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Recently, the stochastic resonance effect has been widely used by the method of discovering and extracting weak periodic signals
from strong noise through the stochastic resonance effect. The detection of the single-frequency weak signals by using stochastic
resonance effect is widely used. However, the detection methods of the multifrequency weak signals need to be researched.
According to the different frequency input signals of a given system, this paper puts forward a detection method of multifrequency
signal by using adaptive stochastic resonance, which analyzed the frequency characteristics and the parallel number of the input
signals, adjusted system parameters automatically to the low frequency signals in the fixed step size, and then measured the
stochastic resonance phenomenon based on the frequency of the periodic signals to select the most appropriate indicators in the
middle or high frequency. Finally, the optimized system parameters are founded and the frequency of the given signals is extracted
in the frequency domain of the stochastic resonance output signals. Compared with the traditional detection methods, the method
in this paper not only improves the work efficiency but also makes it more accurate by using the color noise, the frequency is more
accurate being extracted from the measured signal. The consistency between the simulation results and analysis shows that this
method is effective and feasible.

1. Introduction

Now, we need to find and extract useful signal through
the signal detection in engineering technology and scientific
research.The traditional method to detect signal usually uses
linear filtering, wavelet analysis [1], and so on to reduce and
eliminate noise and finally obtain the useful signal. Although
some weak signals are often overwhelmed by strong noise,
the weak periodic signal is also reduced in the denoise to
a certain extent, which made some weak periodic signal fail
to be detected and extracted. In 1981, Benzi et al. proposed
the concept of stochastic resonance [2] which provides a
new research method for the detection of weak periodic
signal. Compared to the traditional signal detection method,
stochastic resonance is a kind of nonlinear phenomenon,
which adds a certain intensity noise rather than reducs
the noise, then uses the synergy among signal frequency,
noise intensity, and nonlinear system to drive part of the

noise energy into the measuring signal energy, and finally
highlights in the output signal.

With the development of the theory of stochastic reso-
nance, the method of finding and extracting weak periodic
signals from strong noise by stochastic resonance effect has
been widely used in various fields of science such as nerve
physiology, intelligence theory, nonlinear optics, signal pro-
cessing, communication engineering, and sociology [3–11].
Among them, the method of detecting single-frequency
weak signals by using stochastic resonance effect has been
more mature. Its main method is to analyze the relationship
between the characteristics of the measured input signal and
the system parameters through the nonlinear bistable system,
through adjusting the system parameters [12] or increasing
the strength of the noise [13, 14] to realize stochastic res-
onance. In 1990, Gang et al. [15] put forward the famous
idea of adiabatic approximation theory, which proved that
stochastic resonance is used to detect small parameter signal.
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Then the method of stochastic resonance detection to single-
frequency signal is gradually perfect. However, in the actual
research, we found that the signal submerged by strong noise
is unknown weak periodic signal and even unknown high
frequency signal. Then, the research on the detection of
multiple frequency signals received the widespread attention
rapidly.

It is mainly used to realize stochastic resonance through
adjusting system parameters manually or increasing the
strength of noise so that we can find and extract the unknown
multiple frequency signal. Due to the manual, adjusting has
low work efficiency, and cannot achieve continuous search
which will omit part of the signal, and it is difficult to find and
search the optimal system parameters which will certainly
omit part of the signal. This paper combines the theory of
stochastic resonance and adaptive algorithm to put forward
a kind of adaptive stochastic resonance detection method for
multiple-frequency signal, respectively, of the low frequency
and high frequency input signals. Based on the traditional
single-frequency weak signal detection, selected the SNR
to be a measurement index of the generation of stochastic
resonance and reducing the range of parameter values by
the threshold analysis, this method can find the optimal
system parameters effectively and can detect a multiple weak
periodic signals. A large number of simulation results show
that the output signal of stochastic resonance system will
be interfered by some noise which will lead to distortion of
waveform slightly.Therefore, this papermakes processing the
output signal of stochastic resonance by using the autocorre-
lation method which only changes the amplitude and phase,
without changing the frequency. It can reduce the impact of
noise, make the waveform more similar to measured signal,
highlight the frequency of the signal cycle component, and
enhance the SNR.

