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The existence and uniqueness of local strong solutions for a nonlinear equation are investigated in the Sobolev space 𝐶([0, 𝑇);

𝐻
𝑠

(𝑅)) ∩ 𝐶
1

([0, 𝑇);𝐻
𝑠−1

(𝑅)) provided that the initial value lies in𝐻
𝑠

(𝑅) with 𝑠 > 3/2. Meanwhile, we prove the existence of global
weak solutions in 𝐿

∞

([0,∞); 𝐿
2

(𝑅)) for the equation.

1. Introduction

Coclite and Karlsen [1] investigated the well posedness
in classes of discontinuous functions for the generalized
Degasperis-Procesi equation:

𝑢
𝑡
− 𝑢
𝑡𝑥𝑥

+ 4ℎ
󸀠

(𝑢) 𝑢
𝑥

= ℎ
󸀠󸀠󸀠

(𝑢) 𝑢
3

𝑥
+ 3ℎ
󸀠󸀠

(𝑢) 𝑢
𝑥
𝑢
𝑥𝑥

+ ℎ
󸀠

(𝑢) 𝑢
𝑥𝑥𝑥

,

(1)

which is subject to the condition
󵄨󵄨󵄨󵄨󵄨
ℎ
󸀠

(𝑢)
󵄨󵄨󵄨󵄨󵄨
≤ 𝑐 |𝑢| , |ℎ (𝑢)| ≤ 𝑐|𝑢|

2

, (2)

or
󵄨󵄨󵄨󵄨󵄨
ℎ
󸀠

(𝑢)
󵄨󵄨󵄨󵄨󵄨
≤ 𝑐, |ℎ (𝑢)| ≤ 𝑐 |𝑢| , (3)

where 𝑐 is a positive constant.The existence and 𝐿
1 stability of

entropy weak solutions belonging to the class 𝐿1(𝑅) ∩ 𝐵𝑉(𝑅)

are established for (1) in paper [1].
In this work, we study the following model:

𝑢
𝑡
− 𝑢
𝑡𝑥𝑥

+ 𝑚ℎ
󸀠

(𝑢) 𝑢
𝑥

= ℎ
󸀠󸀠󸀠

(𝑢) 𝑢
3

𝑥
+ 3ℎ
󸀠󸀠

(𝑢) 𝑢
𝑥
𝑢
𝑥𝑥

+ ℎ
󸀠

(𝑢) 𝑢
𝑥𝑥𝑥

,

(4)

where 𝑚 is a positive constant and ℎ(𝑢) ∈ 𝐶
3. If 𝑚 = 4

and ℎ(𝑢) = 𝑢
2

/2, (4) reduces to the classical Degasperis-
Procesi model (see [2–13]). Here, we notice that assumptions

(2) and (3) do not include the case ℎ(𝑢) = 𝑢
3. In this paper, we

will study the case ℎ(𝑢) = 𝑢
3, and 𝑚 is an arbitrary positive

constant.
In fact, the Cauchy problem of (4) in the case ℎ(𝑢) = 𝑢

3

is equivalent to the following system:

𝑢
𝑡
− 𝑢
𝑡𝑥𝑥

+ 3𝑚𝑢
2

𝑢
𝑥
= 6𝑢
3

𝑥
+ 18𝑢𝑢

𝑥
𝑢
𝑥𝑥

+ 3𝑢
2

𝑢
𝑥𝑥𝑥

,

𝑢 (0, 𝑥) = 𝑢
0
(𝑥) .

(5)

Using the operator (1 − 𝜕
2

𝑥
)
−1 to multiply the first equation of

the problem (5), we obtain

𝑢
𝑡
+ 3𝑢
2

𝑢
𝑥
+ (𝑚 − 1) (1 − 𝜕

2

𝑥
)
−1

𝜕
𝑥
(𝑢
3

) = 0,

𝑢 (0, 𝑥) = 𝑢
0
(𝑥) .

