡) = Y
𝐵
2

1
,...,𝐵
2

𝑘−1
,𝐵
2

𝑘+1
,...,𝐵
2

𝑛

𝜏
1
,...,𝜏
𝑘−1
,𝜏
𝑘+1
,...,𝜏
𝑛

(𝑡)
(64)

by definition (20), and the statement follows from the
inductive hypothesis. For 𝑡 ≥ max

𝑖=1,...,𝑛
𝜏

𝑖
, we apply Lemma 3

to see that

Y
𝐵
2

1
,...,𝐵
2

𝑛

𝜏
1
,...,𝜏
𝑛

(𝑡) = ∑

𝑀⊂{1,...,𝑛}

̃

𝑆

𝑀
(𝑡) (65)

with ̃𝑆
𝑀
(𝑡) given by (25). This time

𝑆

0
(𝑡) = ∑

𝑗
𝑖
≥1,𝑖∈0

0≤𝑡

(−1)

0
({𝑗

𝑖
| 𝑖 ∈ 0})!𝐸

(𝑡 − 0)

1

0!

= ∑

0≤𝑡

𝐸𝑡 = 𝑡𝐸𝜒

[0,∞)
(𝑡)

(66)

and 𝑆󸀠󸀠
0
(𝑡) = Θ. The rest proceeds analogically toX𝐵

2

1
,...,𝐵
2

𝑛

𝜏
1
,...,𝜏
𝑛

(𝑡).
The final statement follows directly from definition (20).

Remark 5. Another proof of statements (1)–(3) of the pre-
vious lemma can be made with the aid of statement (4)
of the same lemma and uses the uniqueness of a solution
of the corresponding initial value problem. For instance in
statement (1) of the lemma, both

X
𝐵
2

1
,...,𝐵
2

𝑛

𝜏
1
,...,𝜏
𝑛

(𝑡) , X
𝐵
2

1
,...,𝐵
2

𝑖−1
,𝐵
2

𝑖+1
,...,𝐵
2

𝑛

𝜏
1
,...,𝜏
𝑖−1
,𝜏
𝑖+1
,...,𝜏
𝑛

(𝑡)
(67)

solve
�̈� (𝑡) = − 𝐵

2

1
𝑥 (𝑡 − 𝜏

1
) − ⋅ ⋅ ⋅ − 𝐵

2

𝑖−1
𝑥 (𝑡 − 𝜏

𝑖−1
)

− 𝐵

2

𝑖+1
𝑥 (𝑡 − 𝜏

𝑖+1
) − ⋅ ⋅ ⋅ − 𝐵

2

𝑛
𝑥 (𝑡 − 𝜏

𝑛
)

(68)

with initial condition

𝑥 (𝑡) = {

Θ, −𝜏 ≤ 𝑡 < 0,

𝐸, 𝑡 = 0,

�̇� (𝑡) = Θ, −𝜏 ≤ 𝑡 ≤ 0 (69)

and 𝜏 = max
𝑖=1,...,𝑛

𝜏

𝑖
.

We are ready to state and prove our main result.
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3. Main Result

Here we find a solution of the initial value problem (11), (8)
in the sense of the next definition.

Definition 6. Let 𝜏
1
, . . . , 𝜏

𝑛
> 0, 𝜏 := max

𝑖=1,...,𝑛
𝜏

𝑖
, and 𝜑 ∈

𝐶

1
([−𝜏, 0],R𝑁), and let 𝐵

1
, . . . , 𝐵

𝑛
be 𝑁 × 𝑁 matrices, and

let 𝑓 : [0,∞) → R𝑁 be a given function. Function 𝑥 :
[−𝜏,∞) → R𝑁 is a solution of (11) and initial condition
(8), if 𝑥 ∈ 𝐶1([−𝜏,∞),R𝑁) ∩ 𝐶2([0,∞),R𝑁) (taken the
second right-hand derivative at 0) satisfies (11) on [0,∞) and
condition (8) on [−𝜏, 0].

Theorem 7. Let 𝑛 ≥ 3, 𝜏
1
, . . . , 𝜏

𝑛
> 0, 𝜏 := max

𝑖=1,...,𝑛
𝜏

𝑖
, and

𝜑 ∈ 𝐶

1
([−𝜏, 0],R𝑁), and let 𝐵

1
, . . . , 𝐵

𝑛
be 𝑁 × 𝑁 pairwise

permutable matrices; that is, 𝐵
𝑖
𝐵

𝑗
= 𝐵

𝑗
𝐵

𝑖
for each 𝑖, 𝑗 ∈

{1, . . . , 𝑛}, and let 𝑓 : [0,∞) → R𝑁 be a given function.
Solution 𝑥(𝑡) of (11) satisfying initial condition (8) has the form

