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Correspondence should be addressed to Renato Colucci; renatocolucci@hotmail.com

Received 26 November 2012; Revised 30 January 2013; Accepted 3 February 2013

Academic Editor: Juan J. Nieto

Copyright © 2013 R. Colucci and G. R. Chacón.This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in anymedium, provided the originalwork is properly cited.

We propose a hyperbolic relaxation of a fourth order evolution equation, with an inertial term 𝜂𝑢
𝑡𝑡
, where 𝜂 ∈ (0, 1]. We prove the

existence of several absorbing sets having different regularities and the existence of a global attractor that is bounded in 𝐻
4
(𝐼) ×

{𝐻
2
(𝐼) ∩ 𝐻

1

0
(𝐼)}.

1. Introduction

Leting 𝐼 ⊂ R be an open interval, with |𝐼| ≤ 1, we consider the
following initial-boundary value problem for 𝑢 : 𝐼 × R+ →

R:

𝜂𝑢
𝑡𝑡
+ 𝑢
𝑡
= − 𝜀

2
𝑢
𝑥𝑥𝑥𝑥

+
1

2
𝑊
󸀠󸀠
(𝑢
𝑥
) 𝑢
𝑥𝑥
, (𝑥, 𝑡) ∈ 𝐼 ×R

+
,

𝑢 (𝑥, 0) = 𝑢
0
(𝑥) , in 𝐼,

𝑢
𝑡
(𝑥, 0) = 𝑢

1
(𝑥) , in 𝐼,

𝑢 = 𝑢
𝑥𝑥

= 0, in 𝜕𝐼, 𝑡 ≥ 0,

(1)

where the function𝑊(𝑝) = (𝑝
2
− 1)
2 is the so-called double-

well potential, 0 < 𝜀 ≪ 1 and 𝜂 ∈ (0, 1] are positive
parameters.

Problem (1), with 𝜂 = 0, was proposed in [1] where the
global dynamics was studied. In particular, the dynamical
behavior of the solutions for small values of the parameter
𝜀 was studied by means of numerical experiments. The
existence of threewell-differentiated time scales with peculiar
dynamical behavior was showen. In the first time scale of
order𝑂(𝜀

2
) there is the formation of microstructure (see [2])

in the region where the gradient of the initial datum falls
in the nonconvex region of 𝑊; this phenomenon produces
a drastic reduction of the energy of the initial datum. In
the second time scale of order 𝑂(1) the equation exhibits a
heat equation-like behavior in the convex regions while slow

motion in the nonconvex ones. In the last time scale of order
𝑂(𝜀
−2
) the equation shows a finite-dimensional behavior: the

solution is approximately the union of consecutive segments
and the dynamic is slow.

In [3], the third time scale was studied; the authors proved
the existence of a global attractor A

𝜀
⊂ 𝐿
2
(𝐼) (see [4])

that is bounded in 𝐻
2
(𝐼). The time for which the solutions

enter the absorbing set B
𝜀
is of order 𝑂(𝜀

−2
) and it is

consistent with the estimates found in [1]. Moreover the
authors proved the existence of an exponential attractor I

𝜀

with finite fractal dimension of order 𝑂(𝜀
−10

). In [5] the
authors proved the existence of an inertial manifoldM

𝜀
(see

[6]) whose dimension is of order 𝑂(𝜀
−19

), and by the 𝑛-
dimensional volume elements methods (see [7]) an estimate
of the dimension of the global attractor of order 𝑂(𝜀

−1
) was

found. This estimate is also consistent with the numerical
experiments developed in [1]; in fact it was found that the
wave length of the microstructure is of order 𝑂(𝜀

−1
).

In the last years the viscous and no viscous hyperbolic
relaxation of the Cahn-Hilliard equation has been extensively
investigated. The model was proposed in [8] while in [9] the
existence of a family of exponential attractors was proved.
The viscous and nonviscous perturbation has been studied in
[10] where the existence of a family of global attractors that
are upper semicontinuous with respect to the vanishing of
perturbations parameterswas proved.These results have been
extended in 2 and 3 dimensions; see for example [11, 12] and
the references therein.

Due to the similarity of problem (1) to the Cahn-Hilliard
equation we consider it interesting to study the hyperbolic
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relaxation of the fourth order evolution equation proposed
in [1]. In particular if V is the solution of the Cahn-Hilliard
equation

V
𝑡
+ Δ [𝜀

2
ΔV − 𝑊

󸀠
(V)] = 0, (2)

with Neumann boundary conditions:

𝜕

𝜕𝑛
V =

𝜕

𝜕𝑛
ΔV = 0, 𝑥 ∈ {0, 1} , (3)

then

𝑢 (𝑥) = ∫

𝑥

0

V (𝑠) 𝑑𝑠, (4)

is the solution of (1), with 𝜂 = 0, with the corresponding
boundary conditions:

𝑢 = 𝑢
𝑥𝑥

= 0, 𝑥 ∈ {0, 1} . (5)

In the present work we put the problem in the correct
mathematical framework and prove the existence of a global
attractorA

𝜂,𝜀
while we have left the proof of the existence of

exponential attractors for a forthcoming paper. In Sections
2 and 3 we define the solution semigroup in the appropriate
spaces and present some important energy estimates. In
Section 4weprove the existence of several absorbing setswith
different regularities while in the last section we prove the
existence of the global attractor.

2. Preliminaries

Webegin this section by defining the followingHilbert spaces
that will be helpful for our analysis:

H
𝜂,𝜀

= [𝐻
2
(𝐼) ∩ 𝐻

1

0
(𝐼)] × 𝐿

2
(𝐼) , (6)

V
𝜂,𝜀

= 𝐷 (𝐴) × 𝐻
2
(𝐼) , (7)

where

𝐷 (𝐴) = {𝑢 ∈ 𝐻
4
(𝐼) : 𝑢 = 𝑢

𝑥𝑥
= 0 in 𝜕𝐼} (8)

is the domain of the differential operator 𝐴 = 𝜕
4
/𝜕𝑥
4. The

above spaces are equipped with the norms

‖(𝑢, V)‖
2

H𝜂,𝜀
=

𝜀
2

2

󵄩󵄩󵄩󵄩𝑢𝑥𝑥
󵄩󵄩󵄩󵄩
2

+
𝜂

2
‖V‖
2
, (9)

‖(𝑢, V)‖
2

V𝜂,𝜀
=

𝜀
2

2

󵄩󵄩󵄩󵄩𝑢x𝑥𝑥𝑥
󵄩󵄩󵄩󵄩
2

+
𝜂

2

󵄩󵄩󵄩󵄩V𝑥𝑥
󵄩󵄩󵄩󵄩
2

, (10)

where ‖ ⋅ ‖ represents the 𝐿2 norm.We will denote by ⟨⋅, ⋅⟩ the
inner product in 𝐿

2
(𝐼).We recall that for all 𝑢 ∈ 𝐻

2
(𝐼)∩𝐻

1

0
(𝐼)

with |𝐼| ≤ 1, we have

‖𝑢‖ ≤
󵄩󵄩󵄩󵄩𝑢𝑥

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑢𝑥𝑥

󵄩󵄩󵄩󵄩 . (11)

Throughout the paper we will use two norms that are equiv-
alent to (9) and (10) in order to simplify the computation.

Given functions 𝑢 ∈ 𝐻
2
(𝐼) ∩ 𝐻

1

0
(𝐼) and V ∈ 𝐿

2
(𝐼) we define

the function �̃� onH
𝜂,𝜀

by

�̃� (𝑢, V) = 𝜂‖V‖
2
+

1

2
𝜀
2󵄩󵄩󵄩󵄩𝑢𝑥𝑥

󵄩󵄩󵄩󵄩
2

+ 𝛽𝜂⟨V, 𝑢⟩, (12)

where 𝛽 ∈ [0, 𝜀
2
].

Proposition 1. For all 𝛽 ∈ [0, 𝜀
2
] the function �̃�(⋅, ⋅) induces a

norm equivalent to the norm onH
𝜂,𝜀
.

Proof. By Schwartz inequality (11) and using the fact that 𝛽 ≤

𝜀
2
< 1, 𝜂 ∈ (0, 1], we get

𝛽𝜂 ⟨V, 𝑢⟩ ≤ 𝛽𝜂 ‖V‖‖𝑢‖ ≤
1

2
𝜂
2
‖V‖
2
+

1

2
𝜀
4󵄩󵄩󵄩󵄩𝑢𝑥𝑥

󵄩󵄩󵄩󵄩
2

≤
𝜂

2
‖V‖
2
+

𝜀
2

2

󵄩󵄩󵄩󵄩𝑢𝑥𝑥
󵄩󵄩󵄩󵄩
2

= ‖(𝑢, V)‖
2

H𝜀,𝜂
.

(13)

From the previous inequality and by definition of �̃�(𝑢, V) we
get

�̃� (𝑢, V) ≤ 3‖(𝑢, V)‖
2

H𝜀,𝜂
. (14)

By a different application of Schwartz inequality and from (11)
we get

𝛽𝜂 ⟨V, 𝑢⟩ ≤ 𝛽𝜂 ‖V‖ ‖𝑢‖ ≤ 𝜂
2
‖V‖
2
+

𝛽
2

4
‖𝑢‖
2

≤ 𝜂‖V‖
2
+

𝜀
4

4
‖𝑢‖
2
≤ 𝜂‖V‖

2
+

𝜀
2

4

󵄩󵄩󵄩󵄩𝑢𝑥𝑥
󵄩󵄩󵄩󵄩
2

.

(15)

Combining (13) and (15) we get

�̃� (𝑢, V) ≥ max {
𝜂

2
‖V‖
2
,
1

4
𝜀
2󵄩󵄩󵄩󵄩𝑢𝑥𝑥

󵄩󵄩󵄩󵄩
2

} , (16)

and as a consequence

�̃� (𝑢, V) ≥
1

3
‖(𝑢, V)‖

2

H𝜀,𝜂
. (17)

The proof of the following theorem follows from classical
applications of the Faedo-Galerkin method. We will only
show a Lipschitz estimate that will be needed for further
computations.

Theorem 2. For every (𝑢
0
, 𝑢
1
) ∈ H

𝜀,𝜂
there exists a unique

solution 𝑢(𝑡) for the initial value problem (1) such that

𝑢 ∈ 𝐶
𝑏
(R
+
; 𝐻
2
(𝐼) ∩ 𝐻

1

0
(𝐼)) ∩ 𝐶

1

𝑏
(R
+
; 𝐿
2
(𝐼)) . (18)

If, moreover, (𝑢
0
, 𝑢
1
) ∈ V

𝜀,𝜂
, then:

𝑢 ∈ 𝐶
𝑏
(R
+
; 𝐷 (𝐴)) ∩ 𝐶

1

𝑏
(R
+
; 𝐻
2
(𝐼) ∩ 𝐻

1

0
(𝐼))

∩ 𝐶
2

𝑏
(R
+
; 𝐿
2
(𝐼)) .

