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The sequence space £(p) was introduced by Maddox (1967). Quite recently, the sequence space €(B, p) of nonabsolute type has
been introduced and studied which is the domain of the double sequential band matrix B(7, 5) in the sequence space £(p) by Nergiz
and Basar (2012). The main purpose of this paper is to investigate the geometric properties of the space €(B, p), like rotundity and

Kadec-Klee and the uniform Opial properties. The last section of the paper is devoted to the conclusion.

1. Introduction

By w, we denote the space of all real-valued sequences. Any
vector subspace of w is called a sequence space. We write £,
¢, and ¢, for the spaces of all bounded, convergent, and null
sequences, respectively. Also by bs, cs, ¢;, and €,; we denote
the spaces of all bounded, convergent, absolutely convergent,
and p-absolutely convergent series, respectively, where 1 <
p < oo.

Assume here and after that (p,) is a bounded sequence
of strictly positive real numbers with sup p, = H and
M = max{l, H}. Then, the linear space £(p) was defined by
Maddox [1] (see also Simons [2] and Nakano [3]) as follows:

¢ =4dx=(x)€cw: xkp"<oo}
()= {= (0) w: Tl |
(0< pr <H < 00)

which is complete paranormed space paranormed by

1M
o= (Tt ) @

k

For simplicity in notation, here and in what follows, the
summation without limits runs from 1 to co.

Quite recently, Nergiz and Basar [4] have introduced

the space £(B, p) of nonabsolute type which consists of all
sequences whose B(7,3)-transforms are in the space €(p),
where B(7,5) = {b, (1}, 5;)} is defined by

e k=n,
by (rosk) = 15, k=n-1, (3)
0, otherwise

forallk,n € N, where 7 = (r,) and § = (s;) are the convergent
sequences. We should record that the double sequential band
matrices were used for determining its fine spectrum over
some sequence spaces by Kumar and Srivastava in [5, 6],
Panigrahi and Srivastava in [7], and Akhmedov and El-
Shabrawy in [8]. The reader may refer to Nergiz and Bagar [4,
9] for relevant terminology and additional references on the
space £(B, p), since the present paper is a natural continuation
of them. Here and after, for short we write B instead of B(7, ).
In the special case p, = p for all k € N, the space €(B, p) is
reduced to the space (fp) 7 that s,

(Ep)g = {("k) cw: Z|5k—1xk—1 + rkxklp < OO} , W

k

(0< p<o0).



2. The Rotundity of the Space ¢(B, p)

The rotundity of Banach spaces is one of the most important
geometric property in functional analysis. For details, the
reader may refer to [10-12]. In this section, we characterize

the rotundity of the space €(B, p) and give some results related
to this concept.

Definition 1. Let S(X) be the unit sphere of a Banach space X.
Then, a point x € S(X) is called an extreme pointif 2x = y+z
implies y = z for every y,z € S(X). A Banach space X is
said to be rotund (strictly convex) if every point of S(X) is an
extreme point.

Definition 2. A Banach space X is said to have Kadec-
Klee property (or property (H)) if every weakly convergent
sequence on the unit sphere is convergent in norm.

Definition 3. A Banach space X is said to have

(i) the Opial property if every sequence (x,) weakly
convergent to x, € X satisfies

lim inf [x, — x| < lim inf |x, + x| (5)

for every x € X with x # x,;
(ii) the uniform Opial property if for each € > 0, there
exists an + > 0 such that

1+r < lim inf |x, + x| (6)

for each x € X with ||x|| > € and each sequence (x,,)
in X such that x, — 0 and lim inf |x, [l > 1.

n—>00|

Definition 4. Let X be a real vector space. A functional o :
X — [0,00) is called a modular if

(i) o(x) = 0 ifand only if x = 6;
(ii) o(ax) = o(x) for all scalars o with || = 1;

(iil) o(ax+ By) < o(x)+o(y) forallx, y € Xand o, 5 > 0
witha + f=1;

(iv) the modular o is called convex if o (ax+fy) < ao(x)+
Po(y)forallx,y € Xanda, f > Owitha +f=1.