(6)

It is shown in this work that there exists a unique
local strong solution in the Sobolev space 𝐶([0, 𝑇);𝐻

𝑠

(𝑅)) ∩

𝐶
1

([0, 𝑇);𝐻
𝑠−1

(𝑅)) by assuming that the initial value 𝑢
0
(𝑥)

belongs to 𝐻
𝑠

(𝑅) with 𝑠 > 3/2. In addition, we prove the
existence of global weak solutions in 𝐿

∞

([0,∞); 𝐿
2

(𝑅)) for
the system (6).

This paper is organized as follows. Section 2 investigates
the existence and uniqueness of local strong solutions. The
result about global weak solution is given in Section 3.
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2. Local Existence

In this section, we will use the Kato theorem in [14] for
abstract differential equation to establish the existence of
local strong solution for the problem (6). Let us consider the
following problem:

𝑑V

𝑑𝑡
+ 𝐻 (V) V = 𝑔 (V) , 𝑡 ≥ 0, V (0) = V

0
. (7)

Let𝑋 and𝑌 beHilbert spaces such that𝑌 is continuously and
densely embedded in𝑋, and let 𝑄 : 𝑌 → 𝑋 be a topological
isomorphism. Let 𝐿(𝑌,𝑋) be the space of all bounded linear
operators from 𝑌 to 𝑋. In the case of 𝑋 = 𝑌, we denote
this space by 𝐿(𝑋). We illustrate the following conditions in
which 𝜎

1
, 𝜎
2
, 𝜎
3
, and 𝜎

4
are constants depending only on

max{‖𝑦‖
𝑌
, ‖𝑧‖
𝑌
}.

(i) 𝐻(𝑦) ∈ 𝐿(𝑌,𝑋) for 𝑦 ∈ 𝑋 with
󵄩󵄩󵄩󵄩(𝐻 (𝑦) − 𝐻 (𝑧))𝑤

󵄩󵄩󵄩󵄩𝑋 ≤ 𝜎
1

󵄩󵄩󵄩󵄩𝑦 − 𝑧
󵄩󵄩󵄩󵄩𝑋‖𝑤‖

𝑌
, 𝑦, 𝑧, 𝑤 ∈ 𝑌,

(8)

and 𝐻(𝑦) ∈ 𝐺(𝑋, 1, 𝛽) (i.e., 𝐻(𝑦) is quasi-m-
accretive), uniformly on bounded sets in 𝑌.

(ii) 𝑄𝐻(𝑦)𝑄
−1

= 𝐻(𝑦) + 𝐴(𝑦), where 𝐴(𝑦) ∈ 𝐿(𝑋) is
bounded, uniformly on bounded sets in 𝑌. Moreover,

󵄩󵄩󵄩󵄩(𝐴 (𝑦) − 𝐴 (𝑧)) 𝑤
󵄩󵄩󵄩󵄩𝑋 ≤ 𝜎

2

󵄩󵄩󵄩󵄩𝑦 − 𝑧
󵄩󵄩󵄩󵄩𝑌‖𝑤‖

𝑋
, 𝑦, 𝑧 ∈ 𝑌, 𝑤 ∈ 𝑋.

(9)

(iii) 𝑔 : 𝑌 → 𝑌 extends to a map from 𝑋 into 𝑋, is
bounded on bounded sets in 𝑌, and satisfies

󵄩󵄩󵄩󵄩𝑔(𝑦) − 𝑔(𝑧)
󵄩󵄩󵄩󵄩𝑌 ≤ 𝜎

3

󵄩󵄩󵄩󵄩𝑦 − 𝑧
󵄩󵄩󵄩󵄩𝑌, 𝑦, 𝑧 ∈ 𝑌, (10)

󵄩󵄩󵄩󵄩𝑔(𝑦) − 𝑔(𝑧)
󵄩󵄩󵄩󵄩𝑋 ≤ 𝜎

4

󵄩󵄩󵄩󵄩𝑦 − 𝑧
󵄩󵄩󵄩󵄩𝑋, 𝑦, 𝑧 ∈ 𝑋. (11)

KatoTheorem (see [14]). Assume that conditions (i), (ii), and
(iii) hold. If V

0
∈ 𝑌, there is a maximal 𝑇 > 0 depending only

on ‖V
0
‖
𝑌
and a unique solution V to the problem (7) such that

V = V (⋅, V
0
) ∈ 𝐶 ([0, 𝑇) ; 𝑌) ∩ 𝐶

1

([0, 𝑇) ; 𝑋) . (12)