(19)
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Proposition 3. For any constant 𝑅 ≥ 0 there exists a positive
constant 𝐾 = 𝐾(𝑅) such that, for any initial data 𝑢

1
(0), 𝑢
2
(0)

with ‖𝑢
𝑖
(0)‖
𝐻𝜂,𝜀

≤ 𝑅, 𝑖 = 1, 2 one has

󵄩󵄩󵄩󵄩󵄩
𝑆
𝜀,𝜂
(𝑡)𝑢
1
(0) − 𝑆

𝜀,𝜂
(𝑡)𝑢
2
(0)

󵄩󵄩󵄩󵄩󵄩𝐻𝜂,𝜀
≤ 𝑒
(𝐾
2
/𝜀
2
)𝑡󵄩󵄩󵄩󵄩𝑢1 (0) − 𝑢

2
(0)

󵄩󵄩󵄩󵄩𝐻𝜂,𝜀
,

(20)

where 𝑆
𝜀,𝜂
(𝑡) is the solution semigroup of the problem (1).

Proof. Let 𝑢
1
, 𝑢
2
, two solutions of (1) with initial data 𝑢

1
(0)

and 𝑢
2
(0). Let, 𝑤 = 𝑢

1
− 𝑢
2
then we write

𝜂𝑤
𝑡𝑡
+ 𝑤
𝑡
+ 𝜀
2
𝑤
𝑥𝑥𝑥𝑥

=
1

2

𝑑

𝑑𝑥
{𝑊
󸀠
(𝑢
1𝑥
) − 𝑊

󸀠
(𝑢
2𝑥
)} . (21)

We multiply the above equation by 𝑤
𝑡
in 𝐿
2
(𝐼); then

𝜂

2

𝑑

𝑑𝑡

󵄩󵄩󵄩󵄩𝑤𝑡
󵄩󵄩󵄩󵄩
2

+
𝜀
2

2

𝑑

𝑑𝑡

󵄩󵄩󵄩󵄩𝑤𝑥𝑥
󵄩󵄩󵄩󵄩
2

+
󵄩󵄩󵄩󵄩𝑤𝑡

󵄩󵄩󵄩󵄩
2

= −2∫
𝐼

𝑤
𝑥𝑥
𝑤
𝑡
𝑑𝑥

+ 6∫
𝐼

{𝑢
2

1𝑥
𝑤
𝑥𝑥

+ 𝑢
2𝑥x𝑤𝑥 [𝑢1𝑥 + 𝑢

2𝑥
]}𝑤
𝑡
𝑑𝑥

≤ 2
󵄩󵄩󵄩󵄩𝑤𝑥𝑥

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑤𝑡

󵄩󵄩󵄩󵄩 + 6
󵄩󵄩󵄩󵄩𝑢1𝑥

󵄩󵄩󵄩󵄩
2

∞

󵄩󵄩󵄩󵄩𝑤𝑥𝑥
󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑤𝑡

󵄩󵄩󵄩󵄩

+ 12
󵄩󵄩󵄩󵄩𝑢2𝑥𝑥

󵄩󵄩󵄩󵄩 (∫
𝐼

𝑤
2

𝑥
𝑤
2

𝑡
[𝑢
2

1𝑥
+ 𝑢
2

2𝑥
] 𝑑𝑥)

1/2

≤ 2 {1 + 18𝐶
2󵄩󵄩󵄩󵄩𝑢1𝑥𝑥

󵄩󵄩󵄩󵄩
2

+ 12
󵄩󵄩󵄩󵄩𝑢2𝑥𝑥

󵄩󵄩󵄩󵄩

×(
󵄩󵄩󵄩󵄩𝑢1𝑥𝑥

󵄩󵄩󵄩󵄩
2

+
󵄩󵄩󵄩󵄩𝑢2𝑥𝑥

󵄩󵄩󵄩󵄩
2

)
1/2

}
󵄩󵄩󵄩󵄩𝑤𝑥𝑥

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑤𝑡

󵄩󵄩󵄩󵄩

≤ 2{1 + (36𝐶
2
+ 24√2)

𝑅
2

𝜀2
}
󵄩󵄩󵄩󵄩𝑤𝑥𝑥

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑤𝑡

󵄩󵄩󵄩󵄩

≤ 2𝐾
󵄩󵄩󵄩󵄩𝑤𝑥𝑥

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑤𝑡

󵄩󵄩󵄩󵄩 ≤ 𝐾
2󵄩󵄩󵄩󵄩𝑤𝑥𝑥

󵄩󵄩󵄩󵄩
2

+
󵄩󵄩󵄩󵄩𝑤𝑡

󵄩󵄩󵄩󵄩
2

,

(22)

where we have used the following inequality (see [13] and
inequality (11)):

󵄩󵄩󵄩󵄩𝑢𝑥
󵄩󵄩󵄩󵄩
2

∞
≤ 𝐶
2󵄩󵄩󵄩󵄩𝑢𝑥

󵄩󵄩󵄩󵄩
2

𝐻
1
(𝐼)

≤ 2𝐶
2󵄩󵄩󵄩󵄩𝑢𝑥𝑥

󵄩󵄩󵄩󵄩
2

. (23)

The constant 𝐾 can be explicitly computed using the esti-
mates of the absorbing set presented in the next section.

From the last inequality we get

𝑑

𝑑𝑡

󵄩󵄩󵄩󵄩(𝑤, 𝑤
𝑡
)
󵄩󵄩󵄩󵄩
2

H𝜀,𝜂
≤

2𝐾
2

𝜀2

󵄩󵄩󵄩󵄩(𝑤, 𝑤
𝑡
)
󵄩󵄩󵄩󵄩
2

H𝜀,𝜂
, (24)

and then using Gronwall’s lemma we get

󵄩󵄩󵄩󵄩(𝑤, 𝑤
𝑡
)
󵄩󵄩󵄩󵄩H𝜀,𝜂

≤ 𝑒
(𝐾
2
/𝜀
2
)𝑡󵄩󵄩󵄩󵄩(𝑤(0), 𝑤

𝑡
(0))

󵄩󵄩󵄩󵄩H𝜀,𝜂
. (25)

3. A Priori Estimates

In this section we provide useful a priori estimates of energy
type. Equation (1) admits a Liapunov functional of the form:

𝐸 (𝑢, 𝑢
𝑡
) = 𝜂

󵄩󵄩󵄩󵄩𝑢𝑡
󵄩󵄩󵄩󵄩
2

+
1

2
𝜀
2󵄩󵄩󵄩󵄩𝑢𝑥𝑥

󵄩󵄩󵄩󵄩
2

+
1

2
∫
𝐼

𝑊(𝑢
𝑥
) 𝑑𝑥, (26)

that is not increasing along the solutions; in fact if wemultiply
(1) by 𝑢

𝑡
and integrate over 𝐼 we obtain

𝑑

𝑑𝑡
𝐸 (𝑢, 𝑢

𝑡
) = −

󵄩󵄩󵄩󵄩𝑢𝑡
󵄩󵄩󵄩󵄩
2

. (27)

Moreover, integrating the previous inequality on (0, 𝑡) with
respect to time we get

∫

𝑡

0

󵄩󵄩󵄩󵄩𝑢𝑡
󵄩󵄩󵄩󵄩
2

𝑑𝑠 + 𝐸 (𝑢, 𝑢
𝑡
) = 𝐸 (𝑢

0
, 𝑢
1
) . (28)

Then for any fixed initial data (𝑢
0
, 𝑢
1
) ∈ H

𝜀,𝜂
we have that the

corresponding solution satisfies

sup
𝑡≥0

{
𝜂

2

󵄩󵄩󵄩󵄩𝑢𝑡
󵄩󵄩󵄩󵄩
2

+
𝜀
2

2

󵄩󵄩󵄩󵄩𝑢𝑥𝑥
󵄩󵄩󵄩󵄩
2

} = sup
𝑡≥0

󵄩󵄩󵄩󵄩(𝑢, 𝑢𝑡)
󵄩󵄩󵄩󵄩
2

H𝜀,𝜂

≤ 𝐸 (𝑢
0
, 𝑢
1
) .

(29)

Moreover if we integrate over R+ we get the integral control

∫

∞

0

󵄩󵄩󵄩󵄩𝑢𝑡
󵄩󵄩󵄩󵄩
2

𝑑𝑡 ≤ 𝐸 (𝑢
0
, 𝑢
1
) . (30)

We consider an important estimate that will be useful later.
Let𝛽 > 0 be a parameter to be determined later; if wemultiply
(1) by 𝛽𝑢 we obtain

𝛽𝜂∫
𝐼

𝑢
𝑡𝑡
𝑢𝑑𝑥 +

𝛽

2

𝑑

𝑑𝑡
‖𝑢‖
2
+ 𝛽𝜀
2󵄩󵄩󵄩󵄩𝑢𝑥𝑥

󵄩󵄩󵄩󵄩
2

+ 2𝛽
󵄩󵄩󵄩󵄩𝑢𝑥

󵄩󵄩󵄩󵄩
4

4
= 2𝛽

󵄩󵄩󵄩󵄩𝑢𝑥
󵄩󵄩󵄩󵄩
2

.

(31)

By summing (27) and (31) we get

𝑑

𝑑𝑡
𝐸 + 𝛽𝜂

𝑑

𝑑𝑡
⟨𝑢
𝑡
, 𝑢⟩ + (1 − 𝛽𝜂)

󵄩󵄩󵄩󵄩𝑢𝑡
󵄩󵄩󵄩󵄩
2

+
𝛽

2

𝑑

𝑑𝑡
‖𝑢‖
2
+ 𝛽𝜀
2󵄩󵄩󵄩󵄩𝑢𝑥𝑥

󵄩󵄩󵄩󵄩
2

+ 2𝛽
󵄩󵄩󵄩󵄩𝑢𝑥

󵄩󵄩󵄩󵄩
4

4

= 2𝛽
󵄩󵄩󵄩󵄩𝑢𝑥

󵄩󵄩󵄩󵄩
2

.

(32)

Using the expression of the energy we can rewrite the
previous in the following way:

𝑑

𝑑𝑡
𝐸 + 𝛽𝜂

𝑑

𝑑𝑡
⟨𝑢
𝑡
, 𝑢⟩ + (1 − 3𝛽𝜂)

󵄩󵄩󵄩󵄩𝑢𝑡
󵄩󵄩󵄩󵄩
2

+ 𝛽⟨𝑢
𝑡
, 𝑢⟩ + 2𝛽(𝐸 +

󵄩󵄩󵄩󵄩𝑢𝑥
󵄩󵄩󵄩󵄩
4

4

2
−

|𝐼|

2
) = 0.