A modular o on X is called

(a) right continuous if lim,_, ;+0(ax) = o(x) for all x €

X,.
(b) left continuous if lim, _,;-o(ax) = o(x) for all x €
X,.
(c) continuous if it is both right and left continuous,
where
XU:{xeX: lima(cxx):O}. 7)
a—0*

We define o, on £(B, p) by 0,,(x) = ¥y sy Xy + 75 |
If pp > 1forallk e N ={1,2,3,...}, by the convexity of the
function t — |¢|P* for each k € N, 0, is a convex modular on

¢(B, p).
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Proposition 5. The modular g, on (B, p) satisfies the follow-
ing properties with p, > 1 for all k € N:

(i) if 0 < @ < 1, then (xMaP(x/(x) <0,(x) ando,(ax) <
ocap(x).

(ii) If o = 1, then 0,(x) < a0, (x/).

(iii) If « > 1, then ap(x) < ocap(x/oc).

(iv) The modular o, is continuous on the space £(B, p).

p

Proof. Consider the modular o, on ¢(B, p).

(i) Let 0 < « < 1, then a™/a* < 1. So, we have

M_ (X Myl P
x O —|=« Z—S X + 1.X
P (3) = T s+l

o Pr
= Z—p |Sto1 %ot + 7]
&

< D lsicrxi + rexil ™ = 0, (1) (8)
k

0, (ax) = Zocp"|sk_1xk_1 + g |7
p

< ocZ|sk_1xk_1 + x| = oo, (x).
3

(ii) Let « > 1. Then, a™/aP* > 1 for all Pr = L. So, we
have

OCM X
0y () < 50, () = oa, (&) 9)

(iii) Let o > 1. Then, a/aP* > 1 for all p, > 1. So, we have

0, (%) = Y s X + ™
P

o x (10)
i Pe _ -~
= %apk |sk1561 + x| ™ = ao <(x> ~
(iv) By (ii) and (iii), one can immediately see for « > 1
that
M
0, (x) a0, (x) <0, (ax) <ao,(x). 1)
By passing to limit as « — 17 in (11), we have
limaﬂﬁcrp(ocx) = (TP(:?C). Hence, 0, is right contin-
uous. If 0 < « < 1, by (i) we have
M
a0, (x) <0, (ax) < ao, (x). (12)
By letting « — 17 in (12), we observe that

limaﬂrap(txx) = p(x). Hence, 0, is also left con-
tinuous, and so, it is continuous. O
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Proposition 6. For any x € €(B, p), the following statements
hold:
(1) ifllx|l < 1, then op(x) < |lx]|.
(ii) If Il > 1, then ap(x) > [lx|.
(i) [|x|l = 1 if and only ifop(x) =1.
(iv) x|l < 1 if and only ifo'p(x) <L
V) llxll > 1 if and only ifap(x) > 1.

Proof. Let x € £(B, p).

(i) Lete > Obesuchthat0 < € < 1—||x||. By the definition
of || - ||, there exists an & > 0 such that ||x|| + € > « and
ap(x) < 1. From Parts (i) and (ii) of Proposition 5, we
obtain

0y @ <0, |Uxl+e) > | < (xl + )0, (2 ) < Il +
13)

Since € is arbitrary, we have (i).

(ii) If we choose € > 0 such that 0 < € < 1 - (1/] x]), then
1 < (1—-e€)llx|l < [lx[|. By the definition of || - || and Part
(i) of Proposition 5, we have

X 1
1<, [(1 s ||x||] SUomr®-
So, (1 —¢€)|x| < ap(x) foralle € (0,1 —(1/]x]|))). This
implies that || x| < ap(x).

(iii) Since 0, is continuous, by Theorem 1.4 of [12] we

directly have (iii).
(iv) This follows from Parts (i) and (iii).

(v) This follows from Parts (ii) and (iii). O

Now, we consider the space #(B, p) equipped with the
Luxemburg norm given by

It = inf fa> 030, (2) <1} (15)

Theorem 7. £(B, p) is a Banach space with Luxemburg norm.

Proof. Let S, = {a >0 : Gp(x/(x) < 1} and ||lx|| = inf S, for
all x € ¢(B, p)- Then, S, ¢ (0, 00). Therefore, ||x|| > 0 for all
x € £(B, p).

For x = 0, GP(G) = 0forall @ > 0. Hence, S, = (0, 00) and
6]l = inf S, = inf(0, c0) = 0.

