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We investigate a class of stochastic partial differential equations with Markovian switching. By using the Euler-Maruyama scheme
both in time and in space of mild solutions, we derive sufficient conditions for the existence and uniqueness of the stationary

distributions of numerical solutions. Finally, one example is given to illustrate the theory.

1. Introduction

The theory of numerical solutions of stochastic partial
differential equations (SPDEs) has been well developed by
many authors [1-5]. In [2], Debussche considered the error
of the Euler scheme for the nonlinear stochastic partial
differential equations by using Malliavin calculus. Gyongy
and Millet [3] discussed the convergence rate of space time
approximations for stochastic evolution equations. Shardlow
[5] investigated the numerical methods of the mild solutions
for stochastic parabolic PDEs derived by space-time white
noise by applying finite difference approach.

On the other hand, the parameters of SPDEs may
experience abrupt changes caused by phenomena such as
component failures or repairs, changing subsystem intercon-
nections, and abrupt environmental disturbances [6-9], and
the continuous-time Markov chains have been used to model
these parameter jumps. An important equation is a class of
SPDEs with Markovian switching

dX (t) = [AX @)+ f(X(@t),r(t)]dt

@)
t>0.

+g(X(1),r ) dW (1),
Here the state vector has two components X(t) and r(t), the
first one is normally referred to as the state while the second
one is regarded as the mode. In its operation, the system will
switch from one mode to another one in a random way, and

the switching among the modes is governed by the Markov
chain r(t).

Since only a few SPDEs with Markovian switching
have explicit formulae, numerical (approximate) schemes of
SPDEs with Markovian switching are becoming more and
more popular. In this paper, we will study the stationary
distribution of numerical solutions of SPDEs with Markovian
switching. Bao et al. [10] investigated the stability in distribu-
tion of mild solutions to SPDEs. Bao and Yuan [11] discussed
the numerical approximation of stationary distribution for
SPDEs. For the stationary distribution of numerical solu-
tions of stochastic differential equations in finite-dimensional
space, Mao et al. [12] utilized the Euler-Maruyama scheme
with variable step size to obtain the stationary distribution
and they also proved that the probability measures induced
by the numerical solutions converge weakly to the stationary
distribution of the true solution. But since the mild solutions
of SPDEs with Markovian switching do not have stochastic
differential, a significant consequence of this fact is that the
It6 formula cannot be used for mild solutions of SPDEs with
Markovian switching directly. Consequently, we generalize
the stationary distribution of numerical solutions of the finite
dimensional stochastic differential equations with Markovian
switching to that of infinite dimensional cases.

Motived by [11-13], we will show in this paper that the
mild solutions of SPDE with Markovian switching (1) have a
unique stationary distribution for sufficiently small step size.



So this paper is organised as follows: in Section 2, we give
necessary notations and define Euler-Maruyama scheme of
mild solutions. In Section 3, we give some lemmas and the
main result in this paper. Finally, we will give an example to
illustrate the theory in Section 4.

2. Statements of Problem

Throughout this paper, unless otherwise specified, we let
(Q, FAF }150-P) be complete probability space with a
filtration {#,},5, satistying the usual conditions (i.e., it is
increasing and right continuous while &%, contains all P-
null sets). Let (H, {-,-);p, | - ;) be a real separable Hilbert
space and W(t) an H-valued cylindrical Brownian motion
(Wiener process) defined on the probability space. Let I be
the indicator function of a set G. Denote by (Z(H), | - )
and (L (H), || - llys) the family of bounded linear operators
and Hilbert-Schmidt operator from H into H, respectively.
Let r(t), t > 0, be a right-continuous Markov chain on the
probability space taking values in a finite state space S =
{1,2,..., N} with the generator I' = (y;j) y given by

%30 + 0 (9) ifi#j,
l1+y;60+0(8) ifi=j
)

[P’{r(t+6):j|r(t)=i}:{

where 6 > 0. Here y;; > 0 is the transition rate from i to j if
i# j while

Yii = _Z%j- (3)

j#i

We assume that the Markov chain r(-) is independent of the
Brownian motion W(:). It is well known that almost every
sample path of r(-) is a right-continuous step function with
finite number of simple jumps in any finite subinterval of
R, = [0, +00).

Consider SPDEs with Markovian switching on H

dX (t) = [AX (1) + f (X (1),r (1)) dt

(4)
+g (X (8),r(#)dW (1),

t>0,

with initial value X(0) = x € Hand r(0) = i € S. Here
f:HxS — H,g: HxS — Zy(H). Throughout the
paper, we impose the following assumptions.