(33)

We will estimate some of the terms of the previous inequality
in the following lemma.
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Lemma 4. Fix 𝜂 ≤ 1 then for all 𝛽 ∈ (0, 1/3) one has

2𝛽
2
𝜂⟨𝑢
𝑡
, 𝑢⟩ ≤ (1 − 3𝛽𝜂)

󵄩󵄩󵄩󵄩𝑢𝑡
󵄩󵄩󵄩󵄩
2

+ 𝛽
󵄩󵄩󵄩󵄩𝑢𝑥

󵄩󵄩󵄩󵄩
4

4
+ 𝛽 |𝐼| + 𝛽⟨u

𝑡
, 𝑢⟩.

(34)

Proof. By Holder’s inequality we get

2
󵄩󵄩󵄩󵄩𝑢𝑥

󵄩󵄩󵄩󵄩
2

≤ 2
󵄩󵄩󵄩󵄩𝑢𝑥

󵄩󵄩󵄩󵄩
2

4
|𝐼|
1/2

≤
󵄩󵄩󵄩󵄩𝑢𝑥

󵄩󵄩󵄩󵄩
4

4
+ |𝐼| , (35)

then we use Poincaré’s inequality and the fact that |𝐼| ≤ 1 to
conclude that

‖𝑢‖
2
≤

󵄩󵄩󵄩󵄩𝑢𝑥
󵄩󵄩󵄩󵄩
4

4

2
+

|𝐼|

2
. (36)

Therefore, for a positive constant 𝑐
1
to be determined later, we

have that

⟨𝑢
𝑡
, 𝑢⟩ ≤

󵄩󵄩󵄩󵄩𝑢𝑡
󵄩󵄩󵄩󵄩 ‖𝑢‖ ≤

𝑐
1

2

󵄩󵄩󵄩󵄩𝑢𝑡
󵄩󵄩󵄩󵄩
2

+
1

2𝑐
1

‖𝑢‖
2

≤
𝑐
1

2

󵄩󵄩󵄩󵄩𝑢𝑡
󵄩󵄩󵄩󵄩
2

+
1

2𝑐
1

(

󵄩󵄩󵄩󵄩𝑢𝑥
󵄩󵄩󵄩󵄩
4

4

2
+

|𝐼|

2
) .

(37)

Consequently, by choosing the parameters 𝑐
1
= 1/12 and 𝛽 <

1/3 we have that

(2𝛽
2
𝜂 − 𝛽) ⟨𝑢

𝑡
, 𝑢⟩

≤
󵄨󵄨󵄨󵄨󵄨
2𝛽
2
𝜂 − 𝛽

󵄨󵄨󵄨󵄨󵄨

𝑐
1

2

󵄩󵄩󵄩󵄩𝑢𝑡
󵄩󵄩󵄩󵄩
2

+

󵄨󵄨󵄨󵄨󵄨
2𝛽
2
𝜂 − 𝛽

󵄨󵄨󵄨󵄨󵄨

4𝑐
1

󵄩󵄩󵄩󵄩𝑢𝑥
󵄩󵄩󵄩󵄩
4

4
+

󵄨󵄨󵄨󵄨󵄨
2𝛽
2
𝜂 − 𝛽

󵄨󵄨󵄨󵄨󵄨

4𝑐
1

|𝐼|

≤ (1 − 3𝛽𝜂)
󵄩󵄩󵄩󵄩𝑢𝑡

󵄩󵄩󵄩󵄩
2

+ 𝛽
󵄩󵄩󵄩󵄩𝑢𝑥

󵄩󵄩󵄩󵄩
4

4
+ 𝛽 |𝐼| .

(38)

Now, using the previous lemma and (33) we conclude that

𝑑

𝑑𝑡
𝐸 + 𝛽𝜂

𝑑

𝑑𝑡
⟨𝑢
𝑡
, 𝑢⟩ + 2𝛽

2
𝜂 ⟨𝑢
𝑡
, 𝑢⟩ + 2𝛽𝐸 ≤ 2𝛽 |𝐼| . (39)

If we set

Φ(𝑢, 𝑢
𝑡
) = Φ (𝑡) = 𝐸 (𝑢, 𝑢

𝑡
) + 𝛽𝜂⟨𝑢

𝑡
, 𝑢⟩, (40)

then from (39) we get

𝑑

𝑑𝑡
Φ (𝑡) + 2𝛽Φ (𝑡) ≤ 2𝛽. (41)

Now, integrating we have that

Φ (𝑡) ≤ [Φ (𝑢
0
, 𝑢
1
) − 1] 𝑒

−2𝛽𝑡
+ 1. (42)

The previous inequality will be used in the next section to
show the existence of absorbing sets for the problem (1).

We remark that the following inequality holds for the
functions 𝐸, �̃�, andΦ:

Φ (𝑡) = �̃� (𝑡) +
1

2
∫
𝐼

𝑊(𝑢
𝑥
) 𝑑𝑥 ≥ �̃� ≥ 0. (43)

4. Absorbing Sets

In this section we will show the existence of several absorbing
sets for the solution semigroup of (1) in the spaceH

𝜀,𝜂
. Also,

assuming further regularity of the initial data, the existence
of a more regular absorbing sets is also shown.

First, notice the following estimate of the nonlinear term
of the energy functional defined in (26). Using (23) we get

1

2
∫
𝐼

𝑊(𝑢
𝑥
) 𝑑𝑥 ≤

1

2

󵄩󵄩󵄩󵄩𝑢𝑥
󵄩󵄩󵄩󵄩
2󵄩󵄩󵄩󵄩𝑢𝑥

󵄩󵄩󵄩󵄩
2

𝐿
∞
(𝐼)

−
󵄩󵄩󵄩󵄩𝑢𝑥

󵄩󵄩󵄩󵄩
2

+
|𝐼|

2

≤
1

2

󵄩󵄩󵄩󵄩𝑢𝑥
󵄩󵄩󵄩󵄩
2󵄩󵄩󵄩󵄩𝑢𝑥𝑥

󵄩󵄩󵄩󵄩
2

+
|𝐼|

2

≤
1

2

󵄩󵄩󵄩󵄩𝑢𝑥𝑥
󵄩󵄩󵄩󵄩
4

+
|𝐼|

2
.

(44)

We will use this inequality several times in what follows.

4.1. Absorbing Set inH
𝜀,𝜂

Proposition 5. For all 𝑅
0
> 1 the set

𝐵
Φ
:= {(𝑢, 𝑢

𝑡
) ∈ H

𝜀,𝜂
: Φ (𝑢, 𝑢

𝑡
) ≤ 𝑅
0
} (45)

is bounded, absorbing, and positively invariant for the semi-
group 𝑆

𝜀,𝜂
(𝑡) inH

𝜀,𝜂
.

Proof. The set is positively invariant, in fact if (𝑢
0
, 𝑢
1
) ∈ H

𝜀,𝜂

with Φ(𝑢
0
, 𝑢
1
) ≤ 𝑅
0
we have, from (42), that

Φ(𝑢, 𝑢
𝑡
) ≤ [𝑅

0
− 1] 𝑒

−2𝛽𝑡
+ 1 ≤ 𝑅

0
, ∀𝑡 > 0. (46)

Theboundness of𝐵
Φ
follows directly from (42). Now suppose

that (𝑢
0
, 𝑢
1
) are such that Φ(𝑢

0
, 𝑢
1
) ≤ 𝑅, with 𝑅 > 𝑅

0
then

again from (42) we get
Φ(𝑢, 𝑢

𝑡
) ≤ 𝑅
0
, ∀𝑡 ≥ 𝜏

Φ
, (47)

where

𝜏
Φ
:=

1

2𝛽
log{ 𝑅 − 1

𝑅
0
− 1

} . (48)

Then 𝐵
Φ
is absorbing for the semigroup 𝑆

𝜀,𝜂
(𝑡).

Proposition 6. For all 𝑅
1
> 1 one has that the set

𝐵
�̃�
:= {(𝑢, 𝑢

𝑡
) ∈ H

𝜀,𝜂
: �̃� (𝑢, 𝑢

𝑡
) ≤ 𝑅
1
} (49)

is absorbing for the semigroup 𝑆
𝜀,𝜂
(𝑡).

Proof. We have from (42) and (43) that

�̃� (𝑢, 𝑢
𝑡
) ≤ [Φ (𝑢

0
, 𝑢
1
) − 1] 𝑒

−2𝛽𝑡
+ 1. (50)

Now, take (𝑢
0
, 𝑢
1
) such that �̃�(𝑢

0
, 𝑢
1
) ≤ 𝑅, with𝑅 > 𝑅

1
.Then,

by (42) and (44) we get that

�̃� (𝑡) ≤ Φ (𝑡) ≤ �̃� (𝑡) +
1

2

󵄩󵄩󵄩󵄩𝑢𝑥
󵄩󵄩󵄩󵄩
4

4
+

|𝐼|

2

≤ �̃� (𝑡) +
1

2

󵄩󵄩󵄩󵄩𝑢𝑥𝑥
󵄩󵄩󵄩󵄩
4

+
|𝐼|

2

≤ �̃� (𝑡) +
4

𝜀2
�̃�(𝑡)
2
+

|𝐼|

2
.

(51)
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Therefore,

�̃� (𝑢, 𝑢
𝑡
) ≤ {�̃� (𝑢

0
, 𝑢
1
) +

4

𝜀2
�̃�(𝑢
0
, 𝑢
1
)
2

+
|𝐼|

2
− 1} 𝑒

−2𝛽𝑡
+ 1

≤ {𝑅 +
4

𝜀2
𝑅
2
+

|𝐼|

2
− 1} 𝑒

−2𝛽𝑡
+ 1.

(52)

Consequently, we have that

�̃� (𝑢, 𝑢
𝑡
) ≤ 𝑅
1
, ∀𝑡 ≥ 𝜏

�̃�
, (53)

where

𝜏
�̃�
=

1

2𝛽
log{

𝑅 + (4/𝜀
4
) 𝑅
2
+ (|𝐼| /2) − 1

𝑅
1
− 1

} . (54)

Now using the equivalence of the norm onH
𝜀,𝜂

and (52)
we get

󵄩󵄩󵄩󵄩(𝑢, 𝑢𝑡)
󵄩󵄩󵄩󵄩
2

H𝜀,𝜂
≤ 3 {3

󵄩󵄩󵄩󵄩(𝑢0, 𝑢1)
󵄩󵄩󵄩󵄩
2

H𝜀,𝜂

+
36

𝜀2

󵄩󵄩󵄩󵄩(𝑢0, 𝑢1)
󵄩󵄩󵄩󵄩
4

H𝜀,𝜂
+

|𝐼|

2
− 1} 𝑒

−2𝛽𝑡
+ 3.