Let x#0andY = {kx : k € Cand x ¢ K(E,p)} be
a nonempty subset of £(B, p). Since Y ¢ S[&(B, p)], there
exists k; € C such that k,x ¢ S[€(B, p)]. Obviously, k; #0.
We assume that 0 < « < 1/k; and a € S,. Then, (x/«) €
S[€(B, p)]. Since |k, a| < 1, we get

kyx = k10‘£ €S [€ (E,p)] (16)

which contradicts the assumption. Hence, we obtain that if
a € S, then « > 1/|k,|. This means that ||x|| > 1/|k,| > 0.
Thus, we conclude that | x| = 0 if and only if x = 0.

Now, let k #0 and « € S;,. Then, we have

0(2)<1 Zesledr).  w
Therefore, we obtain
|k| k|  k _
EE =T es[e(Bp)], % €S, (18)

Thatis, | x| < «/|k| and |k|[| x| < aforalla € S;.,. So, |k|[lx] <
llkx]l.

If we take 1/k and kx instead of k and x, respectively, then
we obtain that

1 1
|—\ ] < H—kx|| Slxl, kel < Kl (19)
kx k

Hence, we get [|kx| = |k|[lx]|. This also holds when k = 0.
To prove the triangle inequality, let x, y € €(B, p) and € >
0 be given. Then, there exist « € S, and € S, such that

a < ||x|l + eand B < ||yl + €. Since S[e(B, p)] is convex,

*es[e(Bp)], %es[e(é,p)],

X+ _
W) () (D) esle(sa).
a+f a+f\a a+fp\p
Therefore, @ + 5 € Sy+y- Then, we have [x + y|| < o + B <
llxll + Iyl + 2¢. Since € > 0 was arbitrary, we obtain |lx + y|| <
llxll + Il yll. Hence, ||x]| = inf{a > 0 : Gp(x/oc) < 1} isanorm
on ¢(B, p)-

Now, we need to show that every Cauchy sequence in
¢(B, p) is convergent according to the Luxemburg norm. Let
{x]i")} be a Cauchy sequence in ¢(B, p) and € € (0,1). Thus,
there exists 7, such that [x® — x"™| < € for all n,m > ny. By
Part (i) of Proposition 6, we have

(20)

o, (x(”) - x(m)) < "x(") - x(m)” <e€ (21)

for all r,m > np. This implies that
DY LIC )N < (22)

Then, for each fixed k and for all n,m > n,,
|[B(x" = x| = [(Bx"), - (Bx™), | <e.  (23)

Hence, the sequence {(Bx"™),} is a Cauchy sequence in
R. Since R is complete, there is a (Bx), € R such that

(Ex(m))k — (Ex)k asm — 00. Therefore, as m — oo by
(22), we have

Y[ - < o

for all n > .



Now, we have to show that (x;) is an element of ¢(B, p).
Since (Bx"™), — (Bx), asm — 00, we have

im0, (x® =x") =0, (x" - ). (25)

Then, we see by (21) that 0,(x"™ - x) < [x" - x|| < e for
all n > n,. This implies that x” — xasn — ©0. So, we
have x = x"™ — (x™ - x) € £(B, p)- Therefore, the sequence
space €(B, p) is complete with respect to Luxemburg norm.
This completes the proof. O

Theorem 8. The space £(B, p) is rotund if and only if p, > 1
forallk e N.

Proof. Let £(B, p) be rotund and choose k € N such that p; =
1 for k < 3. Consider the following sequences given by

1 —s; s;s
1 152
X = (0,—,—,—,... ,
ry Ny N

(26)
y = <0)0,l,__‘g2,ﬂ,”.)'
T, Tyty TyTsly
Then, obviously x # y and
xX+y
ap(x)zap(y)=0p<T>=l. (27)

By Part (iii) of Proposition 6, x, y, (x + y)/2 € S[€(B, p)]
which leads us to the contradiction that the sequence space
¢(B, p) is not rotund. Hence, p, > 1 forall k € N.