(A1) (A,2(A)) is a self-adjoint operator on H generating
a C,-semigroup {eAt}tZO, such that | e ||< e for
some o > 0. In this case, —A has discrete spectrum 0 <

pp < py <o < limy | o p; = 0o with corresponding
eigenbasis {e;};», of H.

(A2) Both f and g are globally Lipschitz continuous. That
is, there exists a constant L > 0 such that

If Ce ) = F 5o Dllzs v g (5 1) = 9 (9 Dl

<L|x- y||§{, Vx,y €H, j€S;
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(A3) There exist 4 > 0 and /\j >0,(j=1,2,...,N) such
that

22 (x =y, £ (%)= £ (3 )+ Ala (1) = 9 (0 Dss

N
+ Y yihlx -yl < —ulx -yl VeyeH, jes.
I=1
(6)

It is well known (see [1, 8]) that under (Al)-(A3), (4) has
a unique mild solution X(¢) on t > 0. That is, for any X(0) =
x € Hand r(0) = i € S, there exists a unique H-valued
adapted process X(t) such that

X(t) = ex + Lt I (X (s),7(s)) ds
(7)

+ Jt G (X (5),7(s) AW (s).
0

Moreover, the pair Z(t) = (X(t), r(t)) is a time-homogeneous
Markov process.

Remark 1. We observe that (A2) implies the following linear
growth conditions:

| G i)l v g G illis <T(1+1xl,), VxeH, jes,
(8

where L = 2max;cs(LV | £(0, j)I3;V | g(0, ))-
Remark 2. We also establish another property from (A3):

N
24,05, £ (% 1)) + Agllg (3 )ls + Y v hallxly
=1

<24 (%, f (%, ) = £(0, )y

+ Aj“g (x, ]) -9 (0, J)“IZ—IS + Zle)‘l"x"%{
1=1

+2A(x, £ (0, /)
+20(g (%, /)~ 9.(0, 1), (0 )yss + 2,19 (0. ) ss
423 £ (0, j)|
s—mw;+%m@+—i———ii
u . N
+ 19 Go0) = 9.(0, )liss
2

+ TJHQ (0’f)||12{s + Mllg (o, J)”f{s

4V )
< —pllxl + S el + Sl ¢ ——
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2

+— Mg (0. Miss + 219 0 )liss

< —gnxu; toa, VxeH, jeS,
)

where «; := maneg[(4A§ I f(o, j)IIiI/y) +(4L/\§/‘u) I g(0, )

Ihs +A; I g(0, lifis] and (T, S)ys := Yo\ (Te;, Se;) g for
S,T € Zys(H).

Denote by Z*(t) = (X™(t), r'(t)) the mild solution of (4)
starting from (x,i) € H x S. For any subset A € B(H),B ¢
S, let P,((x, 1), A x B) be the probability measure induced by
Z5(t),t > 0. Namely,

P, ((x,i),AxB) =P (Z* € AxB), (10)

where B(H) is the family of the Borel subset of H.

Denote by P(HxS) the family by all probability measures
on H x S. For P,P, € P(H x S), define the metric d; as
follows:

d, (P, P,)
=sup |3 J, 9 )P )= Y [ 9o )Py ()

(1)

wherelL = {p: HxS — R:|o(u, j) — oD <llu—-vlg+
|7 -1, and |p(u, j)| < 1,foru,v e K, j,I € S}.

Remark 3. It is known that the weak convergence of probabil-
ity measures is a metric concept with respect to classes of test
function. In other words, a sequence of probability measures
{P}isy of P(H x S) converges weakly to a probability
measure P, € P(H xS) ifand only iflim; _, ., d; (P, P,) = 0.

Definition 4. The mild solution Z(¢) = (X(¢),r(t)) of (4) is
said to have a stationary distribution (- x -) € P(H x S) if
the probability measure P, ((x, i), (- x -)) converges weakly to
n(-x-)ast — ooforeveryi € S,andevery x € U, abounded
subset of H, that is,

tli}l‘olodﬂ‘ (Ipt (X, l) > TT ( X ))

Ep (2™ (1)

= lim | su
t—=o0 < q)eDF_, (12)

N RICEICTS)

)-o

By Theorem 3.1 in [10] and Theorem 3.1 in [14], we have
the following.

Theorem 5. Under (Al)-(A3), the Markov process Z(t) has a
unique stationary distribution ni(- x ) € P(H x S).