(55)

Let 𝑅
2
> √3. If (𝑢

0
, 𝑢
1
) ∈ H

𝜀,𝜂
is such that

󵄩󵄩󵄩󵄩(𝑢0, 𝑢1)
󵄩󵄩󵄩󵄩H𝜀,𝜂

≤ 𝑅, (56)

then we have that
󵄩󵄩󵄩󵄩(𝑢, 𝑢𝑡)

󵄩󵄩󵄩󵄩H𝜀,𝜂
≤ 𝑅
2
, ∀𝑡 ≥ 𝜏

𝐻
, (57)

where

𝜏
𝐻

=
1

2𝛽
log

3 {3𝑅
2
+ (36/𝜀

2
) 𝑅
4
+ |𝐼| /2 − 1}

𝑅2
2
− 3

. (58)

Thus, we have proved the following.

Proposition 7. For all 𝑅
2
> √3 one has that the ball

𝐵H𝜀,𝜂
:= {(𝑢, 𝑢

𝑡
) ∈ H

𝜀,𝜂
:
󵄩󵄩󵄩󵄩(𝑢, 𝑢𝑡)

󵄩󵄩󵄩󵄩H𝜀,𝜂
≤ 𝑅
2
} (59)

is an absorbing set for the semigroup 𝑆
𝜀,𝜂
(𝑡) inH

𝜀,𝜂
.

4.2. Absorbing Set in U
𝜀,𝜂
. Now suppose that the initial

data has some additional regularity. Then we can prove the
existence of more regular absorbing sets. Let us define the
following space:

U
𝜀,𝜂

= {𝐻
3
(𝐼) ∩ 𝐻

2
(𝐼) ∩ 𝐻

1

0
(𝐼)} × 𝐻

1
(𝐼) , (60)

equipped with the norm

󵄩󵄩󵄩󵄩(𝑢, 𝑢𝑡)
󵄩󵄩󵄩󵄩
2

U𝜀,𝜂
=

𝜂

2

󵄩󵄩󵄩󵄩𝑢𝑡𝑥
󵄩󵄩󵄩󵄩
2

+
𝜀
2

2

󵄩󵄩󵄩󵄩𝑢𝑥𝑥𝑥
󵄩󵄩󵄩󵄩
2

. (61)

Then we have the following.

Proposition 8. There exists 𝑅
3
> 0 such that the closed ball

B
3
= {(𝑢, 𝑢

𝑡
) ∈ U

𝜀,𝜂
:
󵄩󵄩󵄩󵄩(𝑢, 𝑢𝑡)

󵄩󵄩󵄩󵄩U𝜀,𝜂
≤ 𝑅
3
} , (62)

is a bounded absorbing set for 𝑆
𝜀,𝜂
(𝑡) inU

𝜀,𝜂
.

Proof. If we multiply (1) by 𝑢
𝑥𝑥𝑡

+𝑢
𝑥𝑥

and integrate over 𝐼 we
obtain

𝑑

𝑑𝑡
{
𝜂

2

󵄩󵄩󵄩󵄩𝑢𝑡𝑥
󵄩󵄩󵄩󵄩
2

+
𝜀
2

2

󵄩󵄩󵄩󵄩𝑢𝑥𝑥𝑥
󵄩󵄩󵄩󵄩
2

+
1

2

󵄩󵄩󵄩󵄩𝑢𝑥
󵄩󵄩󵄩󵄩
2

+ 𝜂⟨𝑢
𝑡𝑥
, 𝑢
𝑥
⟩}

+ (1 − 𝜂)
󵄩󵄩󵄩󵄩𝑢𝑡𝑥

󵄩󵄩󵄩󵄩
2

+ 𝜀
2󵄩󵄩󵄩󵄩𝑢𝑥𝑥𝑥

󵄩󵄩󵄩󵄩
2

= −
1

2
⟨[𝑊
󸀠
(𝑢
𝑥
)]
𝑥
, 𝑢
𝑥𝑥𝑡

⟩ −
1

2
⟨[𝑊
󸀠
(𝑢
𝑥
)]
𝑥
, 𝑢
𝑥𝑥
⟩ .

(63)

Let us denote the differential term of the previous inequality
as

Ψ
0
(𝑡) =

𝜂

2

󵄩󵄩󵄩󵄩𝑢𝑡𝑥
󵄩󵄩󵄩󵄩
2

+
𝜀
2

2

󵄩󵄩󵄩󵄩𝑢𝑥𝑥𝑥
󵄩󵄩󵄩󵄩
2

+ 𝜂 ⟨𝑢
𝑡𝑥
, 𝑢
𝑥
⟩

+
1

2

󵄩󵄩󵄩󵄩𝑢𝑥
󵄩󵄩󵄩󵄩
2

.

(64)

Wewill estimate the right hand side of (63).The first term can
be estimated as follows:

−
1

2
⟨[𝑊
󸀠
(𝑢
𝑥
)]
𝑥
, 𝑢
𝑥𝑥
⟩ ≤

1

2

󵄩󵄩󵄩󵄩󵄩
𝑊
󸀠󸀠
(𝑢
𝑥
)
󵄩󵄩󵄩󵄩󵄩∞

󵄩󵄩󵄩󵄩𝑢𝑥𝑥
󵄩󵄩󵄩󵄩
2

≤ 2 (3
󵄩󵄩󵄩󵄩𝑢𝑥

󵄩󵄩󵄩󵄩
2

∞
+ 1)

󵄩󵄩󵄩󵄩𝑢𝑥𝑥
󵄩󵄩󵄩󵄩
2

≤ 2 (3
󵄩󵄩󵄩󵄩𝑢𝑥𝑥

󵄩󵄩󵄩󵄩
2

+ 1)
󵄩󵄩󵄩󵄩𝑢𝑥𝑥

󵄩󵄩󵄩󵄩
2

≤
4

𝜀2
𝑅
2

2
(
6𝑅
2

2

𝜀2
+ 1) := 𝐶

1
.

(65)

Let us define

Ψ
1
=

1

4
∫
𝐼

𝑊
󸀠󸀠
(𝑢
𝑥
) 𝑢
2

𝑥𝑥
𝑑𝑥; (66)

then we can rewrite the the second term of r.h.s of (63)

−
1

2
⟨[𝑊
󸀠
(𝑢
𝑥
)]
𝑥
, 𝑢
𝑥𝑥𝑡

⟩ = −
𝑑

𝑑𝑡
Ψ
1
+

1

4
∫
𝐼

𝑊
󸀠󸀠󸀠

(𝑢
𝑥
) 𝑢
𝑥𝑡
𝑢
2

𝑥𝑥
,

(67)

and estimate
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1

4
∫
𝐼

𝑊
󸀠󸀠󸀠

(𝑢
𝑥
) 𝑢
𝑥𝑡
𝑢
2

𝑥𝑥

≤ 6
󵄩󵄩󵄩󵄩𝑢𝑥𝑥

󵄩󵄩󵄩󵄩∞ ∫
𝐼

𝑢
𝑥
𝑢
𝑥𝑡
𝑢
𝑥𝑥
𝑑𝑥

≤ 6
󵄩󵄩󵄩󵄩𝑢𝑥𝑥

󵄩󵄩󵄩󵄩∞
󵄩󵄩󵄩󵄩𝑢𝑥𝑡

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑢𝑥𝑢𝑥𝑥

󵄩󵄩󵄩󵄩

≤ 6
󵄩󵄩󵄩󵄩𝑢𝑥𝑥

󵄩󵄩󵄩󵄩∞
󵄩󵄩󵄩󵄩𝑢𝑥𝑡

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑢𝑥𝑥

󵄩󵄩󵄩󵄩
2

≤ 6
󵄩󵄩󵄩󵄩𝑢𝑥𝑥

󵄩󵄩󵄩󵄩
5/2󵄩󵄩󵄩󵄩𝑢𝑥𝑥𝑥

󵄩󵄩󵄩󵄩
1/2 󵄩󵄩󵄩󵄩𝑢𝑥𝑡

󵄩󵄩󵄩󵄩

≤ 6(
√2

𝜀
𝑅
2
)

5/2

󵄩󵄩󵄩󵄩𝑢𝑥𝑥𝑥
󵄩󵄩󵄩󵄩
1/2 󵄩󵄩󵄩󵄩𝑢𝑥𝑡

󵄩󵄩󵄩󵄩

≤
𝜂

2

󵄩󵄩󵄩󵄩𝑢𝑥𝑡
󵄩󵄩󵄩󵄩
2

+
18

𝜂
(
√2

𝜀
𝑅
2
)

5

󵄩󵄩󵄩󵄩𝑢𝑥𝑥𝑥
󵄩󵄩󵄩󵄩

≤
𝜂

2

󵄩󵄩󵄩󵄩𝑢𝑥𝑡
󵄩󵄩󵄩󵄩
2

+
1

2
[
18

𝜂𝜀
(
√2

𝜀
𝑅
2
)

5

]

2

+
𝜀
2

2

󵄩󵄩󵄩󵄩𝑢𝑥𝑥𝑥
󵄩󵄩󵄩󵄩
2

:=
𝜂

2

󵄩󵄩󵄩󵄩𝑢𝑥𝑡
󵄩󵄩󵄩󵄩
2

+
𝜀
2

2

󵄩󵄩󵄩󵄩𝑢𝑥𝑥𝑥
󵄩󵄩󵄩󵄩
2

+ 𝐶
2
.