Moreover, the map V
0

→ V(⋅, V
0
) is a continuous map from 𝑌

to the following space:

𝐶 ([0, 𝑇) ; 𝑌) ∩ 𝐶
1

([0, 𝑇) ; 𝑋) . (13)

In order to apply the Kato theorem to establish the local
well posedness for the problem (6), we let𝐻(𝑢) = 3𝑢

2

𝜕
𝑥
, 𝑌 =

𝐻
𝑠

(𝑅),𝑋 = 𝐻
𝑠−1

(𝑅),Λ = (1−𝜕
2

𝑥
)
1/2,𝑔(𝑢) = (𝑚−1)Λ

−2

𝜕
𝑥
(𝑢
3

),
and 𝑄 = Λ

𝑠. We know that 𝑄 is an isomorphism of 𝐻𝑠 onto
𝐻
𝑠−1. Now, we cite the following Lemmas.

Lemma 1. The operator 𝐴(𝑢) = 𝑢
2

𝜕
𝑥
with 𝑢 ∈ 𝐻

𝑠

(𝑅), 𝑠 > 3/2

belongs to 𝐺(𝐻
𝑠−1

(𝑅), 1, 𝛽).

Lemma 2. Assume that 𝐻(𝑢) = 3𝑢
2

𝜕
𝑥
with 𝑢 ∈ 𝐻

𝑠

(𝑅) and
𝑠 > 3/2. Then, 𝐻(𝑢) ∈ 𝐿(𝐻

𝑠

(𝑅),𝐻
𝑠−1

(𝑅)) for all 𝑢 ∈ 𝐻
𝑠

(𝑅).
Moreover,

‖(𝐻 (𝑢) − 𝐻 (𝑧)) 𝑤‖
𝐻
𝑠−1 ≤ 𝜎

1
‖𝑢 − 𝑧‖

𝐻
𝑠−1‖𝑤‖

𝐻
𝑠 ,

𝑢, 𝑧, 𝑤 ∈ 𝐻
𝑠

(𝑅) .

(14)

Lemma 3. For 𝑠 > 3/2, 𝑢, 𝑧 ∈ 𝐻
𝑠

(𝑅) and 𝑤 ∈ 𝐻
𝑠−1, it holds

that 𝐴(𝑢) = [Λ
𝑠

, 3𝑢
2

𝜕
𝑥
]Λ
−𝑠

∈ 𝐿(𝐻
𝑠−1

) for 𝑢 ∈ 𝐻
𝑠 and

‖(𝐴(𝑢) − 𝐴(𝑧))𝑤‖
𝐻
𝑠−1 ≤ 𝜎

2
‖𝑢 − 𝑧‖

𝐻
𝑠‖𝑤‖
𝐻
𝑠−1 . (15)

The above three Lemmas can be found in Ni and Zhou
[15].

Lemma 4. Let 𝑢, 𝑧 ∈ 𝐻
𝑠 with 𝑠 > 3/2 and 𝑔(𝑢) = (𝑚 −

1)Λ
−2

𝜕
𝑥
(𝑢
3

). Then, 𝑔 is bounded on bounded sets in 𝐻
𝑠 and

satisfies
󵄩󵄩󵄩󵄩𝑔 (𝑢) − 𝑔 (𝑧)

󵄩󵄩󵄩󵄩𝐻𝑠 ≤ 𝜎
3
‖𝑢 − 𝑧‖

𝐻
𝑠 ,

󵄩󵄩󵄩󵄩𝑔 (𝑢) − 𝑔 (𝑧)
󵄩󵄩󵄩󵄩𝐻𝑠−1 ≤ 𝜎

4
‖𝑢 − 𝑧‖

𝐻
𝑠−1 .