Themethods to detect the high-frequency signals are sub-
sampled, frequency-shifted and rescaling, wavelet analysis
[16, 17], and so forth. Its main idea is transforming the
high frequency into the low frequency through scale changes
to meet the conditions of stochastic resonance then detect
and extract the low-frequency signal, and finally achieve
recovery. However, the output signal waveform extracted by
these methods often exists with some distortion. In 2008,
Mao et al. [18] proposed a method, which adds one cycle
modulated signal to the stochastic resonance system, and
then adjust the frequency of the modulation signal close to
the frequency of the signal to be measured and generate the
differential frequency which meets the adiabatic approxima-
tion theory. Finally, significant changes of the output signal
spectrogram occurred in the approximation process. This
characteristic can be taken as the basis for signal detection
and extraction. But it used ideal Gaussian white noise during
the experiment rather than the nonzero color noise which is
often encountered in practical engineering applications such
as themechanical fault detection [8], and its frequency is con-
centrated in a frequency band and can easily be confusedwith
the frequency of signal to be measured. It is considered that
the frequency of the multi-frequency signal to be measured
may be odd multiples. This paper contemplated to select
the reciprocal of the power spectrum in the autocorrelation
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Figure 1:When𝐴 = 0,𝐷 = 0, the corresponding potential function
curve 𝑈(𝑥).

function of the output signal as measurement index under
the interference of the color noise, which can distinguish the
color noise with the signal to be measured and extract the
high frequency of multiple parallel input signals effectively.
This paper made a large number of numerical simulations by
MATLAB, and the simulation results show the effectiveness
and feasibility of the method and have a good prospect.

2. Bistable System and Its
Performance Analysis

This paper uses the bistable system model: Langevin equa-
tion. It is actually an overdamped bistable system model
driven by cycle, and its mathematical expression is [19]

𝑑𝑥

𝑑𝑡
= 𝑎𝑥 − 𝑏𝑥

3
+ 𝑠 (𝑡) + Γ (𝑡) , (1)

where 𝑎, 𝑏 are the system parameters, 𝑠(𝑡) is the system input
signal to bemeasured, 𝑠(𝑡) = 𝐴 cos(2𝜋𝑓

0
𝑡),𝑓
0
is the frequency

of the input signal to be measured and Γ(𝑡) is the Gaussian
white noise with noise intensity𝐷, and it satisfied: ⟨Γ(𝑡)⟩ = 0,
⟨Γ(𝑡)Γ(𝑡


)⟩ = 2𝐷𝛿(𝑡 − 𝑡


). When the input signal 𝐴 = 0, the

noise intensity 𝐷 = 0, the potential function corresponding
to the nonlinear bistable system is

𝑈 (𝑥) = −
1

2
𝑎𝑥
3
+
1

4
𝑏𝑥
3
. (2)

As shown in Figure 1, the system has two potential wells
and a potential barrier. Stochastic resonance is actually shown
the phenomenon that the signal has enough energy to trans-
fer between two potential wells under the synergistic effect of
the bistable system. At present, the main method is adjusted
system parameters and increased a certain intensity of noise
to generate stochastic resonance. However, the characteristic
of input signal to be measured with noise is usually unknown
in the measurement of the practical engineering. It is difficult
to meet the actual demand only by adjusting the system
parameters manually. Therefore, this paper integrates the
adaptive iterative algorithm into the stochastic resonance
detection method to study the adaptive stochastic resonance
detection method for multi-frequency signals, seeks the
optimal system parameters to generate stochastic resonance,
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and finally finds and extracts the frequency of unknownweak
cycle signal in the frequency domain.

3. Adaptive Stochastic Resonance Detection for
Low-Frequency Signals

3.1. Measurement Index and Iterative Algorithm. Adaptive
stochastic resonance signal detection involves two important
factors: measurement index and iterative algorithm.

(1) Measurement Index. Selecting the appropriate measure-
ment index to measure the effectiveness of the system output
which means whether to generate stochastic resonance. The
commonly measurement index in the study of stochastic res-
onance contains signal-to-noise ratio (SNR), autocorrelation
function, cross-correlation function, mutual information,
residence time distribution, [20–23] and so on. For the
detection of low-frequency signals, this paper ismainly based
on the SNR to extract effective signal. SNR is an index of
the proportion that the energy of input signal frequency 𝑓

0
is

contained in the system output signal 𝑦(𝑡) = 𝑔(𝑥(𝑡)), which
is defined as

SNR = 10 log 𝑆

𝑁
= 10 log

𝑆 (𝑓
0
)

𝑁 (𝑓
0
)
𝑑𝐵. (3)

This paper uses the fourth-order Runge-Kutta method to
solve the nonlinear systems. Set the sample step ℎ = 1/𝑓

𝑠
,

where 𝑓
𝑠
is the sampling frequency. The output signal is 𝑦(𝑡).