(68)

Then if 𝜂 ∈ (0, 1/2) and setting Ψ := Ψ
0
+ Ψ
1
, 𝐶 := 𝐶

1
+ 𝐶
2

we have

𝑑

𝑑𝑡
Ψ +

𝜂

2

󵄩󵄩󵄩󵄩𝑢𝑥𝑡
󵄩󵄩󵄩󵄩
2

+
𝜀
2

2

󵄩󵄩󵄩󵄩𝑢𝑥𝑥𝑥
󵄩󵄩󵄩󵄩
2

≤ 𝐶. (69)

To conclude the proof we note that

Ψ ≥
󵄩󵄩󵄩󵄩(𝑢, 𝑢𝑡)

󵄩󵄩󵄩󵄩
2

U𝜀,𝜂
+

1

2

󵄩󵄩󵄩󵄩𝑢𝑥𝑥
󵄩󵄩󵄩󵄩
2

− 𝜂
󵄩󵄩󵄩󵄩𝑢𝑡𝑥

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑢𝑥

󵄩󵄩󵄩󵄩 −
󵄩󵄩󵄩󵄩𝑢𝑥𝑥

󵄩󵄩󵄩󵄩
2

≥
󵄩󵄩󵄩󵄩(𝑢, 𝑢𝑡)

󵄩󵄩󵄩󵄩
2

U𝜀,𝜂
−

𝜂

4

󵄩󵄩󵄩󵄩𝑢𝑡𝑥
󵄩󵄩󵄩󵄩
2

−
3

2

󵄩󵄩󵄩󵄩𝑢𝑥𝑥
󵄩󵄩󵄩󵄩
2

≥
1

2

󵄩󵄩󵄩󵄩(𝑢, 𝑢𝑡)
󵄩󵄩󵄩󵄩
2

U𝜀,𝜂
−

3

𝜀2
𝑅
2

2

:=
1

2

󵄩󵄩󵄩󵄩(𝑢, 𝑢𝑡)
󵄩󵄩󵄩󵄩
2

U𝜀,𝜂
− 𝑐
1
,

(70)

and that

Ψ ≤
󵄩󵄩󵄩󵄩(𝑢, 𝑢𝑡)

󵄩󵄩󵄩󵄩
2

U𝜀,𝜂
+

𝜂

2

󵄩󵄩󵄩󵄩𝑢𝑡𝑥
󵄩󵄩󵄩󵄩
2

+
󵄩󵄩󵄩󵄩𝑢𝑥𝑥

󵄩󵄩󵄩󵄩
2

+
󵄩󵄩󵄩󵄩𝑢𝑥𝑥

󵄩󵄩󵄩󵄩
2

(3
󵄩󵄩󵄩󵄩𝑢𝑥

󵄩󵄩󵄩󵄩
2

∞
+ 1)

≤ 2
󵄩󵄩󵄩󵄩(𝑢, 𝑢𝑡)

󵄩󵄩󵄩󵄩
2

U𝜀,𝜂
+

2

𝜀2
𝑅
2

2
(
6

𝜀2
𝑅
2

2
+ 2)

:= 2
󵄩󵄩󵄩󵄩(𝑢, 𝑢𝑡)

󵄩󵄩󵄩󵄩
2

U𝜀,𝜂
+ 𝑐
2
.

(71)

From the previous inequalities we get

1

2

󵄩󵄩󵄩󵄩(𝑢, 𝑢𝑡)
󵄩󵄩󵄩󵄩
2

U𝜀,𝜂
− 𝑐
1
≤ Ψ ≤ 2

󵄩󵄩󵄩󵄩(𝑢, 𝑢𝑡)
󵄩󵄩󵄩󵄩
2

U𝜀,𝜂
+ 𝑐
2
. (72)

Then from (72) we get

𝑑

𝑑𝑡
Ψ +

1

2
Ψ ≤ 𝐶 + 𝑐

2
:= �̃�, (73)

and by Gronwall’s lemma we obtain

Ψ (𝑡) ≤ (Ψ (0) − 2�̃�) 𝑒
−(1/2)𝑡

+ 2�̃�,

󵄩󵄩󵄩󵄩(𝑢, 𝑢𝑡)
󵄩󵄩󵄩󵄩
2

U𝜀,𝜂
≤ 2 (

󵄩󵄩󵄩󵄩(𝑢0, 𝑢1)
󵄩󵄩󵄩󵄩
2

U𝜀,𝜂
+ 𝑐
2
− 2�̃�) 𝑒

−(1/2)𝑡

+ 4�̃� + 2𝑐
1
.

(74)

Then if (𝑢
0
, 𝑢
1
) ∈ U

𝜀,𝜂
such that

󵄩󵄩󵄩󵄩(𝑢0, 𝑢1)
󵄩󵄩󵄩󵄩U𝜀,𝜂

≤ 𝑅, (75)

we have that

󵄩󵄩󵄩󵄩(𝑢, 𝑢𝑡)
󵄩󵄩󵄩󵄩U𝜀,𝜂

≤ 𝑅
3
, ∀𝑡 ≥ 𝜏

𝑈
, (76)

where

𝜏
𝑈
:= 2 log(2𝑅

2
+ 2𝑐
2
− 4�̃�

𝑅2
3
− 4�̃� − 2𝑐

1

) , (77)

and this concludes the proof.

4.3. Absorbing Set in V
𝜀,𝜂
. We consider the space V

𝜀,𝜂
as

defined in (7), equipped with the norm defined in (10). By
considering more regular initial conditions we can prove the
following result.

Proposition 9. There exists 𝑅
4
> 0 such that the closed ball

B
4
= {(𝑢, 𝑢

𝑡
) ∈ V

𝜀,𝜂
:
󵄩󵄩󵄩󵄩(𝑢, 𝑢𝑡)

󵄩󵄩󵄩󵄩V𝜀,𝜂
≤ 𝑅
4
} (78)

is a bounded absorbing set for the semigroup 𝑆
𝜀,𝜂
(𝑡) inV

𝜀,𝜂
.

Proof. Multiply (1) by 𝑢
𝑥𝑥𝑥𝑥𝑡

+ 𝑢
𝑥𝑥𝑥𝑥

; then we obtain

𝑑

𝑑𝑡
{
𝜂

2

󵄩󵄩󵄩󵄩𝑢𝑡𝑥𝑥
󵄩󵄩󵄩󵄩
2

+
𝜀
2

2

󵄩󵄩󵄩󵄩𝑢𝑥𝑥𝑥𝑥
󵄩󵄩󵄩󵄩
2

+𝜂 ⟨𝑢
𝑡𝑥𝑥

, 𝑢
𝑥𝑥
⟩ +

1

2

󵄩󵄩󵄩󵄩𝑢𝑥𝑥𝑥
󵄩󵄩󵄩󵄩
2

}

+ (1 − 𝜂)
󵄩󵄩󵄩󵄩𝑢𝑥𝑥𝑡

󵄩󵄩󵄩󵄩 + 𝜀
2󵄩󵄩󵄩󵄩𝑢𝑥𝑥𝑥𝑥

󵄩󵄩󵄩󵄩
2

=
1

2
⟨[𝑊
󸀠
(𝑢
𝑥
)]
𝑥
, 𝑢
𝑥𝑥𝑥𝑥𝑡

+ 𝑢
𝑥𝑥𝑥𝑥

⟩ .

(79)
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We call 𝜃
0
(𝑡) the differential term of the previous inequality

and we estimate the r.h.s.:

1

2
⟨[𝑊
󸀠
(𝑢
𝑥
)]
𝑥
, 𝑢
𝑥𝑥𝑥𝑥

⟩

= −
1

2
⟨[𝑊
󸀠
(𝑢
𝑥
)]
𝑥𝑥
, 𝑢
𝑥𝑥𝑥

⟩

= −
1

2
⟨𝑊
󸀠󸀠󸀠

(𝑢
𝑥
) 𝑢
2

𝑥𝑥
, 𝑢
𝑥𝑥𝑥

⟩ −
1

2
⟨[𝑊
󸀠󸀠
(𝑢
𝑥
)]
𝑥𝑥
, 𝑢
2

𝑥𝑥𝑥
⟩

= −12∫
𝐼

𝑢
𝑥
𝑢
2

𝑥𝑥
𝑢
𝑥𝑥𝑥

𝑑𝑥 − 2∫
𝐼

(3𝑢
2

𝑥
− 1) 𝑢

2

𝑥𝑥𝑥
𝑑𝑥

≤ 2
󵄩󵄩󵄩󵄩𝑢𝑥𝑥𝑥

󵄩󵄩󵄩󵄩
2

+ 12
󵄩󵄩󵄩󵄩𝑢𝑥𝑥

󵄩󵄩󵄩󵄩
2

∞

󵄩󵄩󵄩󵄩𝑢𝑥
󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑢𝑥𝑥𝑥

󵄩󵄩󵄩󵄩

≤ 2
󵄩󵄩󵄩󵄩𝑢𝑥𝑥𝑥

󵄩󵄩󵄩󵄩
2

(6
󵄩󵄩󵄩󵄩𝑢𝑥𝑥

󵄩󵄩󵄩󵄩
2

+ 1)

≤ 𝜀
2
𝑅
2

3
(
12

𝜀2
𝑅
2

2
+ 1) := 𝐴

1
.

(80)

Let us define

𝜃
1
(𝑡) :=

1

4
∫
𝐼

𝑊
󸀠󸀠
(𝑢
𝑥
) 𝑢
2

𝑥𝑥𝑥
𝑑𝑥; (81)

then

1

2
⟨[𝑊
󸀠
(𝑢
𝑥
)]
𝑥
, 𝑢
𝑥𝑥𝑥𝑥𝑡

⟩

= −
1

2
⟨[𝑊
󸀠
(𝑢
𝑥
)]
𝑥𝑥
, 𝑢
𝑥𝑥𝑥𝑡

⟩

= −
1

2
⟨𝑊
󸀠󸀠󸀠

(𝑢
𝑥
) 𝑢
2

𝑥𝑥
, 𝑢
𝑥𝑥𝑥𝑡

⟩

−
1

2
⟨𝑊
󸀠󸀠
(𝑢
𝑥
) 𝑢
𝑥𝑥𝑥

, 𝑢
𝑥𝑥𝑥𝑡

⟩

= −
𝑑

𝑑𝑡
𝜃
1
+

1

2
⟨[𝑊
󸀠󸀠󸀠

(𝑢
𝑥
) 𝑢
2

𝑥𝑥
]
𝑥
, 𝑢
𝑥𝑥𝑡

⟩

+
1

4
∫
𝐼

𝑊
󸀠󸀠󸀠

(𝑢
𝑥
) 𝑢
𝑥𝑡
𝑢
2

𝑥𝑥𝑥
𝑑𝑥.