𝑥 (𝑡) =

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

𝜑 (𝑡) , −𝜏 ≤ 𝑡 < 0,

X (𝑡) 𝜑 (0) +Y (𝑡) �̇� (0)

−

𝑛

∑

𝑖=1

𝐵

2

𝑖
∫

0

−𝜏
𝑖

Y (𝑡 − 𝜏
𝑖
− 𝑠) 𝜑 (𝑠) 𝑑𝑠

+∫

𝑡

0

Y (𝑡 − 𝑠) 𝑓 (𝑠) 𝑑𝑠, 0 ≤ 𝑡,

(70)

whereX(𝑡) = X𝐵
2

1
,...,𝐵
2

𝑛

𝜏
1
,...,𝜏
𝑛

(𝑡) andY(𝑡) = Y𝐵
2

1
,...,𝐵
2

𝑛

𝜏
1
,...,𝜏
𝑛

(𝑡).

Proof. Obviously,𝑥(𝑡) satisfies the initial condition on [−𝜏, 0),
and, from definition (20), 𝑥(0) = 𝜑(0). For the derivative, it
holds lim

𝑡→0
− �̇�(𝑡) = �̇�(0). Moreover, if 0 ≤ 𝑡 < min

𝑖=1,...,𝑛
𝜏

𝑖
,

then
𝑥 (𝑡) = 𝜑 (0) + 𝑡�̇� (0)

−

𝑛

∑

𝑖=1

𝐵

2

𝑖
∫

𝑡−𝜏
𝑖

−𝜏
𝑖

(𝑡 − 𝜏

𝑖
− 𝑠) 𝜑 (𝑠) 𝑑𝑠

+ ∫

𝑡

0

(𝑡 − 𝑠) 𝑓 (𝑠) 𝑑𝑠

(71)

since

Y (𝑡 − 𝜏
𝑖
− 𝑠) = {

(𝑡 − 𝜏

𝑖
− 𝑠) 𝐸, 𝑠 ∈ [−𝜏

𝑖
, 𝑡 − 𝜏

𝑖
] ,

Θ, 𝑠 ∈ (𝑡 − 𝜏

𝑖
, 0]

(72)

for each 𝑖 = 1, . . . , 𝑛. Thus

�̇� (𝑡) = �̇� (0) −

𝑛

∑

𝑖=1

𝐵

2

𝑖
∫

𝑡−𝜏
𝑖

−𝜏
𝑖

𝜑 (𝑠) 𝑑𝑠 + ∫

𝑡

0

𝑓 (𝑠) 𝑑𝑠 (73)

and lim
𝑡→0
+ �̇�(𝑡) = �̇�(0). Clearly,

𝑥 ∈ 𝐶

1
((−𝜏,∞) ,R

𝑁
) ∩ 𝐶

2
((0,∞) \ {𝜏

1
, . . . , 𝜏

𝑛
} ,R
𝑁
) .

(74)

We show that, although X(𝑡) is not 𝐶2 at 𝜏
1
, . . . , 𝜏

𝑛
,

function 𝑥(𝑡) is 𝐶2 at these points and, therefore, in (0,∞).
At once, we prove that 𝑥(𝑡) is a solution of (11).

Assume that 0 ≤ 𝑡 < min
𝑖=1,...,𝑛

𝜏

𝑖
. Then identities (71) and

(73) are valid, and by differentiating (73) for such 𝑡 we get

�̈� (𝑡) = −

𝑛

∑

𝑖=1

𝐵

2

𝑖
𝜑 (𝑡 − 𝜏

𝑖
) + 𝑓 (𝑡) = −

𝑛

∑

𝑖=1

𝐵

2

𝑖
𝑥 (𝑡 − 𝜏

𝑖
) + 𝑓 (𝑡)

(75)

since 𝑥(𝑡 − 𝜏
𝑖
) = 𝜑(𝑡 − 𝜏

𝑖
) for each 𝑖 = 1, . . . , 𝑛.

Now, let 0 ̸=𝑀
1,2
⊂ {1, . . . , 𝑛} be such that 𝜏

𝑖
≤ 𝑡 < 𝜏

𝑗
for

each 𝑖 ∈ 𝑀
1
, 𝑗 ∈ 𝑀

2
. Then

Y (𝑡 − 𝜏
𝑗
− 𝑠) = {

Y (𝑡 − 𝜏
𝑗
− 𝑠) , 𝑠 ∈ [−𝜏

𝑗
, 𝑡 − 𝜏

𝑗
] ,

Θ, 𝑠 ∈ (𝑡 − 𝜏

𝑗
, 0]

(76)

whenever 𝑗 ∈ 𝑀
2
, and (70) becomes

𝑥 (𝑡) = X (𝑡) 𝜑 (0) +Y (𝑡) �̇� (0)

− ∑

𝑖∈𝑀
1

𝐵

2

𝑖
∫

0

−𝜏
𝑖

Y (𝑡 − 𝜏
𝑖
− 𝑠) 𝜑 (𝑠) 𝑑𝑠

− ∑

𝑗∈𝑀
2

𝐵

2

𝑗
∫

𝑡−𝜏
𝑗

−𝜏
𝑗

Y (𝑡 − 𝜏
𝑗
− 𝑠) 𝜑 (𝑠) 𝑑𝑠

+ ∫

𝑡

0

Y (𝑡 − 𝑠) 𝑓 (𝑠) 𝑑𝑠.