The power spectrum of the input signal 𝑆(𝑓
0
) is the energy of

the output signal power spectrum 𝑌(𝑓) in the input signal
at the frequency 𝑓

0
. The noise power spectrum 𝑁(𝑓

0
) is

a period of average power spectrum estimate near the input
signal frequency 𝑓

0
.

(2) Iterative Algorithm. Choose a suitable iterative algorithm
tomake the system tends to the optimal state, which generates
stochastic resonance. In the measurement of the practical
engineering, by the limit of the algorithm accuracy require-
ments and working conditions, many algorithms cannot be
applied to the actual detection because of its high complexity.
This paper mainly uses adaptive iterative algorithm: fix the
step size and adjust the system parameters linearity.The steps
of adaptive stochastic resonance detection of low-frequency
signal are as follows.

(a) Firstly, to set the system parameters, to input the
signal to be measured with noise, to fix the step size,
and to select the appropriate value range of parameter,
increase the step size during this interval gradually to
adjust the system parameters 𝑎.

(b) Secondly, to use the Runge-Kutta algorithm to take
numerical simulation to the corresponding system of
each parameter, every parameter 𝑎 has a correspond-
ing system output signal.

(c) Then, to calculate the SNR according to (3), find
the optimal parameters 𝑎best corresponding to the
maximum SNR.

(d) Finally, to reset nonlinear bistable system based on
the optimal parameters to drive the signal to be
measured with noise, generate stochastic resonance
in this system. The output signal can show the signal
to be measured to the greatest extent. The frequency
corresponding to the spectrum peak in the spectrum
diagram of the output signal is the frequency of the
signal to be measured.

3.2. Simulation of Single Weak Signal Detection. Let the input
signal to be tested is 𝑆(𝑡) = 𝐴 sin(2𝜋𝑓

0
𝑡), in which 𝐴 = 0.8,

𝑓
0
= 0.03Hz, the noise intensity 𝐷 = 0.6, the sampling

frequency 𝑓
𝑠
= 5Hz. Figure 2(b) shows that the input signal

to be measured has been completely submerged by the noise
at this time, the parameter of bistable system 𝑏 = 1 is fixed.
But it has a problem which is how to set the range of values
about the system parameter 𝑎.

Let the input signal be a constant𝐴 and the noise intensity
𝐷 = 0 (without considering the noise). The barrier of
the bistable system exists with a static threshold condition:
𝐴
𝑐
= √4𝑎3/27𝑏. Thus we can calculate a system parameter

threshold 𝑎 = 1.1 according to the above conditions of the
system. Set the adjustment range of system parameters as
[1.1, 5] and the step size ℎ = 1/𝑓

𝑠
= 0.2. According to

the adaptive iterative algorithm mentioned above, we can
obtain the variation curve of SNR as the system parameter
changes in Figure 3. The maximum SNRmax = 0.0609, and
the corresponding optimal system parameters 𝑎best = 1.2.
Reset system parameters and the system obviously generated
stochastic resonance effect, as shown in Figure 2(c). Although
there is still some noise in the output signal, but the noise
energy is significantly weakened, and it has been fully utilized
and transformed into the energy of the signal to bemeasured.
Figure 2(d) is a spectrum diagram of the output signal, when
𝑓 = 0.03Hz there is a very clear and sharp spectral peak.

However, the frequency of low-frequency signal is promi-
nent by the processing of the stochastic resonance system and
is easy to be extracted. Although, as the Figure 2(c) shows that
the time domain diagram of output signal is still interfered
by part of the noise, there are some glitches. In order to solve
this problem, this paper uses the autocorrelation techniques
on the postprocessing program.