(82)

We estimate the last two terms of the previous equality:

1

4
∫
𝐼

𝑊
󸀠󸀠󸀠

(𝑢
𝑥
) 𝑢
𝑥𝑡
𝑢
2

𝑥𝑥𝑥
𝑑𝑥

= 6∫
𝐼

𝑢
𝑥
𝑢
𝑥𝑡
𝑢
2

𝑥𝑥𝑥
𝑑𝑥

≤ 6
󵄩󵄩󵄩󵄩𝑢𝑥𝑥𝑥

󵄩󵄩󵄩󵄩∞
󵄩󵄩󵄩󵄩𝑢𝑥

󵄩󵄩󵄩󵄩∞
󵄩󵄩󵄩󵄩𝑢𝑥𝑡

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑢𝑥𝑥𝑥

󵄩󵄩󵄩󵄩

≤ 6
󵄩󵄩󵄩󵄩𝑢𝑥𝑥𝑥

󵄩󵄩󵄩󵄩
3/2󵄩󵄩󵄩󵄩𝑢𝑥𝑥𝑥𝑥

󵄩󵄩󵄩󵄩
1/2 󵄩󵄩󵄩󵄩𝑢𝑥𝑡

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑢𝑥𝑥

󵄩󵄩󵄩󵄩
2

≤ (12 ⋅ 2
3/4

𝑅
2

2
𝑅
3/2

3

𝜀7/2
)

󵄩󵄩󵄩󵄩𝑢𝑥𝑥𝑥𝑥
󵄩󵄩󵄩󵄩
1/2 󵄩󵄩󵄩󵄩𝑢𝑥𝑡

󵄩󵄩󵄩󵄩

≤ (12 ⋅ 2
3/4

𝑅
2

2
𝑅
3/2

3

𝜀7/2
)

2

󵄩󵄩󵄩󵄩𝑢𝑥𝑥𝑥𝑥
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝑢𝑥𝑡
󵄩󵄩󵄩󵄩
2

≤
1

2𝜀2
(12 ⋅ 2

3/4
𝑅
2

2
𝑅
3/2

3

𝜀7/2
)

4

+
2

𝜂
𝑅
2

3
+

𝜀
2

2

󵄩󵄩󵄩󵄩𝑢𝑥𝑥𝑥𝑥
󵄩󵄩󵄩󵄩
2

:=
𝜀
2

2

󵄩󵄩󵄩󵄩𝑢𝑥𝑥𝑥𝑥
󵄩󵄩󵄩󵄩
2

+ 𝐴
2
,

1

2
⟨[𝑊
󸀠󸀠󸀠

(𝑢
𝑥
) 𝑢
2

𝑥𝑥
]
𝑥
, 𝑢
𝑥𝑥𝑡

⟩

=
1

2
⟨𝑊
𝑖V
(𝑢
𝑥
) 𝑢
3

𝑥𝑥
+ 𝑊
󸀠󸀠󸀠

(𝑢
𝑥
) 2𝑢
𝑥𝑥
𝑢
𝑥𝑥𝑥

, 𝑢
𝑥𝑥𝑡

⟩

= 12∫
𝐼

𝑢
3

𝑥𝑥
𝑢
𝑥𝑥𝑡

𝑑𝑥 + 24∫
𝐼

𝑢
𝑥
𝑢
𝑥𝑥
𝑢
𝑥𝑥𝑥

𝑢
𝑥𝑥𝑡

𝑑𝑥

≤ 12 (
󵄩󵄩󵄩󵄩𝑢𝑥𝑥

󵄩󵄩󵄩󵄩
2

∞

󵄩󵄩󵄩󵄩𝑢𝑥𝑥
󵄩󵄩󵄩󵄩

+2
󵄩󵄩󵄩󵄩𝑢𝑥

󵄩󵄩󵄩󵄩∞
󵄩󵄩󵄩󵄩𝑢𝑥𝑥

󵄩󵄩󵄩󵄩∞
󵄩󵄩󵄩󵄩𝑢𝑥𝑥𝑥

󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩𝑢𝑥𝑥𝑡

󵄩󵄩󵄩󵄩

≤ 12 (
󵄩󵄩󵄩󵄩𝑢𝑥𝑥

󵄩󵄩󵄩󵄩
2 󵄩󵄩󵄩󵄩𝑢𝑥𝑥𝑥

󵄩󵄩󵄩󵄩

+2
󵄩󵄩󵄩󵄩𝑢𝑥𝑥

󵄩󵄩󵄩󵄩
3/2󵄩󵄩󵄩󵄩𝑢𝑥𝑥𝑥

󵄩󵄩󵄩󵄩
3/2

)
󵄩󵄩󵄩󵄩𝑢𝑥𝑥𝑡

󵄩󵄩󵄩󵄩

≤
𝜂

2

󵄩󵄩󵄩󵄩𝑢𝑥𝑥𝑡
󵄩󵄩󵄩󵄩
2

+ 72 (
󵄩󵄩󵄩󵄩𝑢𝑥𝑥

󵄩󵄩󵄩󵄩
2 󵄩󵄩󵄩󵄩𝑢𝑥𝑥𝑥

󵄩󵄩󵄩󵄩

+2
󵄩󵄩󵄩󵄩𝑢𝑥𝑥

󵄩󵄩󵄩󵄩
3/2󵄩󵄩󵄩󵄩𝑢𝑥𝑥𝑥

󵄩󵄩󵄩󵄩
3/2

)
2

≤
𝜂

2

󵄩󵄩󵄩󵄩𝑢𝑥𝑥𝑡
󵄩󵄩󵄩󵄩
2

+ 72[
2√2𝑅

2

2
𝑅
3

𝜀3
+ 2(

2𝑅
2
𝑅
3

𝜀2
)

3/2

]

2

:=
𝜂

2

󵄩󵄩󵄩󵄩𝑢𝑥𝑥𝑡
󵄩󵄩󵄩󵄩
2

+ 𝐴
3
.

(83)

Then if we set 𝜃(𝑡) = 𝜃
0
(𝑡) + 𝜃

1
(𝑡) we get

𝑑

𝑑𝑡
𝜃 (𝑡) +

󵄩󵄩󵄩󵄩(𝑢, 𝑢𝑡)
󵄩󵄩󵄩󵄩
2

V𝜀,𝜂
≤ 𝐴
1
+ 𝐴
2
+ 𝐴
3
:= 𝐴. (84)

Moreover we have

𝜃 (𝑡) ≥
󵄩󵄩󵄩󵄩(𝑢, 𝑢𝑡)

󵄩󵄩󵄩󵄩
2

V𝜀,𝜂
−

𝜂

4

󵄩󵄩󵄩󵄩𝑢𝑥𝑥𝑡
󵄩󵄩󵄩󵄩
2

−
1

2

󵄩󵄩󵄩󵄩𝑢𝑥𝑥
󵄩󵄩󵄩󵄩
2

≥
1

2

󵄩󵄩󵄩󵄩(𝑢, 𝑢𝑡)
󵄩󵄩󵄩󵄩
2

V𝜀,𝜂
−

1

2
𝑅
2

2

:=
1

2

󵄩󵄩󵄩󵄩(𝑢, 𝑢𝑡)
󵄩󵄩󵄩󵄩
2

V𝜀,𝜂
− 𝑎
1
,
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𝜃 (𝑡) ≤
󵄩󵄩󵄩󵄩(𝑢, 𝑢𝑡)

󵄩󵄩󵄩󵄩
2

V𝜀,𝜂
+ 𝜂

󵄩󵄩󵄩󵄩𝑢𝑥𝑥𝑡
󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑢𝑥𝑥

󵄩󵄩󵄩󵄩

+
1

2

󵄩󵄩󵄩󵄩𝑢𝑥𝑥
󵄩󵄩󵄩󵄩
2

+
1

4

󵄩󵄩󵄩󵄩󵄩
𝑊
󸀠󸀠
(𝑢
𝑥
)
󵄩󵄩󵄩󵄩󵄩∞

󵄩󵄩󵄩󵄩𝑢𝑥𝑥𝑥
󵄩󵄩󵄩󵄩
3

≤ 2
󵄩󵄩󵄩󵄩(𝑢, 𝑢𝑡)

󵄩󵄩󵄩󵄩
2

V𝜀,𝜂
+
󵄩󵄩󵄩󵄩𝑢𝑥𝑥

󵄩󵄩󵄩󵄩
2

+ (3
󵄩󵄩󵄩󵄩𝑢𝑥

󵄩󵄩󵄩󵄩
2

∞
+ 1)

󵄩󵄩󵄩󵄩𝑢𝑥𝑥𝑥
󵄩󵄩󵄩󵄩
2

≤ 2
󵄩󵄩󵄩󵄩(𝑢, 𝑢𝑡)

󵄩󵄩󵄩󵄩
2

V𝜀,𝜂
+

2

𝜀2
𝑅
2

2
+ (

6

𝜀2
𝑅
2

2
+ 1)

2

𝜀2
𝑅
2

3

:= 2
󵄩󵄩󵄩󵄩(𝑢, 𝑢𝑡)

󵄩󵄩󵄩󵄩
2

V𝜀,𝜂
+ 𝑎
2
.

(85)

Then putting all together we get

1

2

󵄩󵄩󵄩󵄩(𝑢, 𝑢𝑡)
󵄩󵄩󵄩󵄩
2

V𝜀,𝜂
− 𝑎
1
≤ 𝜃 (𝑡) ≤ 2

󵄩󵄩󵄩󵄩(𝑢, 𝑢𝑡)
󵄩󵄩󵄩󵄩
2

V𝜀,𝜂
+ 𝑎
2
. (86)

From the previous inequality we get

𝑑

𝑑𝑡
𝜃 (𝑡) +

1

2
𝜃 (𝑡) ≤ 𝐴 +

𝑎
2

2
:= �̃� (87)

and by Gronwall’s lemma

𝜃 (𝑡) ≤ [𝜃 (0) − 2�̃�] 𝑒
−(1/2)𝑡

+ 2�̃�. (88)

Using again (86) we get

󵄩󵄩󵄩󵄩(𝑢, 𝑢𝑡)
󵄩󵄩󵄩󵄩
2

V𝜀,𝜂
≤ 2 [2

󵄩󵄩󵄩󵄩(𝑢0, 𝑢1)
󵄩󵄩󵄩󵄩
2

V𝜀,𝜂
+ 𝑎
2
− 2�̃�] 𝑒

−(1/2)𝑡

+ 4�̃� + 2𝑎
1
.

(89)

Then if (𝑢
0
, 𝑢
1
) ∈ V

𝜀,𝜂
such that

󵄩󵄩󵄩󵄩(𝑢0, 𝑢1)
󵄩󵄩󵄩󵄩V𝜀,𝜂

≤ 𝑅, (90)

then there exists 𝑅
4
> 0:

󵄩󵄩󵄩󵄩(𝑢, 𝑢𝑡)
󵄩󵄩󵄩󵄩V𝜀,𝜂

≤ 𝑅
4
, ∀𝑡 ≥ 𝜏

𝑉
, (91)

where

𝜏
𝑉
:= 2 log[

2 (2𝑅
2
+ 𝑎
2
− 2�̃�)

𝑅2
4
− 4�̃� − 2𝑎

1

] , (92)

and this concludes the proof.