(16)

Proof. For 𝑠
0

> 1/2, we know that ‖𝑢V‖
𝐻
𝑠
0 (𝑅)

≤

𝑐‖𝑢‖
𝐻
𝑠
0 (𝑅)

‖V‖
𝐻
𝑠
0 (𝑅)

. Consequently, we have
󵄩󵄩󵄩󵄩𝑔(𝑢) − 𝑔(𝑧)

󵄩󵄩󵄩󵄩𝐻𝑠 ≤ 𝑐
󵄩󵄩󵄩󵄩󵄩
𝑢
3

− 𝑧
3
󵄩󵄩󵄩󵄩󵄩𝐻𝑠−1

≤ 𝑐‖𝑢 − 𝑧‖
𝐻
𝑠−1 (‖𝑢‖

2

𝐻
𝑠−1 + ‖V‖

2

𝐻
𝑠−1)

≤ 𝜎
3
‖𝑢 − 𝑧‖

𝐻
𝑠 ,

󵄩󵄩󵄩󵄩𝑔 (𝑢) − 𝑔 (𝑧)
󵄩󵄩󵄩󵄩𝐻𝑠−1 ≤ 𝑐

󵄩󵄩󵄩󵄩󵄩
𝑢
3

− 𝑧
3
󵄩󵄩󵄩󵄩󵄩𝐻𝑠−2

≤ 𝑐
󵄩󵄩󵄩󵄩󵄩
𝑢
3

− 𝑧
3
󵄩󵄩󵄩󵄩󵄩𝐻𝑠−1

≤ 𝑐‖𝑢 − 𝑧‖
𝐻
𝑠−1 (‖𝑢‖

2

𝐻
𝑠−1 + ‖V‖

2

𝐻
𝑠−1)

≤ 𝜎
4
‖𝑢 − 𝑧‖

𝐻
𝑠−1 .

(17)

Using the Kato Theorem, Lemmas 1–4, we immediately
obtain the local well-posedness theorem.

Theorem 5. Assume that 𝑢
0

∈ 𝐻
𝑠

(𝑅) with 𝑠 > 3/2. Then,
there exists a 𝑇 > 0 such that the system (5) or the problem (6)
has a unique solution 𝑢(𝑡, 𝑥) satisfying

𝑢 (𝑡, 𝑥) ∈ 𝐶 ([0, 𝑇) ;𝐻
𝑠

(𝑅)) ∩ 𝐶
1

([0, 𝑇) ;𝐻
𝑠−1

(𝑅)) . (18)

3. Weak Solutions

In this section, our aim is to establish the existence of global
weak solutions for the system (6). Firstly, we prove that the
solution of the problem (5) is bounded in the space 𝐿2(𝑅) and
𝐿
∞

(𝑅).

Lemma 6. The solution of the problem (5)with𝑚 > 0 satisfies

∫
𝑅

𝐾
1
𝐾𝑑𝑥 = ∫

𝑅

1 + 𝜉
2

𝑚 + 𝜉2

󵄨󵄨󵄨󵄨�̂�(𝜉)
󵄨󵄨󵄨󵄨

2

𝑑𝜉 = ∫
𝑅

1 + 𝜉
2

𝑚 + 𝜉2

󵄨󵄨󵄨󵄨�̂�0 (𝜉)
󵄨󵄨󵄨󵄨

2

𝑑𝜉,

(19)

where 𝐾
1
= 𝑢 − 𝜕

2

𝑥𝑥
𝑢, and 𝐾 = (𝑚 − 𝜕

2

𝑥𝑥
)
−1

𝑢. Moreover, there
exist two constants 𝑐

1
> 0 and 𝑐

2
> 0 depending only on𝑚 such

that

𝑐
1

󵄩󵄩󵄩󵄩𝑢0
󵄩󵄩󵄩󵄩𝐿2(𝑅) ≤ 𝑐

1
‖𝑢‖
𝐿
2
(𝑅)

≤ 𝑐
2

󵄩󵄩󵄩󵄩𝑢0
󵄩󵄩󵄩󵄩𝐿2(𝑅). (20)
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Proof. Setting𝐾
1
= 𝑢−𝜕