Define the autocorrelation function of the signal 𝑥(𝑡) as
follows:

𝑅
𝑥
(𝜏) = lim

𝑇→∞

1

𝑇
𝑥 (𝑡) 𝑥 (𝑡 + 𝜏) 𝑑𝑡, (4)

where 𝑇 is the observation time of the signal 𝑥(𝑡), and 𝑅
𝑥
(𝜏)

describes the correlation between the signal 𝑥(𝑡) and 𝑥(𝑡+𝜏),
due to the actual observation time 𝑇 is limited. Therefore
define the autocorrelation function is,

�̂�
𝑥
(𝜏) = lim

𝑇→∞

1

𝑇
∫

𝑇−𝜏

0

𝑥 (𝑡) 𝑥 (𝑡 + 𝜏) 𝑑𝑡. (5)

The signals to be measured with noise are as follows:

𝑆
𝑛
(𝑡) = 𝑠 (𝑡) + Γ (𝑡) = 𝐴 cos (2𝜋𝑓

0
𝑡) + Γ (𝑡) . (6)
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Figure 2: (a)The input signal to bemeasured. (b)The input signal to bemeasured contains white Gaussian noise. (c)The stochastic resonance
output signal. (d) The spectrum figure of the stochastic resonance output signal.

For the actual engineering signal, the integration time can be
approximated by 𝑇 instead of 𝑇 − 𝜏, and the signal after the
autocorrelation processing is:

𝑅
𝑌 (𝜏) =

𝐴
2

2
cos (𝜔𝑡) + 𝐴

2

2𝑇
∫

𝑇

0

cos [𝜔 (2𝑡 + 𝜏) + 2𝜙] 𝑑𝑡

+
1

𝑇
∫

𝑇

0

𝑠 (𝑡) 𝑑𝑡 ⋅
1

𝑇
∫

𝑇

0

Γ (𝑡 + 𝜏) 𝑑𝑡

+
1

𝑇
∫

𝑇

0

𝑠 (𝑡 + 𝜏) 𝑑𝑡 ⋅
1

𝑇
∫

𝑇

0

Γ (𝑡) 𝑑𝑡 + 𝑅Γ (𝜏) ,

(7)

in which 𝑅
𝑥
(𝜏) is the autocorrelation function of the noise.

The noise cannot be the ideal Gaussian white noise in the
measurement of the actual engineering. Therefore, 𝑅

𝑥
(𝜏)

is always present and its amplitude is drastically reduced
compared with the original noise amplitude, and can be
regarded as a new noise.

The output signal by autocorrelation processing can be
abbreviated as

𝑦
1
(𝑡) = 𝐴

1
cos (𝑓

1
𝑡 + 𝜙
1
) + Γ
1
(𝑡) . (8)

Compared to the original noise signal to bemeasured, the
amplitude and phase of the two signals have changed, but the
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Figure 3: The variation curve of SNR while adjusting the system
parameter 𝑎.

frequency is not changed. It improves the SNR to a certain
extent. Therefore, this paper takes advantage of this feature
to postprocess the output signal of stochastic resonance
(see Figure 7). It not only reduces the influence of the noise
but also makes the waveform of the output signal more close
to the original signal to be measured in the time domain.
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Figure 4: (a) The time-domain diagram of stochastic resonance output signal after correlation processing and (b) the spectrum diagram of
stochastic resonance output signal after correlation processing.

With the signal cycle components characteristic frequency
is even more pronounced in the spectrogram. We verify the
feasibility of this theory through a numerical example. Make
autocorrelation processing of the output signal of stochastic
resonance as shown in Figure 2(c). As Figure 4 shows that the
waveform of the output signal is obviously undistorted in the
time-domain diagram, and it is almost unanimous with the
waveform of the measured signal.The frequency of the signal
to be measured is more prominent under the background of
noise.

3.3. Simulation of Multifrequency Weak Superposition Signal
Detection. When the input signal to be measured is the
multi-frequency weak signal and parallel input, the multi-
frequency input signal to be tested is

𝑠 (𝑡) =

3

∑

𝑖=1

𝐴
𝑖
cos (2𝜋𝑓

𝑖
𝑡) . (9)

While 𝐴
1
= 0.6, 𝐴

2
= 0.8, 𝐴

3
= 1.0, 𝑓

1
= 0.02Hz,

𝑓
2
= 0.03Hz, and 𝑓

3
= 0.05Hz, Γ(𝑡) is Gaussian white noise

with noise intensity 𝐷 = 0.6. Sampling frequency 𝑓
𝑠
= 5Hz,

and let the bistable system parameter 𝑏 = 1. The study has
shown that only the frequency, noise intensity, and system
parameters of signal must be matched, and the system can
generate stochastic resonance effect, so that we define a set
of system parameters as a signal path for the system [22].
It generates mixing phenomenon when the signal band is
too close, and the spectrum peaks of output signal are not
obvious. Therefore, we can define the frequency number as
not only the channel capacity of the signal path adapts to this
set of parameters to generate a stochastic resonance effect,