Foranyn > 1,letw, : H — H, := Spanfe,,e,,...,e,}
be the orthogonal projection. Consider SPDEs with Marko-
vian switching on H,,

ax" () = [A,X" () + f, (X" (t),r(t))] dt
(13)
+ g, (X" (1), (1) dW (1),
with initial data X"(0) = m,x = Z:':l(x, e;)ye;» x € H. Here
An:nnA’ fﬂ: nf’ gn:ﬂng'
Therefore, we can observe that

tA,x tAx
A, x = Ax, e =e",

<x’fn>H = <x’f>H’

(%, g0 = {(x.9),p Vxe€H,

(14)

By the property of the projection operator and (A2), we have
2 ; N
”An (x - y)"H v “fn (x’ ]) - fn (y’ ])”H

V1. (% 5) = g (0 D)ls

<Nl = g VI ) - F Ol (15)
Vg (e i) =g Dlias < (A5 VL) (= 9z
Vx,y € H,, j€S.

Hence, (13) admits a unique strong solution {X"(f)},5, on H,,
(see [8]).

We now introduce an Euler-Maruyama based computa-
tional method. The method makes use of the following lemma
(see [15]).

Lemma 6. Given A > 0, then {r(kA), k = 0,1,2,...} isa
discrete Markov chain with the one-step transition probability
matrix

P(A) = (P;(8)) =€ (16)

Given a fixed step size A > 0 and the one-step transition
probability matrix P(A) in (16), the discrete Markov chain
{r(kA), k = 0,1,2,...} can be simulated as follows: let
r(0) = iy, and compute a pseudorandom number &, from the
uniform (0, 1) distribution.

Define
r(4)
(i, ieS-{N}
such that EP’(O)J (A)
g (17)

1
< .lef(O)’f (A,
i=

N-1
N) Z Pr(O))j (A) < El’

J=1




where we set 23:1 Py(g),j(8) = 0 as usual. Having computed
r(0),7(A), ..., r(kA), we can compute r((k + 1)A) by drawing
a uniform (0, 1) pseudorandom number &, and setting

r((k+1)A)
i, ieS—{N}

i—1
such that ) P,y ; (A)
F=) (18)

i
<& < ler(kA),j (4),
i

N-1
N, ¥ Py, (B) < G-

The procedure can be carried out repeatedly to obtain more
trajectories.

We now define the Euler-Maruyama approximation for
(13). For a stepsize A € (0,1), the discrete approximation

}_’n(kA) =~ X"(kA), is formed by simulating from 1_/”(0) =
7%, 7(0) =1y, and

Y (k+1)A)
=M Y (ka) + £, (Y (kD)7 (kD)) A (19)
+, (Y (kA) 7 (kD)) AW, },

where AW, = W((k + 1)A) — W(kA)).

To carry out our analysis conveniently, we give the
continuous Euler-Maruyama approximation solution which
is defined by

Y (t) = e x + jo DA £ (Y (Ls)), 7 (Ls])) ds

N Jte(t—[SJ)Angn (Y" (Ls]), 7 (Ls])) AW (s)
o (20)

= e [ DAL (7 (5] (151) s
0

+ j TG (Y (Ls]),r (LsD) AW (s),

0

where [t]| = [t/A]A and [t/A] denotes the integer part of £/A
and Y"(0) = Y (0) = m,x, and Y"(kA) = Y (kA).

It is obvious that Y"(¢) coincides with the discrete approx-
imation solution at the gridpoints. For any Borel set A €

B(H,),x € Hyi,j€S,let Z (kA) = (Y " (kA), r(kA)),
P" ((x,), A x {j})
=P(Z" (8) e Ax{j} | Z"(0) = (x.)),
(21)
Pt (1), Ax {j})
=P (Z" (kd) € Ax {j} 1 Z"(0) = (x.1)).

Following the argument of Theorem 5 in [13], we have the
following.
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Lemma 7. {Zn(kA)},cZO is a homogeneous Markov process
with the transition probability kernel P™2((x,i), A x {h.

To highlight the initial value, we will use notation
Z" k).
Definition 8. For a given stepsize A > 0, {Zn’(x’i)(kA)}k20 is
said to have a stationary distribution (™2 x )} e P(H, x
S) if the k-step transition probability kernel P ((x, 1), x -)
converges weakly to 78 x)ask — oo, for every (x,i) €
H, xS, that is,

Jim d; (B2 (1), x ), m™ (x)) =0, (22)

We will establish our result of this paper in Section 3.