2

𝑥𝑥
𝑢 and𝐾 = (𝑚−𝜕

2

𝑥𝑥
)
−1

𝑢 and using
the first equation of the problem (5), we obtain 𝑢 = 𝑚𝑦 − 𝑦

𝑥𝑥

and

𝑑

𝑑𝑡
∫
𝑅

𝐾
1
𝐾𝑑𝑥

= ∫
𝑅

𝜕𝐾
1

𝜕𝑡
𝐾𝑑𝑥 + ∫

𝑅

𝐾
1

𝜕𝐾

𝜕𝑡
𝑑𝑥 = 2∫

𝑅

𝜕𝐾
1

𝜕𝑡
𝐾𝑑𝑥

= 2∫
𝑅

[−3𝑚𝑢
2

𝑢
𝑥
+ 6𝑢
3

𝑥
+ 18𝑢

𝑥
𝑢
𝑥𝑥

+ 3𝑢
2

𝑢
𝑥𝑥𝑥

]𝐾𝑑𝑥

= 2∫
𝑅

[−𝑚𝜕
𝑥
(𝑢
3

) + (𝑢
3

)
𝑥𝑥𝑥

]𝐾𝑑𝑥

= ∫
𝑅

(𝑚𝑢
3

)𝐾
𝑥
− 𝑢
3

𝐾
𝑥𝑥𝑥

𝑑𝑥

= ∫
𝑅

[𝑚𝑢
3

]𝐾
𝑥
− 𝑢
3

(𝑚𝐾
𝑥
− 𝑢
𝑥
) 𝑑𝑥

= ∫
𝑅

𝑢
3

𝑢
𝑥
𝑑𝑥,

= 0.

(21)

Using the Parseval identity and (21), we obtain (19) and (20).

From Theorem 5, we know that for any 𝑢
0
∈ 𝐻
𝑠

(𝑅) with
𝑠 > 3/2, there exists a maximal 𝑇 = 𝑇(𝑢

0
) > 0 and a unique

strong solution 𝑢 to the problem (6) such that

𝑢 ∈ 𝐶 ([0, 𝑇) ;𝐻
𝑠

(𝑅)) ∩ 𝐶
1

([0, 𝑇) ;𝐻
𝑠−1

(𝑅)) . (22)

Firstly, we study the following differential equation:

𝑝
𝑡
= 3𝑢
2

(𝑡, 𝑝) , 𝑡 ∈ [0, 𝑇) ,

𝑝 (0, 𝑥) = 𝑥.

(23)

Lemma 7. Let 𝑢
0
∈ 𝐻
𝑠, 𝑠 > 3, and let 𝑇 > 0 be the maximal

existence time of the solution to the problem (6). Then, the
problem (23) has a unique solution 𝑝 ∈ 𝐶

1

([0, 𝑇) × 𝑅, 𝑅).
Moreover, the map 𝑝(𝑡, ⋅) is an increasing diffeomorphism of
𝑅 with 𝑝

𝑥
(𝑡, 𝑥) > 0 for (𝑡, 𝑥) ∈ [0, 𝑇) × 𝑅.

Proof. Using Theorem 5, we obtain 𝑢 ∈ 𝐶
1

([0, 𝑇);𝐻
𝑠−1

(𝑅))

and 𝐻
𝑠−1

∈ 𝐶
1

(𝑅). Therefore, we know that functions 𝑢(𝑡, 𝑥)
and 𝑢

𝑥
(𝑡, 𝑥) are bounded, Lipschitz in space, and 𝐶

1 in time.
Using the existence and uniqueness theorem for ordinary
differential equations derives that the problem (23) has a
unique solution 𝑝 ∈ 𝐶

1

([0, 𝑇) × 𝑅, 𝑅).
Differentiating (23) with respect to 𝑥 gives rise to the

following:

𝑑

𝑑𝑡
𝑝
𝑥
= 6𝑢𝑢

𝑥
(𝑡, 𝑝) 𝑝

𝑥
, 𝑡 ∈ [0, 𝑇) ,

𝑝
𝑥
(0, 𝑥) = 1,

(24)

from which we obtain

𝑝
𝑥
(𝑡, 𝑥) = exp(∫

𝑡

0

6𝑢𝑢
𝑥
(𝜏, 𝑝 (𝜏, 𝑥)) 𝑑𝜏) . (25)

For every 𝑇
󸀠

< 𝑇, using the Sobolev imbedding theorem
yields that

sup
(𝜏,𝑥)∈[0,𝑇󸀠)×𝑅

󵄨󵄨󵄨󵄨𝑢𝑥 (𝜏, 𝑥)
󵄨󵄨󵄨󵄨 < ∞. (26)

It is inferred that there exists a constant 𝐾
0
> 0 such that

𝑝
𝑥
(𝑡, 𝑥) ≥ 𝑒

−𝐾
0
𝑡 for (𝑡, 𝑥) ∈ [0, 𝑇) × 𝑅. It completes the proof.