Conversely, let x € S[e(B, p)l and v,z € S[e(B, p)]
with x = (v + z)/2. By convexity of o, and Part (iii) of
Proposition 6, we have

o +0,(z
1=O'P(X)SMS1+E=1, (28)
2 2 2
which gives that o'p(v) = ap(z) =1,and
0, (V) +0,(2z)
0y () = L E (29)

Also, we obtain from (29) that

1
Z|Sk—1xk—1 + kakipk =3 <Z|5k—lvk—1 + Vka|Pk
k k

(30)

+Z|Sk,lzk,1 + rkzklpk .
k

Since x = (v + z)/2, we have

Z|5k—1 (Veer + 2io1) + 1 (v + Zk)|Pk
k

1
=3 <Z|Sk—lvk—1+rkvk|Pk+Z|5k—lzk—1+rkzk|Pk) .
x %

(31)
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This implies that

|5k-1 (Vier + Ziy) + 15 (v + Zk)lpk
1 o, L P (32)
= 5|5k—11’k—1 + rka| + E|Sk—lzk—1 + szk|

for all k € N. Since the function ¢ ~ [¢|P* is strictly convex for
all k € N, it follows by (32) that v, = z; for all k € N. Hence,
v = z. That is, the sequence space £(B, p) is rotund. O

Theorem 9. Let x € €(B, p). Then, the following statements
hold:

(i) 0 < a < 1 and ||lx|| > & imply ap(x) > oM.

(i) @ = 1 and ||x|| < o imply 0,(x) < oM,

Proof. Let x € €(B, p).

(i) Suppose that |lx|| > o« with 0 < a < 1. Then,
[x/«ll > 1. By Part (ii) of Proposition 6, [lx/«| > 1
implies ap(x/oc) > |lx/«| > 1. That is, Up(x/(x) > 1.
Since 0 < « < 1, by Part (i) of Proposition 5, we get
ocMop(x/oc) < 0,(x). Thus, we have a™ < 0, (x).

(ii) Let x| < « and & > 1. Then, |lx/a| < 1. By Part
(i) of Proposition 6, ||x/al| < 1 implies ap(x/(x) <
lx/ax| < 1. That is, ap(x/oc) < 1.Ifx = 1, then

ap(x/oc) =0,(x)<1= oM. Ifa > 1, then by Part (ii)

of Proposition 5, we have ap(x) < (xMap(x/oc). This

means that op(x) < oM, L]

Theorem 10. Let (x,) be a sequence in 2(B, p). Then, the
following statements hold:

(i) lim

(ii) lim,, _, 0,0, (x,) = 0 implies lim

llxc, Il = 1 implies lim,, _, o,0,(x,,) = 1.
[l [l = 0.

n— 00

Proof. Let (x,) be a sequence in €(B, p).

(i) Letlim, _, . llx,|l = 1 and € € (0, 1). Then, there exists
ny € Nsuchthatl—e < |x,|| < e+1foralln > n. By
Parts (i) and (ii) of Theorem 9, 1 — € < |x,,|| implies
o,(x,) > (1- )™ and |l < €+ 1 implies 0,(x,) <
(1+eMforalln > ny. This means € € (0, 1) and for
all n > n, there exists n, € N such that (1 — &)™ <
o,(x,) <(1+ e)™. That s, lim, _, ,0,(x,) = 1.

(ii) We assume thatlim,,_,  [lx, | #0and € € (0, 1). Then,
there exists a subsequence (xnk) of (x,) such that
IIxnk | > € for all k € N. By Part (i) of Theorem 9,
0 <e<landlx,]| > €implyo,(x,) > eM. Thus,
lim,, _, o,0,(x,,) #0 for all k € N. Hence, we obtain

thatlim, _, .,0,(x,) = 0 implies lim, _, ., [lx,[ = 0. O

Theorem 11. Let x € £(B,p) and (x™) ¢ ¢(B,p). If

ap(x(”)) — ap(x) asn — 0o and x}(:‘) — X asn — 00

forallk € N, then xX™ — x asn — oo.
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Proof. Let € > 0 be given. Since Gp(x) =2k I(Ex)klp" < 00,
there exists k, € N such that

Z |(§x)k|Pk < 3(216\/[+1)' (33)

k=ky+1

It follows from the fact

ko ko
nli—I>noo 7, (x(n)) _ ,;'(Bx(n))kr’k -0, (x) - ];KBx)k'Pk

(34)

that there exists 1, € N such that for all n > n, and for all
keN,

ko _
o (50) - YJB), 1

) (35)
<o, (x) - ;Kﬁx)krk + ﬁ
and for all n > n,
ko .
ZHE (x(") - x)}k|‘ok <3 (36)
k=1