Theorem 9. Under (Al)-(A3), for a given stepsize A > 0,

1,(x,1)

and arbitrary x € H,, i € S, {Z (kA)} s has a unique
stationary distribution (- x) € P(H, xS).

3. Stationary in Distribution of
Numerical Solutions

In this section, we shall present some useful lemmas and
prove Theorem 9. In what follows, C > 0 is a generic constant
whose values may change from line to line.

For any initial value (x, i), let Y™ (t) be the continuous
Euler-Maruyama solution of (20) and starting from (x,7) €
H x S. Let X*(t) be the mild solution of (4) and starting
from (x,i) € H X S.

Lemma 10. Under (A1)-(A3), then

By @ -y @ep, -

<3(p2+2L) A(1+E[Y" (1tD]3,)-

Proof. Write Y™™ (t) = Y"(t), Y™ (|t]) = Y"(|t]). From

(20), we have

[t]
Y"(1t]) = e x + L DA £ (v (1s]), 7 (Ls))) ds

[t]
+ L DA g (Y (Ls]), 7 (Ls])) dW ().
(24)
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Thus,

YU (6 =Y ([t])
_ Ql-lthA

X (e“JAnnx

L£]
o
0

X f, (Y"(Ls)), 7 (Ls])) ds

Lt
N I RGEB
0

Lt]-lshA

x g, (Y" (Is]), 7 (Ls])) dW (s) )
-Y"([t])

(25)

; J QDAL (v (1] r (s]) ds
[t]

+J|_t] e Gn (Y (Ls]), 7 (Ls])) AW (s)
= (1) vt e

t
+ Jm DA (Y (Is]), 7 (Ls]) ds
t
o] (D s aw (9.
t
Then, by the Holder inequality and the It6 isometry, we obtain

EfY" 6) - Y" (LD

<3 {[E"(e(t—LmA

DY e,

t i (26)
Ef 107 Ash.rsh) e
t ., ,
E [ o, (7 ) (D))
From (A1), we have
B - 1) v e,
n 2
=FE -pi(t=1t]) v (1t]),e; l
() e
< (1= DY EY (e,

< R NEY" (1tD)]7

here we use the fundamental inequality 1 —e¢™* < a, a > 0.

And, by (8), it follows that

|10 D )]s

ve[ Mot

< 2LA (1+EY" (ItD)]7,) -

(UsDr (D) gds 28

Substituting (27) and (28) into (26), the desired assertion (23)
follows. O

Lemma 11. Under (A1)-(A3), if A < min{l, 1/3(pn + 2L),

((4op + 1)/ (8q + 4qp L+4qL +24q7 + 6qL(pn+2L))) }, then
there is a constant C > 0 that depends on the initial value x but
is independent of A, such that the continuous Euler-Maruyama
solution of (20) has

sup [E”Y"’” (t)“ <C, (29)

t>0

where q = max gy Ajp p = minj gy A;.
Proof. Write Y™ (t) = Y"(¢t), r'(kA) = r(kA). From (20), we
have the following differential form:
day” (t)
={AY" (1) + AL (Y (), r (1))} (30)

+ A (Y (1e]) 7 (LE]) dW (1),

with Y*(0) =
LetV(x,i) = A, | xllfq. By the generalised It6 formula, for
any 0 > 0, we derive from (30) that

E (A" Ol;)
t
< Ml +E [ g
0
< {OIY" ()7, +2(Y" (5), AY" (5))
+2(Y" (), A (Y (s 7 (LsD))

+lg, (0 (UsD) o (L)l ds

t N
+E L Y Yl (9)[5sds
=1



t
< all + 6qE | <" 9
t 2
~ 2apE J " (5)| ds
0

t
+[E J eeSAr(s)
0

X {2<Y” (s), e(S_LSJ)Af (Y"(Ls]),r (LSJ))>H
g (V" Ushr s} ds

t N
+E [ Y plV” @l
I=1
(3D

By the fundamental transformation, we obtain that
(" (@), e A E (v ((e)) e (2D)),,
=" @0, fY" @), r )y
+ (V@) (1) (), r 1)), (32)
+ (Y (), eI (F (Y (L)) (L))
—f (Y (@), 1)) ),

By Hold inequality, we have

g (7" (LeD) r (L))
=g (v" 1), (1)
—(g(Y" @), r®) = g (" (L), (1))
< (148" g (" @ r ) + (1+277)

(g (¥" @) .r () = g (X" (1)), (1)) -
(33)