but also the mixing frequency phenomenon does not occur.
Similarly, according to the above adaptive iterative algorithm,
we can calculate the optimal parameters 𝑎best = 1.5 while
SNR is maximum (SNRmax), as shown in Figure 6. As shown
in Figure 5(d), the frequency of obviously spectral peak
is 0.02Hz, 0.03Hz, and 0.05Hz. The degree of waveform
distortion is weakened by autocorrelation processing, and
the frequency of the signal to bemeasured is more prominent
which indicates that this algorithm is suitable for the parallel
multi-frequency weak input signal detection. Parameter 𝑎best
matches the frequency of signal to be measured and noise
intensity. The channel capacity is𝑁 = 3 at this time.

4. Adaptive Stochastic Resonance in the High
Frequency Signal Detection

According to (1), the power spectrum of the system output
signal can be calculated as [23]

𝑆 (𝑓) = 𝑆
1
(𝑓) + 𝑆

2
(𝑓)

=

2𝑎
4
𝐴
2 exp ((−𝑎2/2𝐷) /𝜋𝐷2)

(2𝑎2 exp (−𝑎2/2𝐷) /𝜋2)2
× 𝛿 (𝑓

0
− 𝑓)

+ [1 −

2𝑎
4
𝐴
2 exp ((−𝑎2/2𝐷) /𝜋𝐷2)

((2𝑎2 exp (−𝑎2/2𝐷) /𝜋2) + 2𝜋𝑓
0
)
2
]

× [

4√2𝑎
4 exp ((−𝑎2/4𝐷) /𝜋)

((2𝑎2 exp (−𝑎2/2𝐷) /𝜋2) + 2𝜋𝑓
0
)
2
] .

(10)

Stochastic resonance of the output signal spectrum is
caused by the input signal and noise, as 𝑆

1
(𝑓) and 𝑆

2
(𝑓),
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Figure 5: (a)Themulti-frequency input signal to be measured. (b)Themulti-frequency input signal to be measured contains white Gaussian
noise. (c) The stochastic resonance output signal. (d) The spectrum figure of the stochastic resonance output signal.
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Figure 6: The variation curve of SNR while adjusting the system
parameter 𝑎.

respectively. Since the output of the noise power spectrum
𝑆
2
(𝑓) has Lorentz distribution, the subband which can gen-

erate stochastic resonance spectrum peak is generally limited
to the low frequency band. Therefore, the bistable system of
stochastic resonance is generally suitable for small parameters

(𝑓 ≪ 1) of weak signal detection. For the detection of high
frequency signals, the current methods are: secondary sam-
pling, frequency shift by varying scale and modem [24, 25],
and so on.Themain idea is transform the high frequency into
the low frequency through the scale change to meet the low
frequency of the small parameter conditions, so that it is able
to generate stochastic resonance effect. Finally, the frequency
of the output signal recover its actual measurement scale,
which is the frequency of the signal to be measured. These
methods have some inevitably problem of the efficiency and
practicality.

(i) In themeasurement of the actual engineering, such as
mechanical failure diagnosis, most of the signal to be
measured is the high-frequency signal, and the noise
is often colored noise, rather than idealized Gaussian
white noise.

(ii) In the field of classical stochastic resonance, most
theoretical studies only discuss the linear response of
single frequency weak signal, and it can be observed
clearly that the output signal of stochastic resonance
system has some distortion. Compared to the original
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Figure 7: (a) The time-domain diagram of stochastic resonance
output signal after correlation processing. (b)The spectrumdiagram
of stochastic resonance output signal after correlation processing.

sinusoidal signal, the output signal is more similar to
a rectangular wave. Depending on the nature of the
rectangular wave, the Fourier expansion is

𝑥 (𝑡) =
4𝐴

𝜋
(sin𝜔

0
𝑡 +

1

3
sin 3𝜔

0
𝑡 +

1

5
sin 5𝜔

0
𝑡 + ⋅ ⋅ ⋅ ) . (11)