(77)

By the point (5) of Lemma 4, we get

�̇� (𝑡) =

̇X (𝑡) 𝜑 (0) + ̇Y (𝑡) �̇� (0)

− ∑

𝑖∈𝑀
1

𝐵

2

𝑖
∫

0

−𝜏
𝑖

̇Y (𝑡 − 𝜏
𝑖
− 𝑠) 𝜑 (𝑠) 𝑑𝑠

− ∑

𝑗∈𝑀
2

𝐵

2

𝑗
∫

𝑡−𝜏
𝑗

−𝜏
𝑗

X (𝑡 − 𝜏
𝑗
− 𝑠) 𝜑 (𝑠) 𝑑𝑠

+ ∫

𝑡

0

X (𝑡 − 𝑠) 𝑓 (𝑠) 𝑑𝑠,

(78)

and for the second derivative it holds

�̈� (𝑡) =

̈X (𝑡) 𝜑 (0) + ̈Y (𝑡) �̇� (0)

− ∑

𝑖∈𝑀
1

𝐵

2

𝑖
∫

0

−𝜏
𝑖

̈Y (𝑡 − 𝜏
𝑖
− 𝑠) 𝜑 (𝑠) 𝑑𝑠

− ∑

𝑗∈𝑀
2

𝐵

2

𝑗
(𝜑 (𝑡 − 𝜏

𝑗
) + ∫

𝑡−𝜏
𝑗

−𝜏
𝑗

̈Y (𝑡 − 𝜏
𝑗
− 𝑠) 𝜑 (𝑠) 𝑑𝑠)

+ 𝑓 (𝑡) + ∫

𝑡

0

̈Y (𝑡 − 𝑠) 𝑓 (𝑠) 𝑑𝑠

(79)

sinceX(0) = 𝐸. Now, we apply the property (4) of Lemma 4
together with

X (𝑡 − 𝜏
𝑗
) = Y (𝑡 − 𝜏

𝑗
) = Θ, ∀𝑗 ∈ 𝑀

2
(80)
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to see that bothX andY are solutions of

̈𝑦 (𝑡) = − ∑

𝑖∈𝑀
1

𝐵

2

𝑖
𝑦 (𝑡 − 𝜏

𝑖
) . (81)

Therefore,

�̈� (𝑡)

= − ∑

𝑘∈𝑀
1

𝐵

2

𝑘
(X (𝑡 − 𝜏

𝑘
) 𝜑 (0) +Y (𝑡 − 𝜏

𝑘
) �̇� (0)

− ∑

𝑖∈𝑀
1

𝐵

2

𝑖
∫

0

−𝜏
𝑖

Y (𝑡 − 𝜏
𝑖
− 𝜏

𝑘
− 𝑠) 𝜑 (𝑠) 𝑑𝑠

− ∑

𝑗∈𝑀
2

𝐵

2

𝑗
∫

𝑡−𝜏
𝑗

−𝜏
𝑗

Y (𝑡 − 𝜏
𝑗
− 𝜏

𝑘
− 𝑠) 𝜑 (𝑠) 𝑑𝑠

+∫

𝑡

0

Y (𝑡 − 𝜏
𝑘
− 𝑠) 𝑓 (𝑠) 𝑑𝑠)

− ∑

𝑗∈𝑀
2

𝐵

2

𝑗
𝜑 (𝑡 − 𝜏

𝑗
) + 𝑓 (𝑡)

= − ∑

𝑖∈𝑀
1

𝐵

2

𝑖
𝑥 (𝑡 − 𝜏

𝑖
) − ∑

𝑗∈𝑀
2

𝐵

2

𝑗
𝜑 (𝑡 − 𝜏

𝑗
) + 𝑓 (𝑡) .

(82)

In fact, this is exactly formula (11) since 𝑥(𝑡 − 𝜏
𝑗
) = 𝜑(𝑡 − 𝜏

𝑗
)

for each 𝑗 ∈ 𝑀
2
.