Then, from (31), we have
E (Ao lY" ®I7;)
t
< gl + 6gE | | (s
t 2
- 2apE J eeSHY” (9)||;,ds
0
t
+E L Lo 120V (), F (Y ()7 ()

+]lg(Y" (s),r (5))”;3} ds
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+E Lt egsi%(sﬂ)‘l"w ()75
=
+E Lt Ay
x 20" (), (“ 4 1) F (Y (5), 7 (9)))
2 <Y" (s), e(s—lSJ)A
X (f (Y (Ls)). (Ls))
~f(Y"(),r (),
FA|g (Y (9),r () + (1 + A7)
x (g (Y" (), ()
g (V" (1D (LsD)| s} s

t
< q||x||?{ +6qE Jo eeS"Y" (s)“;ds
“ 5
~2apE j Y (9| ds
0
‘M t t
- —[EJ‘ &y ()7, ds + o J e%ds
2 0 0

+E Lt E W
x{2(Y" (), (¢ - 1) £ (1" (), (1)),
#2(Y" (), e A (£ (V" (L) (L)
~F(" (), ())),,
+ A g (Y7 (5), 7 (9)[ss + (1+A77)
x (g (Y" (5),7(s))

~g (V" (Is)) 7 (1s))|5ss } ds

=L+ L O+ @)+, ().
(34)

By the elemental inequality: 2ab < (@*/x)+xb*, a,b e R, k >
0, and (8), (27), we obtain that, for A < 1,

t
LO<E| g {8 O,
LA “(e(s—[sJ)A _ 1)

x f(Y"(s),r (s))||§_1} ds
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t
<E[ A s
0
t
+E J eesAr(s)A_l/zpﬁAzf(l +]Y" (s)||;) ds
0

<E Lt Ao {(A7 + A2 P2T)
x|Y" ()|, + AY*piL} ds
<qE Lt KA (1+ L) Y™ (9|7, + A pL} ds.
(35)
By (A2) and (8), we have
I e () = £ (" @ r @)
<2 (f (V" (eD)r (1eD) - £ (V" (e r @)y
#2(F O WD r @) - F O r @) (36)
<SL(1+ V" (DI Toey ey
+2L|Y" () - Y" (e )3
Similarly, we have
lg (7" ©).r ) = g (V" (1eD) .7 (1) g
<SL(1+ Y (WD) Toy e (37)
+ 2L Y™ () - Y" (e D)3
Thus, we obtain from (36) that
J5 (£)

t
<2F J eGSAr(S) <Yn (s) ,e(s—[sJ)A
0

x (f (Y™ (LsD) 7 (LsD)
—f(Y"(5),7(9)) ), ds

t
<E Jo eeslr(s) {AI/leyn (S)”ilds + A2 e(S,LSJ)AHZ

x| f(Y" (Ls]), 7 (LsD)
SFO ) 6]} ds
<q [ o (a7 6T

< (1+ V" (WD) Loy oy

ALY (5) - Y (s} ds.
(38)

By Markov property, we compute

E[(1+ 1Y (LeDIE) Ty #1010
=E(E[(1+ 1Y WD) Lo 2 rtepy | 7 (LED])
=E(E[(1+ 1Y (LeDI) | 7 (LeD)])
X E [Ty 4 repy | 7 (1D)]

= E(1+1Y (LEDIE) Y Tpqupea® (r (6) #i 1 7 (Lt]) = i)

i€S

=E (1 +Y (LtJ)Ilﬁ) Zl{r([tJ):i}

i€S

SN AEETIEE))

J#i
= (141 UDI) (max (7) A +0()) Yyepen
i€S

<PAE (1 + Y (LeDIE),
(39)

where y = N[1 + max, ;. (—V;;)]. Substituting (39) into (38)
gives

J5 ()
t
< [ & O,
(40)
207 PLY" () = Y (s D} ds

t
‘g J'O SeQSAI/Z?Z[E (1 +|Y (M)"fi) ds.

Furthermore, due to (37) and (39), we have

Ja ()
=[E J;) eeslr(s)
X {AUZ lg (Y" (s),r (5))||2Hs
(14 472) g (¥ (9),r(5))

o shr (D) )



<gqE Lt AVL(1+ |Y" (s)||il) ds+q(1+A7'?)
x Lt 8L (1+ V" (IsDIr) T #ratsids
+2Lq(1+A7?) Lt Y (s) = Y™ (Ls))|,ds

< gA'’TE Lt & (1+|Y" (5)|7,) ds
+16q78"T L & (11 v @) ds

+2g(1+ a75) [[HPr ) - v sy
0

(41)

On the other hand, by Lemma 10, when 3(p? + 2L)A < 1, we
have

Ely" o7
<2E|Y" () - Y™ (D) + 2]y (1))
<6(p2 +20) A (1+EY" (D))

+2E|Y" (1)),

(42)
< 4E|Y" (Lt])|; + 2.