Except for the fact that the 𝜔
0
has peak, its odd multiples of

frequency 3𝜔
0
, 5𝜔
0
. . . have peaks in the spectrum diagram of

the system output signal. Taking into account the influence of
noise, the signal to be measured with noise meet is Lorentz

distribution through the stochastic resonance system, and
the odd multiples of the output signal frequency are not
obvious in the spectrum diagram. However, in the detection
of actual signals, the measured signal may exist with multi-
frequencies, and satisfy the relationship of odd multiple, and
it is difficult to determine the frequency which, correspond-
ing to the peak, is the frequency of the output signal or
some other weak signals by nonlinear response. Therefore,
the method of low-frequency signal detection is not suitable
for it and it needs to make some adjustments. A method
is proposed for the above problems in this paper, which is
approaching constantly the frequency of the signal to be
measured by automatically adjusting the modulation signal
frequency 𝑓

𝑐
of the system externally added, and thereby

detecting the frequency of the signal being measured. The
main idea is as follows.

Let the input signal be measured as

𝑠 (𝑡) =

𝑀

∑

𝑖=1

𝐴
𝑖
cos (2𝜋𝑓

𝑖
𝑡) + Γ (𝑡) , (12)

where 𝑓
𝑖
(𝑖 = 1, 2, . . .𝑀) is the frequency of the signal to

be measured. Γ(𝑡) is color noise distinguished from white
Gaussian noise, and color noise is nonzero. Let its frequency
mainly concentrate in some band of 0.2Hz–0.5Hz in this
paper. Adding one cycle of the modulation signal to the
system, the input signal to be measured is transformed
into:

𝐹 (𝑡) ⋅ 𝑆 (𝑡) =
1

2

𝑀

∑

𝑖=0

𝐴
𝑖
cos [2𝜋 (𝑓

𝑖
− 𝑓
𝑐
)]

+
1

2

𝑀

∑

𝑖=1

𝐴
𝑖
cos [2𝜋 (𝑓

𝑖
− 𝑓
𝑐
)]

+ Γ (𝑡) ⋅ cos (2𝜋𝑓𝑐𝑡) .
(13)

The signal is composed of two parts: the difference frequency
𝑓
𝑖
− 𝑓
𝑐
, and the added frequency 𝑓

𝑖
+ 𝑓
𝑐
.

It constantly approachs the frequency of the signal being
measured 𝑓

𝑖
by adjusting the frequency 𝑓

𝑐
from 𝑓

𝑐
< 𝑓
𝑖
via

𝑓
𝑐
= 𝑓
𝑖
to 𝑓
𝑐
> 𝑓
𝑖
, difference frequency 𝑓

𝑖
− 𝑓
𝑐
≪ 1 which

meets the generated conditions of the stochastic resonance
in a certain frequency band. The system will generate a
random resonance effect at this time, which means that
each 𝑓

𝑐
will exists with a significantly nonzero spectral peak

corresponding to the output signal spectrogram. Particularly,
while 𝑓

𝑐
= 𝑓
𝑖
, the stochastic resonance disappears. The

maximum spectral peak power is close to 0, and its reciprocal
is infinite, which seems like a sharp peak in the diagram.
So that we can use this feature to exacte the frequency of
the input signals to be measured 𝑓

𝑖
. This method avoids the

problem of odd multiples mentioned above. The frequency
of the color noise is often concentrated in some frequency
band. So it is difficult to distinguish the color noise and the
frequency of the signal to be measured from the frequency
domain. It is no longer applicable to use SNR as the index.



8 Abstract and Applied Analysis

×105

4

3.5

3

2.5

2

1.5

1

0.5

0
9.9 9.92 9.94 9.96 9.98 10 10.02 10.04 10.06 10.08 10.1

𝑓𝑐 (Hz)

1/
𝑆(
𝑤
) m

ax

Figure 8: The change curve about the reciprocal of the stochastic
resonance output signal spectrum peak with the adjustment of 𝑓

𝑐
in

the single high frequency.

This paper selects the reciprocal of the maximum power
spectrum peak of the output signal the autocorrelation
function as measurement index.

The steps of adaptive stochastic resonance in the high-
frequency signal detection are as follows.

(a) Set the system parameters, select the appropriate
value interval, and fix the step size ℎ = 1/𝑓

𝑠
. Increase

the step size gradually to adjust 𝑓
𝑐
, approaching the

frequency of the signal to be measured 𝑓
𝑖
.

(b) Make numerical simulation of each 𝑓
𝑐
corresponding

system by the fourth-order Runge-Kutta algorithm,
and get the system output signal corresponding to
each parameter points. Plott the curve of the maxi-
mum power spectral peak in the output signal with
the modulating signal frequency 𝑓

𝑐
changed.