(o]
serr] § [
k=ky+1

e

k=ky+1

5
M P )\ [P
< —+2 ap(x,,)—k_lKBx )k
Sl ]
ko+1
Ky
< - 4+2M I:GP (x) - kZlKBx)k'Pk
€ — = DPr
+3(2M) k:kzo+1|(3x)k' ]
£42M|2 Bx) [P+ =5
e
€ M € € B
< 5 +2 [23(2M+1) + 3(2M)] =€.
(37)

This means that ap(x(") —-x) — 0asn — ©00.By Part (ii) of
Theorem 10, ap(x(”) -x) — Oasn — ooimplies ||x,—x| —

O0asn — oo.Hence, x, — xasn — oo. O

Theorem 12. The sequence space £(B, p) has the Kadec-Klee
property.

Proof. Let x € S[€(B, p)] and (x") ¢ e(B, p) such that
Ix® — 1 and x® Y x are given. By Part (ii) of
Theorem 10, we have op(x(")) — lasn — o00.Also x €
S[€(B, p)] implies ||x|| = 1. By Part (iii) of Proposition 6, we
obtain o,(x) = L. Therefore, we have op(x(")) — 0,(x) as
n — oo.

Since x™

¢(B,p) — R defined by
qik(x) = x; is continuous, x,(c”) — xpasn — oo forall

w
— x and g :

k € N. Therefore, x™ — xasn — oo.

Since any weakly convergent sequence in £(B, p) is
convergent, the sequence space (B, p) has the Kadec-Klee
property. O

Theorem 13. For any 1 < p < oo, the space (€,)5 has the
uniform Opial property.

Proof. Lete > 0and ¢, € (0, €) be given such that 1+ (e?/2) >
(1+¢)?. Alsolet x € (€,)5 and ||x|| > e. There exists k; € N
such that

(e8] _ p €0 P
k:kzl+1|(Bx)k' < <Z> ) (38)
Hence, we have
[oe) eo
k:kzl+1xkek < Z (39)




Furthermore, we have

k 00

@< Y|(B) S+ Y |(B),f

k=1 K=k, +1

ky
< 3B,/ + (2 (40)

(), (a

For any weakly null sequence (x(’")) C S[(EP)B] since x}( m o,
0asm — oo for each k € N, there exists m, € N such that
for all m > my,

p
€

< —. 42
1 (42)

ky

(m)
Zxk ek
k=1

Therefore, for all m > m,,

k
"x(m) + x” = 2 (x,(:n) + X ) e+ i (xl(cm) ) e
k=1 k=k,+1
(o]
> Z Xk )ek
k=k,+1
ky 0
— |25 e D, Fie
k=1 k=k;+1
> Zxkek + Z xk Ek e:'
k=k,+1
(43)
Moreover,
P
Zxkek + Z xk ‘e
k=k;+1
K, o)
= Y |(Bx)el"+ Y [(Bx"),e’
= k=k;+1
> E (1 — i) (44)
= + 4
eP
=1+ —
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Then, we have

[+ ] = Z > e,
k=k,+1
> 1+eo—§ (45)
> 1+§.
2

This means that (£,) has the uniform Opial property. [

3. Conclusion

The sequence spaces bv(u, p) and bv., (u, p) of nonabsolute
type consisting of all sequences x = (x;) such that
{uy () — x4_1)} is in the Maddox’ spaces €(p) and €. (p) were
introduced by Bagsar et al. [13], where u = (1) is a sequence
such that u; #0 for all k € N and the rotundity of the space
bv(u, p) was examined.

The sequence space a’ (1, p) of nonabsolute type consist-
ing of all sequences x = (x;) such that A"x = {3} (1 +
rk)xk/(n + 1)} € €(p) was studied by Aydin and Basar [14],
and some results related to the rotundity of the space a’ (u, p)
were given.

Quite recently, the sequence space €(p) of nonabsolute
type consisting of all sequences x = (x;) such that B(r, s)x =
(sx3_; + rx;) € €(p) was defined by Aydin and Basar [15],
and emphasized the rotundity of the space #(p) together with
some related results.

Although the sequence spaces a’ (u, p) and £(B, p) are not
comparable, since the double sequential band matrix B(7,3)
reduces to the generalized difference matrix B(r,s) in the
special case 7 = re and § = se, the new space £(B, p) is
more general than the space #(p). Similarly, the sequence
space £(B, p) is also reduced to the space bv(u, p) in the case
7 = (1) and § = (~u;). So, the results on the space €(B, p)
are much more comprehensive than the results on the space
bv(u, p). Additionally, the corresponding theorems on the
Kadec-Klee property of the space £(B, p) and the uniform
Opial property of the space (£,) 5 were not given by Basar et al.
[13] and Aydin and Bagar [15] which make the present paper
significant.