Putting (35), (40), and (41) into (34), we have

E (LY 0)]})
< qllxlf; + L e* [a; +qpsn' T
+24gA"*P L + gAY I ds
+E Ltees [q@ - 2ap - g +qA'"? (2+ piL) +qA1/Zf]
x Y™ (s)|7,ds + 24gA" > FLE
<[l slas

+ (4qA_1/2L + 2qL) E Lt e05||Y" (s)-Y" (lSJ)”;d&
(43)

Abstract and Applied Analysis
By Lemma 10 and the inequality (42), we obtain that
0 n 2
e”E (Ar(t) “Y (t)”H)

t
< qllxl7, + JO % [ocl +2q0 - 4ap - p

+3gp2 AT+ 240?51

+3gA* T+ 4qA1/2] ds
i Lt e [490 - 8ap - 2u + 490" (2+ ] T)
+4g0°T + 2q0" T [ (s ds
+6qLA" (py +2L) E Jot e (1+ " (Ls D) ds
< qllxlz; + Lt ¢ oy +290 — dap -+ 3gp2A"* L
+24gA"? T + 3gA"*T + 4gA'?
+6qLA'"? (pp +2L)] ds
. Lt ¢ [490 - 8ap — 2u + 4qA"* (2 + 2 T)
+4qA"* L+ 249071

+6qLA"? (i + 2L)] Y (Ls ) s
(44)

Let0 = (4ap+u)/4q, for A < ((4ap+u)/(8q+ 4qpﬁ L+4gL+
2447 + 6qL(p? + 21)))%, then

pE(IY 0)I1;) < gllxI?y + jot & [ocl + 4"‘1’2 * “] ds.
(45)
That is,
supE (Iy ®IF) < C. (46)
O

Lemma 12. Let (A1)-(A3) hold. If A < min{l, 1/18(pfl +
2L), (2ap + w)/(4q + 2qL + 2qp> L + 12qL7))*}, then

. . 2
tlim E|Y™™ () - Y™ (t)"H =0 uniformly for x,y €U,
— 00

(47)

where U is a bounded subset of H,,.



Abstract and Applied Analysis

Proof. Write Y™™ (t) = Y*(t), Y™ (t) = Y”(t), r'(kA) =
r(kA). From (20), it is easy to show that

(Y (6) =Y (1) - (Y* (1t) - Y7 (1¢]))
=Y @) -Y*(th) - (Y () - Y7 (1£])
= (A1) (v (e - Y (1))
+ jm DA (£ (vF (Ls)) (1)) )
—f, (Y (Ls]), 7 (Ls)))) ds
1 I CAC IR (E

=g, (Y (Ls]), 7 ([s]))) dW (s).

By using the argument of Lemma 10, we derive that, if A < 1,

E|(Y* &) - Y @) - (Y (le) - Y (D)5,

2 D
<3(p2 +2L) AE|Y* (lt]) - Y (Lt D7,
E|v* o) - Y )],
=E[(Y* (1) - Y (1) - (Y* ([t]) - Y (I£)))
(1) - Y (D)
<SA+)E|(Y (1) -Y 1)
— () - Y D),
1\ Cyox
# (143 JE WD - Y @ep,
< 9(p2 +2L) AE|(Y™ (1£]) - Y (IeD)]
+ LSE|(Y* (1)) - Y7 (1e)|
(50)

IfA < 1/18(p? + 2L), then

EJ(r* () - Y )[7; < 2B (L¢)) - Y7 (Lt )] 5D

Using (30) and the generalised Ité formula, for any 6 > 0, we
have

E (LY 0O -Y O);)
< Mx =yl
t
+E L L {0 9 - ()],

+2{Y*(s) - Y (s),

AY™ () =Y (s))