(c) Sharp peaks will appear in the curve which is drawn
above, and each frequency corresponding to the peak
is the frequency of the signal to be measured 𝑓

𝑖
.

The flow chart is shown in Figure 10.

4.1. Simulation of the Single High-Frequency Signal Detector.
Let the system parameters 𝑎 = 1.4, 𝑏 = 1, the signal
to be measured is 𝑠(𝑡) = 𝐴 cos(2𝜋𝑓

0
𝑡), while 𝐴 = 2,

𝑓
0
= 10.05Hz, the color noise is generated by the MATLAB

script. The sampling frequency is 𝑓
𝑠
= 5000. The adjustment

interval of the modulation frequency 𝑓
𝑐
is [9.9 10.1]. Adjust

the frequency𝑓
𝑐
to approach the frequency of the signal being

measured 𝑓
𝑖
. As shown in Figure 8, it occurred a sharp peak

while 𝑓
𝑐
= 10.05Hz, which means that the frequency of the

signal being measured is 10.05Hz.The numerical simulation
results comes together with the theoretical analysis, so this
method is effective and feasible.

4 68 10 12
𝑓𝑐 (Hz)

4

3

2

1

0

×105

1/
𝑆(
𝑤
) m
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Figure 9: The change curve about the reciprocal of the stochastic
resonance output signal spectrum peak with the adjustment of 𝑓

𝑐
in

the multiple high frequency.

4.2. Simulation of the Multiple High-Frequency Signal Detec-
tor. Let the input signal be detected with multiple high
frequency as follows:

𝑠 (𝑡) =

3

∑

𝑖=1

𝐴
𝑖
cos (2𝜋𝑓

𝑖
𝑡) , (14)

where the amplitude 𝐴
1
= 2, 𝐴

2
= 1.5, 𝐴

3
= 2.1, the

frequency 𝑓
1
= 3.75Hz, 𝑓

2
= 6.05Hz, 𝑓

3
= 11.30Hz,

the bistable system parameters 𝑎 = 1.3, 𝑏 = 1, and the
noise intensity 𝐷 = 10. Sampling frequency 𝑓

𝑠
= 5000. The

modulation signal frequency range is [2.5, 12.5]. As shown in
Figure 9, the frequencies 𝑓

1
, 𝑓
2
, and 𝑓

3
all appear obvious as

sharp peaks, it detected the frequency of the multiple signals
submerged by strong noise efficiently. The odd multiples
of the frequency 3𝑓

1
are close to the frequency 𝑓

3
. The

simulation results show that the detected signal frequency is
𝑓
3
which is the frequency of the input signal to be measured

rather than the odd multiples. It proves that the method
is feasible, effective, and suitable for the actual engineering
measurement.

5. Conclusions

In order tomeet the needs of practical engineering, this paper
combined the adaptive algorithm with stochastic resonance
theory. According to the frequency characteristics of the
input signal to be tested, it proposed a feasible and effective
adaptive stochastic resonance signal detection. Considering
the actual situation, it improves work efficiency to a certain
extent and has great value and development prospects in the
measurement of the actual engineering. This paper chooses
the SNR and the power spectrum of the autocorrelation
function estimates as the index. The characteristics of the
signal to be measured contain a lot of complexity in practical
applications. In the actual engineering, we can choose a
more precise measurement of indicators to measure the
generation of stochastic resonance effect. Among the system
parameters, noise intensity and the frequency of the signal
being measured, which have a close relationship. We can
analyze the degree of association by genetic algorithm to
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Initialization

Set the system 
parameters 

Input the signal to be 
measured with noise 

Set the interval of the 
modulated signal 

increase it gradually 

Input the modulated 
signal, Runge-Kutta 

algorithm iteration output 

Calculate the autocorrelation 
function of the output signal and 

its power spectrum estimation 

Record and save each modulation 
signal corresponding spectrum 

peak to the vector 

Plotting the change curve of the 
maximum power spectral peak in 

the output signal with the 
modulating signal frequency 

Each frequency corresponding to 
the peak in the curve is the 

frequency of the signal to be 
measured

Finish

frequency 𝑓𝑐 and 𝑓𝑐 changes

Figure 10: The flow chart.

further expand the system of stochastic resonance signal
detection.
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