Lemma 8. Assume that 𝑢
0

∈ 𝐻
𝑠

(𝑅), 𝑠 > 3/2. Let 𝑇 be the
maximal existence time of the solution 𝑢 to the problem (6).
Then, it has

‖𝑢 (𝑡, 𝑥)‖
𝐿
∞ ≤

󵄩󵄩󵄩󵄩𝑢0
󵄩󵄩󵄩󵄩𝐿∞𝑒
𝑐𝑡

∀𝑡 ∈ [0, 𝑇] , (27)

where 𝑐 > 0 is a constant independent of 𝑡.

Proof. Let 𝜉(𝑥) = (1/2)𝑒
−|𝑥|, we have (1 − 𝜕

2

𝑥
)
−1

𝑔 = 𝜉 ⋆ 𝑓 for
all 𝑔 ∈ 𝐿

2

(𝑅) and 𝑢 = 𝜉 ⋆ 𝐾
1
(𝑡, 𝑥). Using a simple density

argument presented in [7], it suffices to consider 𝑠 = 3 to
prove this lemma. Let 𝑇 be the maximal existence time of the
solution𝑢 to the problem (6)with the initial value𝑢

0
∈ 𝐻
3

(𝑅)

such that 𝑢 ∈ 𝐶([0, 𝑇),𝐻
3

(𝑅)) ∩ 𝐶
1

([0, 𝑇),𝐻
2

(𝑅)). From (6),
we have

𝑢
𝑡
+ 3𝑢
2

𝑢
𝑥
= − (𝑚 − 1) 𝜉 ⋆ (3𝑢

2

𝑢
𝑥
) . (28)

Since

−𝜉 ⋆ (3𝑢
2

𝑢
𝑥
) = −

1

2
∫

∞

−∞

𝑒
−|𝑥−𝜂|

3𝑢
2

𝑢
𝜂
𝑑𝜂

= −
3

2
∫

𝑥

−∞

𝑒
−𝑥+𝜂

𝑢
2

𝑢
𝜂
𝑑𝜂 −

3

2
∫

+∞

𝑥

𝑒
𝑥−𝜂

𝑢
2

𝑢
𝜂
𝑑𝜂

=
1

2
∫

𝑥

∞

𝑒
−|𝑥−𝜂|

𝑢
3

𝑑𝜂 −
1

2
∫

∞

𝑥

𝑒
−|𝑥−𝜂|

𝑢
3

𝑑𝜂,

𝑑𝑢 (𝑡, 𝑝 (𝑡, 𝑥))

𝑑𝑡
= 𝑢
𝑡
(𝑡, 𝑝 (𝑡, 𝑥)) + 𝑢

𝑥
(𝑡, 𝑝 (𝑡, 𝑥))

𝑑𝑝 (𝑡, 𝑥)

𝑑𝑡

= (𝑢
𝑡
+ 3𝑢
2

𝑢
𝑥
) (𝑡, 𝑝 (𝑡, 𝑥)) ,

(29)

from (29), we have

𝑑𝑢 (𝑡, 𝑝 (𝑡, 𝑥))

𝑑𝑡
=

𝑚 − 1

2
∫

𝑝(𝑡,𝑥)

−∞

𝑒
−|𝑝(𝑡,𝑥)−𝜂|

𝑢
3

𝑑𝜂

−
𝑚 − 1

2
∫

∞

𝑝(𝑡,𝑥)

𝑒
−|𝑝(𝑡,𝑥)−𝜂|

𝑢
3

𝑑𝜂.