+2(Y(5) = Y7 ()¢ "
X (fu (Y (Ls) 7 (Ls))
~fu (V7 (sD s (sD)) g
+ g, (¥ (Lsh 7 (LsD)
=, (Y (1) 7 (L)} s

t N
+E [ Yol -7 @)
I=1

t
< b=yl + 00E | I - 9} s
t
- 2apE J eeS"Yx(s) -y’ (s)“ids
0

t
+E L Ay [2(Y* (5) - Y7 (5), 7104

X (f (Y (s (LsD)
~f (LD AsD)),,
g (¥ (s (LsD)
~g (Y (Ls)).r (Ls)) } ds

t N
+E L eesZy,(s)l/\l“Yx (s)-Y” (s)||;ds.
I=1

(52)
By the fundamental transformation, we obtain that
<Y" 0 =Y (1), 1h4
< (f (e, r (D) = £ (7 (LeD)or (1)) ),
=(Y'O-Y' O, fY0,r®) - fY O, r®)y
+{(Y (1) - Y (1), ("4 - 1)
< (f(Y 0).r )~ fF (Y (0).r0))),
+ (Y (1) =Y (1), 1A
< (f (Y5 (LD r (D) = f (Y (e 7 (12D))

~(fO 0, r ) - F7 0,1 1)),
(53)

By the Hold inequality, we have

g (r* (e r AeD) - g (v Qe AeD) g

<(1+A) g (¥ .7 ) - g (¥ ). O)[s
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+(1+A") (g @) r ) - g (Y (). 7 (1))

—(g(Y* (e, (t))
g (¥ (1) r (D)

Abstract and Applied Analysis

% (f (Y5 (5),7(5))
Y7 (5),r ()|} ds

(56)

(57)

(54) <E J: ees/\,(s) (Al/z + A3/2piL) [Y*(s)-Y” (s)||;ds
Then, fi 52) and (A3), we h t
e from (52) and (A3), we , e < qE J A (14 p2L) Y™ (5) = Y7 (3)] 1.
E (Y 0 - Y 0) 0
< qlx ~ yl;, + (g6 - 2ap - ) E
t It is easy to show that
X J egs||Yx (s)-Y” (s)||§{ds
0 G; (1)
2E | *A t
+ L € A < q[E J-O e@s {Al/zllyx (S) _y” (S)Hil
x (Y* () =Y (s), (5104 - 1) )
-1/2 s—[s])A
$(f (7). () a7 ()
(Y (9).,r(5)) ), ds < O s dlsh)
; ~ f (Y7 (UsD), 7 (LsD)
+2E J e@sAr(s) x
0 ~(f(Y*(9),r ()
x (Y*(s) = Y7 (5), 10 Y (9),r ()|} ds
Y* (s, r (Ls]) t
X(f( [SJ r LSJ ) Sq[EJ- eesAl/zllyx(s)_Yy(s)llilds+63 (t)
—f (Y (LsD) 7 (LsD)) (55) 0
(Y (s),7 () By (39), we have
~f (Y7 (5),7(5)))) ydls G; (1)

t
HE J Ay {8 g (Y (9).7(5))

(Y7 (9).7 ()|
+(1+477)
x (g (Y* (5),7(s))
-9 (Y (5),7(s)))
~(g (¥ (Ls]), 7 (Ls)))
-g (Y (ls]),
r(1s)) )} ds
=G, (1) +G, (1) +G; (1) +G, (t).

By (A2) and (27), we have, for A < 1,
G, (1)

t
SE| g (2 9 -v O

A2 ||(e(s—LsJ)A 3 1)

< 20" E jo [ F (s 7 (L))

—F (Y (Ushr AsD)IE
+](f (¥ ()7 (5)
¥ (), ()|}]
X Ly (s) #r(ls )9S
< g8 L [ PP Lsh - v LsDI
X Ly # (L5198
< 1gI7AE jo Y (Lsh) - ¥ (LD Pyds.

Therefore, we obtain that

t
Gy (1) < qu/Z[EJ Y™ () = ¥ (5)[[ds
0

+ 4qLyA'*E Lt eeS”Yx (Ish-Y” ([SJ)“;ds'

(58)

(59)
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On the other hand, using the similar argument of (58), we
have

G, () < qE Lt ALY () - Y 9|5,
+(1+47) 4197 (60)
< |Y* (Ls) - Y7 (LsD|?,} ds.

Hence, we have
pe"E () - ¥ 0])
<qlx -yl
+E J:ees [q@— 2ap —[/L+q(1 + p,fL) Al
+qA"? + gLA] ¥ () = Y7 (5)|1,ds
+E Jt ¢ [4gLyA"? + (A + A) 4Ly ]

0

XY (1s)) = Y7 (s )[z,ds.
(61)

By (50), we obtain that
P E (Y0 - Ol)

t
2 0.
< dlx =yl + € | & [290 - sap - 20
+4gA""? + 2gLAM?
+2qpi LA + 12gL7A"?