5. Global Attractor

In this section we will show the existence of a global attractor
for the semigroup 𝑆

𝜀,𝜂
(𝑡) in H

𝜀,𝜂
. Since we have already

proved the existence of the absorbing set in H
𝜀,𝜂
, then it is

sufficient (see, e.g., [4] or [14] for general results or [15] for
a recent application on a weakly damped wave equation) to
prove that, for any fixed bounded setB ⊂ H

𝜀,𝜂
, the solution

semigroup 𝑆
𝜀,𝜂
(𝑡) admits the decomposition:

𝑆
𝜀,𝜂

(𝑡) = 𝐿
𝜀,𝜂

(𝑡) + 𝑁
𝜀,𝜂

(𝑡) , (93)

such that

(𝐶1) sup
𝑡≥0

sup
𝑧∈H𝜀,𝜂

󵄩󵄩󵄩󵄩󵄩
𝐿
𝜀,𝜂
(𝑡)𝑧

󵄩󵄩󵄩󵄩󵄩V𝜀,𝜂
< ∞, (94)

(𝐶2) lim
𝑡→∞

{ sup
𝑧∈H𝜀,𝜂

󵄩󵄩󵄩󵄩󵄩
𝑁
𝜀,𝜂

(𝑡) 𝑧
󵄩󵄩󵄩󵄩󵄩H𝜀,𝜂

} = 0. (95)

Let B ⊂ H
𝜀,𝜂

be a fixed bounded set and let (𝑢
0
, 𝑢
1
) ∈

B ⊂ H
𝜀,𝜂
.Wewill define the decomposition of 𝑆

𝜀,𝜂
as follows:

𝑆
𝜀,𝜂

(𝑡) (𝑢
0
, 𝑢
1
) = (𝑢, 𝑢

𝑡
) ,

𝐿
𝜀,𝜂

(𝑡) (𝑢
0
, 𝑢
1
) = (ℎ, ℎ

𝑡
) ,

𝑁
𝜀,𝜂

(𝑡) (𝑢
0
, 𝑢
1
) = (V, V

𝑡
) ,

(96)

where ℎ and V are solutions of the following problems:

𝜂ℎ
𝑡𝑡
+ ℎ
𝑡
+ 𝜀
2
ℎ
𝑥𝑥𝑥𝑥

− 𝛼ℎ
𝑥𝑥

=
1

2
𝑊
󸀠󸀠
(ℎ
𝑥
) ℎ
𝑥𝑥

− 𝛼𝑢
𝑥𝑥
,

ℎ (𝑥, 0) = 0,

ℎ
𝑡
(𝑥, 0) = 0,

ℎ = ℎ
𝑥𝑥

= 0, in 𝜕𝐼,

(97)

𝜂V
𝑡𝑡
+ V
𝑡
+ 𝜀
2
V
𝑥𝑥𝑥𝑥

− 𝛼V
𝑥𝑥

=
1

2
𝑊
󸀠󸀠
(𝑢
𝑥
) 𝑢
𝑥𝑥

−
1

2
𝑊
󸀠󸀠
(ℎ
𝑥
) ℎ
𝑥𝑥
,

V (0) = 𝑢
0
,

V
𝑡
(0) = 𝑢

1
,

V = V
𝑥𝑥

= 0, in 𝜕𝐼,

(98)

where

𝛼 ≥
6√2

𝜀
𝑅
2
> 6√6. (99)

Before showing that the semigroups 𝐿
𝜀,𝜂
(𝑡) and𝑁

𝜀,𝜂
(𝑡) satisfy

the conditions (94) and (95), respectively, we consider the
following lemma (see [9]) that will be useful for the sequel.

Lemma 10. Let 𝜓 : R+ → R be an absolutely continuous
function which fulfills, for some ] > 0 and almost every 𝑡 ≥ 0,
the differential inequality

𝑑

𝑑𝑡
𝜓 (𝑡) + 2]𝜓 (𝑡) ≤ 𝑓 (𝑡) 𝜓 (𝑡) , (100)

where 𝑓 is a positive function satisfying

∫

𝑡

0

𝑓 (𝑦) 𝑑𝑦 ≤ ]𝑡 + 𝑐, ∀𝑡 ≥ 0. (101)

Then

𝜓 (𝑡) ≤ 𝑐𝜓 (0) 𝑒
−]𝑡

, 𝑡 ≥ 0. (102)
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5.1. The Semigroup 𝐿
𝜀,𝜂
(𝑡). Due to the similarity of problem

(97) to (1), Proposition 9 still holds in this setting. We will
omit the proof. Consequentlywe get that condition (94) holds
by noting that (ℎ(0), ℎ

𝑡
(0)) = (0, 0).

Moreover by (97), multiplying the equation by ℎ
𝑡
and

integrating over 𝐼, we get that there exists a constant 𝑐 > 0

such that

𝑑

𝑑𝑡
{
𝜂

2

󵄩󵄩󵄩󵄩ℎ𝑡
󵄩󵄩󵄩󵄩
2

+
𝜀
2

2

󵄩󵄩󵄩󵄩ℎ𝑥𝑥
󵄩󵄩󵄩󵄩
2

+
1

2
∫
𝐼

𝑊(ℎ
𝑥
) 𝑑𝑥 +

𝛼

2

󵄩󵄩󵄩󵄩ℎ𝑥
󵄩󵄩󵄩󵄩
2

+ 𝛼⟨𝑢
𝑥𝑥
, ℎ⟩}

+
󵄩󵄩󵄩󵄩ℎ𝑡

󵄩󵄩󵄩󵄩
2

= 𝛼⟨𝑢
𝑡
, ℎ
𝑥𝑥
⟩ ≤ 𝑐

󵄩󵄩󵄩󵄩𝑢𝑡
󵄩󵄩󵄩󵄩 .

(103)

Then integrating the above equation on (0, 𝑡) and using (30)
we get that there exist constants 𝐴 > 0 and 𝐵 > 0 such that

∫

𝑡

0

󵄩󵄩󵄩󵄩ℎ𝑡
󵄩󵄩󵄩󵄩
2

𝑑𝑠 ≤ 𝐴 + 𝑐∫

𝑡

0

󵄩󵄩󵄩󵄩𝑢𝑡
󵄩󵄩󵄩󵄩 𝑑𝑠

≤ 𝐴 + 𝐵𝑡
1/2

.

(104)

Consequently, for any 𝛾 > 0 there exists a constant 𝐶
𝛾
≥ 0

such that

∫

𝑡

0

󵄩󵄩󵄩󵄩ℎ𝑡
󵄩󵄩󵄩󵄩
2

𝑑𝑠 ≤ 𝛾 𝑡 + 𝐶
𝛾
. (105)

5.2. The Semigroup 𝑁
𝜀,𝜂
(𝑡). Let 𝛽 > 0 be a parameter to be

determined later and let usmultiply, in 𝐿
2
(𝐼), (98) by 2V

𝑡
+𝛽V.

Then we get

𝑑

𝑑𝑡
{𝜂

󵄩󵄩󵄩󵄩V𝑡
󵄩󵄩󵄩󵄩
2

+ 𝜂𝛽⟨V
𝑡
, V⟩ + 𝜀

2󵄩󵄩󵄩󵄩V𝑥𝑥
󵄩󵄩󵄩󵄩
2

+
𝛽

2
‖V‖
2
+ 𝛼

󵄩󵄩󵄩󵄩V𝑥
󵄩󵄩󵄩󵄩
2

+⟨𝑊(𝑢
𝑥
) − 𝑊(ℎ

𝑥
) − 𝑊

󸀠
(ℎ
𝑥
) V
𝑥
, 1⟩}

+ (2 − 𝜂𝛽)
󵄩󵄩󵄩󵄩V𝑡

󵄩󵄩󵄩󵄩
2

+ 𝜀
2
𝛽
󵄩󵄩󵄩󵄩V𝑥𝑥

󵄩󵄩󵄩󵄩
2

−
𝛽

2
⟨𝑊
󸀠
(𝑢
𝑥
) − 𝑊

󸀠
(ℎ
𝑥
) , V
𝑥
⟩

= ⟨ℎ
𝑡𝑥
,𝑊
󸀠
(𝑢
𝑥
) − 𝑊

󸀠
(ℎ
𝑥
) − 𝑊

󸀠󸀠
(ℎ
𝑥
) V
𝑥
⟩ .

(106)

We estimate the term involving𝑊 and its derivatives:

−
𝛽

2
⟨𝑊
󸀠
(𝑢
𝑥
) − 𝑊

󸀠
(ℎ
𝑥
) , V
𝑥
⟩

= −
𝛽

2
⟨𝑊
󸀠󸀠
(𝑘
𝑥
) V
𝑥
, V
𝑥
⟩

= 2𝛽∫
𝐼

(1 − 3𝑘
2

𝑥
) V
2

𝑥
𝑑𝑥

≥ −6𝛽
󵄩󵄩󵄩󵄩V𝑥

󵄩󵄩󵄩󵄩∞
󵄩󵄩󵄩󵄩V𝑥

󵄩󵄩󵄩󵄩
2

≥ −
6𝛽√2

𝜀
𝑅
2

󵄩󵄩󵄩󵄩V𝑥
󵄩󵄩󵄩󵄩
2

,

(107)

where 𝑘
𝑥
(𝑥) is between ℎ

𝑥
(𝑥) and 𝑢

𝑥
(𝑥) and satisfies ‖𝑘

𝑥
‖
∞

≤

‖V
𝑥
‖
∞
. Moreover we have

⟨𝑊(𝑢
𝑥
) − 𝑊(ℎ

𝑥
) − 𝑊

󸀠
(ℎ
𝑥
) V
𝑥
, 1⟩

= ⟨𝑊
󸀠
(ℎ
𝑥
+ �̃�
𝑥
) − 𝑊

󸀠
(ℎ
𝑥
) , V
𝑥
⟩

= ⟨𝑊
󸀠󸀠
(𝑠
𝑥
) �̃�
𝑥
, V
𝑥
⟩

= 12∫
𝐼

𝑠
2

𝑥
�̃�
𝑥
V
𝑥
𝑑𝑥 − 4∫

𝐼

𝑘
𝑥
V
𝑥
𝑑𝑥

≥ −4
󵄩󵄩󵄩󵄩V𝑥

󵄩󵄩󵄩󵄩
2

,

(108)

where �̃�
𝑥
(𝑥) is between 0 and V

𝑥
(𝑥), 𝑠
𝑥
(𝑥) is between 0 and

�̃�
𝑥
(𝑥) and ‖𝑠

𝑥
‖
∞

≤ ‖�̃�
𝑥
‖
∞

≤ ‖V
𝑥
‖
∞
. Moreover we have used

that V2
𝑥
≥ �̃�
𝑥
V
𝑥
≥ 0.

We denote as F the differential term of (106) and prove
that it induces a norm that is equivalent to that ofH

𝜀,𝜂
. Then

from (99) and (107) we have that

F (𝑡) ≥ 𝜂
󵄩󵄩󵄩󵄩V𝑡

󵄩󵄩󵄩󵄩
2

−
𝜂

2

󵄩󵄩󵄩󵄩V𝑡
󵄩󵄩󵄩󵄩
2

−
𝛽

2
‖V‖
2

+ 𝜀
2󵄩󵄩󵄩󵄩V𝑥𝑥

󵄩󵄩󵄩󵄩
2

+ 𝛼
󵄩󵄩󵄩󵄩V𝑥

󵄩󵄩󵄩󵄩
2

−
6𝛽√2

𝜀
𝑅
2

󵄩󵄩󵄩󵄩V𝑥
󵄩󵄩󵄩󵄩
2

≥
𝜂

2

󵄩󵄩󵄩󵄩V𝑡
󵄩󵄩󵄩󵄩
2

+ 𝜀
2󵄩󵄩󵄩󵄩V𝑥𝑥

󵄩󵄩󵄩󵄩
2

≥
󵄩󵄩󵄩󵄩(V, V𝑡)

󵄩󵄩󵄩󵄩
2

H𝜀,𝜂
.