(30)
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Using Lemma 6 and (30) derives that
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑑𝑢 (𝑡, 𝑝 (𝑡, 𝑥))

𝑑𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
|𝑚 − 1|

2
∫

∞

−∞

𝑒
−|𝑝(𝑡,𝑥)−𝜂|

𝑢
2

𝑑𝜂

≤
|𝑚 − 1|

2
∫

∞

−∞

𝑢
3

𝑑𝜂

≤
|𝑚 − 1|

2
‖𝑢‖
2

𝐿
2‖𝑢‖
𝐿
∞

≤ 𝑐
󵄩󵄩󵄩󵄩𝑢0

󵄩󵄩󵄩󵄩𝐿2(𝑅)‖𝑢‖𝐿∞

≤ 𝑐‖𝑢‖
𝐿
∞ ,

(31)

where 𝑐 is a positive constant independent of 𝑡. Using (31)
results in the following:

−𝑐∫

𝑡

0

‖𝑢‖
𝐿
∞
(𝑅)

𝑑𝑡 + 𝑢
0
≤ 𝑢 (𝑡, 𝑝 (𝑡, 𝑥)) ≤ 𝑐∫

𝑡

0

‖𝑢‖
𝐿
∞
(𝑅)

𝑑𝑡 + 𝑢
0
.

(32)

Therefore,
󵄨󵄨󵄨󵄨𝑢 (𝑡, 𝑝 (𝑡, 𝑥))

󵄨󵄨󵄨󵄨 ≤
󵄩󵄩󵄩󵄩𝑢 (𝑡, 𝑝 (𝑡, 𝑥))

󵄩󵄩󵄩󵄩𝐿∞

≤
󵄩󵄩󵄩󵄩𝑢0

󵄩󵄩󵄩󵄩𝐿∞ + 𝑐∫

𝑡

0

‖𝑢‖
𝐿
∞
(𝑅)

𝑑𝑡.

(33)

Using the Sobolev embedding theorem to ensure the uniform
boundedness of 𝑢

𝑥
(𝑠, 𝜂) for (𝑠, 𝜂) ∈ [0, 𝑡] × 𝑅 with 𝑡 ∈ [0, 𝑇

󸀠

),
from Lemma 7, for every 𝑡 ∈ [0, 𝑇

󸀠

), we get a constant 𝐶(𝑡)

such that

𝑒
−𝐶(𝑡)

≤ 𝑝
𝑥
(𝑡, 𝑥) ≤ 𝑒

𝐶(𝑡)

, 𝑥 ∈ 𝑅. (34)

We deduce from (34) that the function 𝑝(𝑡, ⋅) is strictly
increasing on 𝑅 with lim

𝑥→±∞
𝑝(𝑡, 𝑥) = ±∞ as long as 𝑡 ∈

[0, 𝑇
󸀠

). It follows from (33) that

‖𝑢 (𝑡, 𝑥)‖
𝐿
∞ =

󵄩󵄩󵄩󵄩𝑢 (𝑡, 𝑝 (𝑡, 𝑥))
󵄩󵄩󵄩󵄩𝐿∞ ≤

󵄩󵄩󵄩󵄩𝑢0
󵄩󵄩󵄩󵄩𝐿∞ + 𝑐∫

𝑡

0

‖𝑢‖
𝐿
∞
(𝑅)

𝑑𝑡.

(35)

Using the Gronwall inequality and (35) derives that (27)
holds.

For a real number 𝑠 with 𝑠 > 0, suppose that the function
𝑢
0
(𝑥) is in𝐻

𝑠

(𝑅), and let 𝑢
𝜀0
be the convolution 𝑢

𝜀0
= 𝜙
𝜀
⋆𝑢
0

of the function 𝜙
𝜀
(𝑥) = 𝜀

−1/4

𝜙(𝜀
−1/4

𝑥) and 𝑢
0
such that the

Fourier transform 𝜙 of 𝜙 satisfies 𝜙 ∈ 𝐶
∞

0
, 𝜙(𝜉) ≥ 0, and

𝜙(𝜉) = 1 for any 𝜉 ∈ (−1, 1). Then, we have 𝑢
𝜀0
(𝑥) ∈ 𝐶

∞. It
follows fromTheorem 5 that for each 𝜀 satisfying 0 < 𝜀 < 1/2,
the Cauchy problem,