XY (Ls)) = Y7 (s D)[z,ds.
(62)

Let6 = ap +u)/2q, for A < ((2ap +u)/(4q +2qL +2qp L+
12qL?))2, then the desired assertion (47) follows. O

We can now easily prove our main result.

Proof of Theorem 9. Since H,, is finite-dimensional, by
Lemma 3.1in [12], we have

im dy (PR (o), %), PP ((21),% ) = 0, (63)

uniformlyin x,y € H,,i,j € S.
By Lemma 7, there exists 7 x ) € P(H, x S), such
that

Jim d; (PE2((0, 1), x ), 7™ (- x)) =0.  (64)

1

By the triangle inequality (63) and (64), we have

klingodL ([P’Z’A ((x,0),- %), 0™ (- x '))
< lim dy (PR ((6,1), %), PR ((0,1), %) (65)

+ lim dy (P ((0,1),-x),7n" (- )) = 0.

4. Corollary and Example

In this section, we give a criterion based M-matrices which
can be verified easily in applications.

(A4) For each j € S, there exists a pair of constants [3]» and
d; such that, for x, y € H,

=y f ()= F )V < Billx = v

lg (x. 1) = 9 (3 s < 851 = yl5-

Moreover, o := — diag(2f5; +6;,..
a nonsingular M-matrix [8].

52BN +0y)—Tis

Corollary 13. Under (Al), (A2), and (A4), for a given stepsize

A > 0, and arbitrary x € Hyi € S, {Z""" (kA)}ao has a
unique stationary distribution 7™ (- x -) € P(H,, x S).

Proof. In fact, we only need to prove that (A3) holds.
By (A4), there exists (A;,A5...,Ax)" > 0, such that

@1 Gpr - qn) = DAy Ay AT > 0.
Set y = min, ;. g;> by (66), we have

2Ai(x =y, f (% 1) = £ (0 )y

N
+ 219 (6 1) = g D+ Yvihllx - vl
I=1

N
<248 1x - Iz + 85A lx = ylz + Y vphillx - vl

=1

N
= (2%‘/31 +0;A;+ ZW‘Z) Ix - %
=1
= —qjllx - ¥l < —ulx - ¥l
(67)
0

In the following, we give an example to illustrate the
Corollary 13.

Example 14. Consider
aZ
a_EZX &) +B((r () X (t,&) | dt

+g (X (6,8),r () dW (1),

dX (ts 6) =

0<&<m t=0.
(68)
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We take H = L*(0,7) and A = 0%/0&* with domain
D(A) = HX(0,7) N Hé (0, ), then A is a self-adjoint negative
operator. For the eigenbasis e, (&) = (2/7'[)1/2 sin(ké), & €
[0, 7], Ae, = —k’e;, k € N. It is easy to show that

AR _ N2k 2 PR 2
5l = 2o mady < ey fvedy (69)
i=1 i=1
This further gives that
| << (70)

where « = 1, thus (A1) holds.
Let W(t) be a scalar Brownian motion, let r(t) be a
continuous-time Markov chain values in S = 1,2, with the

generator
-2 2
(7 3)

-03 -0.1
B(1) =B, = (—0.2 —o.2>’ 7D
0.4 —0.2
B(2) =8, = (—0.3 —o.z)’
Then A, (Bl B,) = 0.1706, A, (BI B,) = 0.3286.
Moreover, g satisfies
. N 2
lg (1) = 9 (v Dlss < Oillx = g (72)

where §, = 0.1, §, = 0.06.
Defining f(x, j) = B(j)x, then

1f G ) = £ O Dlls Vg G ) = 9 (0 Dls
< (Amax (BfB]) N 8]) ”.X - y“?{ < 033"X - y";’
(x—y,f(x,j)—f(y,j)>H (73)

< %<x— v, (B;F +Bj) (x—y)>H

1

< Ekmax (B]T + Bj) ||x - y“i,

It is easy to compute

1

Br= 3 Amax (B] +B,) = -0.0919,

) (74)
= ~Anax (B + B,) = —0.03075.

B.=3

So the matrix o/ becomes

20838 -2
-1 1.0015)' (75)

It is easy to see that o/ is a nonsingular M-matrix. Thus,
(A4) holds. By Corollary 13, we can conclude that (68) has a
unique stationary distribution 7™ (- x -).

o = diag (0.0838,0.0015) - T = (

Abstract and Applied Analysis
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