(109)

Moreover we have

F (𝑡) ≤ 𝜂
󵄩󵄩󵄩󵄩V𝑡

󵄩󵄩󵄩󵄩
2

+
𝜂

2

󵄩󵄩󵄩󵄩V𝑡
󵄩󵄩󵄩󵄩
2

+
𝛽

2
‖V‖
2

+ 𝜀
2󵄩󵄩󵄩󵄩V𝑥𝑥

󵄩󵄩󵄩󵄩
2

+
𝛽

2
‖V‖
2

+ 𝛼
󵄩󵄩󵄩󵄩V𝑥

󵄩󵄩󵄩󵄩
2

+
󵄩󵄩󵄩󵄩󵄩
𝑊
󸀠󸀠
(𝑘
𝑥
)
󵄩󵄩󵄩󵄩󵄩∞

󵄩󵄩󵄩󵄩V𝑥
󵄩󵄩󵄩󵄩
2

≤
3

2
𝜂
󵄩󵄩󵄩󵄩V𝑡

󵄩󵄩󵄩󵄩
2

+ 𝛽
󵄩󵄩󵄩󵄩V𝑥𝑥

󵄩󵄩󵄩󵄩
2

+ 𝜀
2󵄩󵄩󵄩󵄩V𝑥𝑥

󵄩󵄩󵄩󵄩
2

+ 𝛼
󵄩󵄩󵄩󵄩V𝑥𝑥

󵄩󵄩󵄩󵄩
2

+ 4 (3
󵄩󵄩󵄩󵄩𝑢𝑥

󵄩󵄩󵄩󵄩
2

∞
+ 1)

󵄩󵄩󵄩󵄩V𝑥𝑥
󵄩󵄩󵄩󵄩
2

≤
3

2
𝜂
󵄩󵄩󵄩󵄩V𝑡

󵄩󵄩󵄩󵄩
2

+ (𝛽 + 𝜀
2
+ 𝛼 +

12√2𝑅
2

𝜀
+ 4)

󵄩󵄩󵄩󵄩V𝑥𝑥
󵄩󵄩󵄩󵄩
2

:=
3

2
𝜂
󵄩󵄩󵄩󵄩V𝑡

󵄩󵄩󵄩󵄩
2

+ 𝐴
𝜀
2

2

󵄩󵄩󵄩󵄩V𝑥𝑥
󵄩󵄩󵄩󵄩
2

≤ 𝑐
󵄩󵄩󵄩󵄩(V, V𝑡)

󵄩󵄩󵄩󵄩
2

H𝜀,𝜂
,

(110)

where we have used the same argument as (107) and (108) and
where

𝐴 =
2

𝜀2
(𝛽 + 𝜀

2
+ 𝛼 +

12√2𝑅
2

𝜀
+ 4) , 𝑐 = max {3, 𝐴} .

(111)

Then we have
󵄩󵄩󵄩󵄩(V, V𝑡)

󵄩󵄩󵄩󵄩
2

H𝜀,𝜂
≤ F (𝑡) ≤ 𝑐

󵄩󵄩󵄩󵄩(V, V𝑡)
󵄩󵄩󵄩󵄩
2

H𝜀,𝜂
. (112)
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We estimate the right hand side of (106):

⟨ℎ
𝑡𝑥
,𝑊
󸀠
(𝑢
𝑥
) − 𝑊

󸀠
(ℎ
𝑥
) − 𝑊

󸀠󸀠
(ℎ
𝑥
) V
𝑥
⟩

= ⟨ℎ
𝑡
,𝑊
󸀠󸀠󸀠

(ℎ
𝑥
) ℎ
𝑥𝑥
V
𝑥
+ (𝑊
󸀠󸀠
(ℎ
𝑥
) − 𝑊

󸀠󸀠
(𝑢
𝑥
)) 𝑢
𝑥𝑥
⟩

= ⟨ℎ
𝑡
, 24ℎ
𝑥
ℎ
𝑥𝑥
V
𝑥
+ 12 (ℎ

2

𝑥
− 𝑢
2

𝑥
) 𝑢
𝑥𝑥
⟩

= ⟨ℎ
𝑡
, 12ℎ
𝑥
V
𝑥
(2ℎ
𝑥𝑥

− 𝑢
𝑥𝑥
) − 12V

𝑥
𝑢
𝑥
𝑢
𝑥𝑥
⟩

= ⟨ℎ
𝑡
, 12V
𝑥
[ℎ
𝑥
(ℎ
𝑥𝑥

− V
𝑥𝑥
) − 𝑢
𝑥
𝑢
𝑥𝑥
]⟩

= ⟨ℎ
𝑡
, 12V
𝑥
[−2V
𝑥𝑥
ℎ
𝑥
− V
𝑥
𝑢
𝑥𝑥
]⟩

≤ 24
󵄩󵄩󵄩󵄩ℎ𝑡

󵄩󵄩󵄩󵄩 (∫
𝐼

V
2

𝑥
V
2

𝑥𝑥
ℎ
2

𝑥
)

1/2

+ 12
󵄩󵄩󵄩󵄩ℎ𝑡

󵄩󵄩󵄩󵄩 (∫
𝐼

𝑢
2

𝑥𝑥
V
4

𝑥
)

1/2

≤ 24
󵄩󵄩󵄩󵄩ℎ𝑡

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩V𝑥

󵄩󵄩󵄩󵄩∞
󵄩󵄩󵄩󵄩ℎ𝑥

󵄩󵄩󵄩󵄩∞
󵄩󵄩󵄩󵄩V𝑥𝑥

󵄩󵄩󵄩󵄩

+ 12
󵄩󵄩󵄩󵄩ℎ𝑡

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩V𝑥

󵄩󵄩󵄩󵄩∞
󵄩󵄩󵄩󵄩𝑢𝑥𝑥

󵄩󵄩󵄩󵄩∞
󵄩󵄩󵄩󵄩V𝑥

󵄩󵄩󵄩󵄩

≤ 12
󵄩󵄩󵄩󵄩ℎ𝑡

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩V𝑥𝑥

󵄩󵄩󵄩󵄩
2

(2
󵄩󵄩󵄩󵄩ℎ𝑥𝑥

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑢𝑥𝑥𝑥

󵄩󵄩󵄩󵄩)

≤ 𝜎
󵄩󵄩󵄩󵄩ℎ𝑡

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩V𝑥𝑥

󵄩󵄩󵄩󵄩
2

≤ {
2𝜎
2

𝛽𝜀2

󵄩󵄩󵄩󵄩ℎ𝑡
󵄩󵄩󵄩󵄩
2

+
𝛽𝜀
2

2
}
󵄩󵄩󵄩󵄩V𝑥𝑥

󵄩󵄩󵄩󵄩
2

,

(113)

where

𝜎 =
12√2

𝜀
(2𝑅
2
+ 𝑅
3
) . (114)

Then it remains to estimate the following term:

(2 − 𝜂𝛽)
󵄩󵄩󵄩󵄩V𝑡

󵄩󵄩󵄩󵄩
2

+ 𝛽𝜀
2󵄩󵄩󵄩󵄩V𝑥𝑥

󵄩󵄩󵄩󵄩
2

+ 𝛼𝛽
󵄩󵄩󵄩󵄩V𝑥

󵄩󵄩󵄩󵄩
2

−
𝛽

2
⟨𝑊
󸀠
(𝑢
𝑥
) − 𝑊

󸀠
(ℎ
𝑥
) , V
𝑥
⟩

≥ 𝛽
𝜂

2

󵄩󵄩󵄩󵄩V𝑡
󵄩󵄩󵄩󵄩
2

+ 𝛽𝜀
2󵄩󵄩󵄩󵄩V𝑥𝑥

󵄩󵄩󵄩󵄩
2

+ 𝛼𝛽
󵄩󵄩󵄩󵄩V𝑥

󵄩󵄩󵄩󵄩
2

− 6𝛽
√2

𝜀
𝑅
2

󵄩󵄩󵄩󵄩V𝑥
󵄩󵄩󵄩󵄩
2

≥ 𝛽
𝜂

2

󵄩󵄩󵄩󵄩V𝑡
󵄩󵄩󵄩󵄩
2

+ 𝛽𝜀
2󵄩󵄩󵄩󵄩V𝑥𝑥

󵄩󵄩󵄩󵄩
2

.

(115)

Then, using the above estimates, we can rewrite (106) in the
following way:

𝑑

𝑑𝑡
F (𝑡) +

𝛽

𝑐
F (𝑡) ≤

𝜎
2

2𝛽𝜀2

󵄩󵄩󵄩󵄩ℎ𝑡
󵄩󵄩󵄩󵄩
2󵄩󵄩󵄩󵄩V𝑥𝑥

󵄩󵄩󵄩󵄩
2

≤
𝜎
2

𝛽𝜀4

󵄩󵄩󵄩󵄩ℎ𝑡
󵄩󵄩󵄩󵄩
2󵄩󵄩󵄩󵄩(V, V𝑡)

󵄩󵄩󵄩󵄩
2

H𝜀,𝜂

≤
𝜎
2

𝛽𝜀4

󵄩󵄩󵄩󵄩ℎ𝑡
󵄩󵄩󵄩󵄩
2

F (𝑡) .

(116)

Then by Lemma 10 and from (105) we conclude that there
exists a positive constant𝐾 such that

F (𝑡) ≤ 𝐾F (0) 𝑒
−(𝛽/2𝑐)𝑡

, (117)

and consequently from (112) we conclude
󵄩󵄩󵄩󵄩(𝑢, 𝑢𝑡)

󵄩󵄩󵄩󵄩
2

H𝜂,𝜀
≤ 𝑐𝐾

󵄩󵄩󵄩󵄩(𝑢0, 𝑢1)
󵄩󵄩󵄩󵄩
2

H𝜂,𝜀
𝑒
−(𝛽/2𝑐)𝑡

. (118)

This shows that the semigroup𝑁
𝜀,𝜂
(𝑡) satisfies condition (95)

and hence we have proven the following.

Theorem 11. The semigroup 𝑆
𝜀,𝜂
(𝑡) possesses a connected

global attractorA
𝜀,𝜂

⊂ H
𝜀,𝜂

that is bounded inV
𝜀,𝜂
.

Acknowledgment

Theauthors would like to thank the editor and the referees for
their helpful suggestions and remarks.Thisworkwas partially
supported by projects PPTA4476 and PPTA5571 of Pontificia
Universidad Javeriana, Bogotá.
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