𝑢
𝑡
− 𝑢
𝑡𝑥𝑥

+ 3𝑚𝑢
2

𝑢
𝑥
= 6𝑢
3

𝑥
+ 18𝑢𝑢

𝑥
𝑢
𝑥𝑥

+ 3𝑢
2

𝑢
𝑥𝑥𝑥

,

𝑢 (0, 𝑥) = 𝑢
𝜀0

(𝑥) ,

(36)

has a unique solution 𝑢
𝜀
(𝑡, 𝑥) ∈ 𝐶

∞

([0, 𝑇);𝐻
∞

). Using
Lemmas 6 and 8, for every 𝑡 ∈ [0, 𝑇), we obtain

󵄩󵄩󵄩󵄩𝑢𝜀 (𝑡, 𝑥)
󵄩󵄩󵄩󵄩𝐿2(𝑅) ≤ 𝑐

󵄩󵄩󵄩󵄩𝑢𝜀 (0, 𝑥)
󵄩󵄩󵄩󵄩𝐿2(𝑅) ≤ 𝑐

󵄩󵄩󵄩󵄩𝑢0
󵄩󵄩󵄩󵄩𝐿2(𝑅),

󵄩󵄩󵄩󵄩𝑢𝜀 (𝑡, 𝑥)
󵄩󵄩󵄩󵄩𝐿∞ ≤

󵄩󵄩󵄩󵄩𝑢𝜀 (0, 𝑥)
󵄩󵄩󵄩󵄩𝐿∞𝑒
𝑐𝑡

≤ 𝑐
󵄩󵄩󵄩󵄩𝑢0

󵄩󵄩󵄩󵄩𝐿∞𝑒
𝑐𝑡

.

(37)

Sending 𝑡 → 𝑇, we know that inequalities (37) are still valid.
This means that for 𝑡 ∈ [0,∞), (37) hold.

Now, we state the concepts of weak solutions.

Definition 9 (weak solution). We call a function 𝑢 : 𝑅
+
×𝑅 →

𝑅 a weak solution of the Cauchy problem (5) provided that

(i) 𝑢 ∈ 𝐿
∞

(𝑅
+
; 𝐿
2

(𝑅));
(ii) 𝑢
𝑡
− 𝑢
𝑡𝑥𝑥

+ 3𝑚𝑢
2

𝑢
𝑥

= 6𝑢
3

𝑥
+ 18𝑢𝑢

𝑥
𝑢
𝑥𝑥

+ 3𝑢
2

𝑢
𝑥𝑥𝑥

in
𝐷
󸀠

([0,∞) × 𝑅), that is, for all 𝜑 ∈ 𝐶
∞

0
([0,∞) × 𝑅)

there holds the following identity:

∫
𝑅
+

∫
𝑅

(𝑢 (𝜑
𝑡
− 𝜑
𝑡𝑥𝑥

) + 𝑚𝑢
3

𝜑
𝑥
− 𝑢
3

𝜑
𝑥𝑥𝑥

) 𝑑𝑥 𝑑𝑡

+ ∫
𝑅

𝑢
0
(𝑥) 𝜑 (0, 𝑥) 𝑑𝑥 = 0.

(38)

Theorem 10. Let 𝑢
0
(𝑥) ∈ 𝐿

2

(𝑅). Then, there exists a weak
solution 𝑢(𝑡, 𝑥) ∈ 𝐿

∞

([0,∞); 𝐿
2

(𝑅)) to the problem (5).

Proof. Consider the problem (36). For an arbitrary 𝑇 > 0,
choosing a subsequence 𝜀

𝑛
→ 0, from (37), we know that

𝑢
𝜀
𝑛

is bounded in 𝐿
∞ and ‖𝑢

𝜀
𝑛

‖
𝐿
2
(𝑅)

is uniformly bounded
in 𝐿
2

(𝑅). Therefore, we obtain that 𝑢3
𝜀
𝑛

is bounded in 𝐿
2

(𝑅).
Therefore, there exist subsequences {𝑢

𝜀
𝑛

} and {𝑢
3

𝜀
𝑛

}, still
denoted by {𝑢

𝜀
𝑛

} and {𝑢
3

𝜀
𝑛

}, are weakly convergent to V in
𝐿
2

(𝑅). Noticing (38) completes the proof.
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