Acknowledgments

The main results of this paper were presented in part at the
conference First International Conference on Analysis and
Applied Mathematics (ICAAM 2012) held on October 18-21,
2012 in Gimiishane, Turkey, at the University of Giimiishane.

References
(1] L. J. Maddox, “Spaces of strongly summable sequences,” The

Quarterly Journal of Mathematics. Oxford, vol. 18, no. 2, pp. 345-
355, 1967.



Abstract and Applied Analysis

(2]

(3]

(8]

S. Simons, “The sequence spaces €(p,) and m(p,);” Proceedings
of the London Mathematical Society, vol. 15, no. 3, pp. 422-436,
1965.

H. Nakano, “Modulared sequence spaces,” Proceedings of the
Japan Academy, vol. 27, no. 2, pp. 508-512, 1951.

H. Nergiz and F Basar, “Some topological and geometric
properties of the domain of the double sequential band matrix
B(7,5) in the sequence space €(p),” AIP Conference Proceedings,
vol. 1470, no. 1, pp- 163-168, 2012.

P. D. Srivastava and S. Kumar, “Fine spectrum of the generalized
difference operator A, on sequence space l,,” Thai Journal of
Mathematics, vol. 8, no. 2, pp. 221-233, 2010.

P. D. Srivastava and S. Kumar, “Fine spectrum of the generalized
difference operator A, on sequence space l,,” Applied Mathe-
matics and Computation, vol. 218, no. 11, pp. 6407-6414, 2012.

B. L. Panigrahi and P. D. Srivastava, “Spectrum and fine
spectrum of generalized second order difference operator A”_
on sequence space ¢,,” Thai Journal of Mathematics, vol. 9, no. 1,
pp. 57-74, 2011.

A. M. Akhmedov and S. R. El-Shabrawy, “On the fine spectrum
of the operator A, over the sequence space c,” Computers &
Mathematics with Applications, vol. 61, no. 10, pp. 2994-3002,
2011.

H. Nergiz and E Basar, “Domain of the double sequential band
matrix B(7, 5) in the sequence space €(p),” Abstract and Applied
Analysis. In press.

S. Chen, “Geometry of Orlicz spaces,” Dissertationes Mathemat-
icae, vol. 356, pp. 1-224, 1996.

J. Diestel, Geometry of Banach Spaces—Selected Topics, Springer,
Berlin, Germany, 1984.

L. Maligranda, Orlicz Spaces and Interpolation, Institute of
Mathematics, Polish Academy of Sciences, Poznan, Poland,
1985.

E Bagar, B. Altay, and M. Mursaleen, “Some generalizations
of the space bv, of p-bounded variation sequences,” Nonlinear
Analysis: Theory, Methods &Applications, vol. 68, no. 2, pp. 273-

287, 2008.
C. Aydin and F. Bagar, “Some generalizations of the sequence
spacea;)” Iranian Journal of Science and Technology. Transaction

P
A, vol. 30, no. A2, pp. 175-190, 2006.

C. Aydin and F Basar, “Some topological and geometric
properties of the domain of the generalized difference matrix
B(r, s) in the sequence space €(p),” Thai Journal of Mathematics.
In press.



-

Advances in

Operations Research

/
—
)

Advances in

DeC|S|on SC|ences

Mathematical Problems
in Engineering

Algebra

2

Journal of
Probability and Statistics

The Scientific
\(\(orld Journal

International Journal of

Combinatorics

Journal of

Complex Analysis

International
Journal of
Mathematics and
Mathematical
Sciences

Hindawi

Submit your manuscripts at
http://www.hindawi.com

Journal of

Mathematics

Journal of

DISBJBLL alhematics

International Journal of

Stochastic Analysis

Journal of

Function Spaces

Abstract and
Applied Analysis

Journal of

Applied Mathematics

ol

w2 v (P
/

e

\jtl (1)@" W, E

International Journal of
Differential Equations

ces In

I\/lathémamcal Physics

Discrete Dynamics in
Nature and Society

Journal of

Optimization