Finally, if max
𝑖=1,...,𝑛

𝜏

𝑖
≤ 𝑡, we have

𝑥 (𝑡) = X (𝑡) 𝜑 (0) +Y (𝑡) �̇� (0)

−

𝑛

∑

𝑖=1

𝐵

2

𝑖
∫

0

−𝜏
𝑖

Y (𝑡 − 𝜏
𝑖
− 𝑠) 𝜑 (𝑠) 𝑑𝑠

+ ∫

𝑡

0

Y (𝑡 − 𝑠) 𝑓 (𝑠) 𝑑𝑠.

(83)

So, differentiating this formula twice and applying (4) of
Lemma 4 result in (11). Hence, one can see that function 𝑥(𝑡)
given by (70) really solves (11) and satisfies initial condition
(8) and, moreover, that 𝑥 ∈ 𝐶2((0,∞),R𝑁). To see the last
one, one has to put 𝜏

1
, . . . , 𝜏

𝑛
into the computed derivatives,

for example, if 𝜏
𝑘
:= min

𝑖=1,...,𝑛
𝜏

𝑖
< 𝜏

𝑖
for each 𝑖 = 1, . . . , 𝑘 −

1, 𝑘 + 1, . . . , 𝑛, then by (75) and (82) we get

lim
𝑡→𝜏
−

𝑘

�̈� (𝑡) = −

𝑛

∑

𝑖=1

𝑖 ̸= 𝑘

𝐵

2

𝑖
𝜑 (𝜏

𝑘
− 𝜏

𝑖
) − 𝐵

2

𝑘
𝜑 (0) + 𝑓 (𝜏

𝑘
)

= − ∑

𝑗∈𝑀
2

𝐵

2

𝑗
𝜑 (𝜏

𝑘
− 𝜏

𝑗
)

− 𝐵

2

𝑘
𝑥 (0) + 𝑓 (𝜏

𝑘
) = lim
𝑡→𝜏
+

𝑘

�̈� (𝑡) ,

(84)

where𝑀
2
= {1, . . . , 𝑛} \ {𝑘}.

It is easy to see that defining functions

̃X
𝐵
1
,...,𝐵
𝑛

𝜏
1
,...,𝜏
𝑛

(𝑡) := X
−𝐵
1
,...,−𝐵

𝑛

𝜏
1
,...,𝜏
𝑛

(𝑡) ,

̃Y
𝐵
1
,...,𝐵
𝑛

𝜏
1
,...,𝜏
𝑛

(𝑡) := Y
−𝐵
1
,...,−𝐵

𝑛

𝜏
1
,...,𝜏
𝑛

(𝑡)

(85)

leads to the solution of

�̈� (𝑡) = 𝐵

1
𝑥 (𝑡 − 𝜏

1
) + ⋅ ⋅ ⋅ + 𝐵

𝑛
𝑥 (𝑡 − 𝜏

𝑛
) + 𝑓 (𝑡) (86)

with pairwise permutable matrices 𝐵
1
, . . . , 𝐵

𝑛
and initial

condition (8). More precisely, we have the following corollary
of Theorem 7.

Corollary 8. Let 𝑛 ≥ 3, 𝜏
1
, . . . , 𝜏

𝑛
> 0, 𝜏 := max

𝑖=1,...,𝑛
𝜏

𝑖
,

𝜑 ∈ 𝐶

1
([−𝜏, 0],R𝑁), and let 𝐵

1
, . . . , 𝐵

𝑛
be 𝑁 × 𝑁 pairwise

permutable matrices; that is, 𝐵
𝑖
𝐵

𝑗
= 𝐵

𝑗
𝐵

𝑖
for each 𝑖, 𝑗 ∈

{1, . . . , 𝑛}, and let 𝑓 : [0,∞) → R𝑁 be a given function.
Solution 𝑥(𝑡) of (86) satisfying initial condition (8) has the
form

𝑥 (𝑡) =

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

𝜑 (𝑡) , −𝜏 ≤ 𝑡 < 0,

X (𝑡) 𝜑 (0) +Y (𝑡) �̇� (0)

+

𝑛

∑

𝑖=1

𝐵

𝑖
∫

0

−𝜏
𝑖

Y (𝑡 − 𝜏
𝑖
− 𝑠) 𝜑 (𝑠) 𝑑𝑠

+∫

𝑡

0

Y (𝑡 − 𝑠) 𝑓 (𝑠) 𝑑𝑠, 0 ≤ 𝑡,

(87)

whereX(𝑡) = ̃X𝐵1 ,...,𝐵𝑛
𝜏
1
,...,𝜏
𝑛

(𝑡) andY(𝑡) = ̃Y𝐵1 ,...,𝐵𝑛
𝜏
1
,...,𝜏
𝑛

(𝑡).

Proof. The corollary can be proved exactly in the same way as
Theorem 7.
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