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This work is devoted to investigating the stability of impulsive cellular neural networks with time-varying and distributed delays.
We use the new method of fixed point theory to obtain some new and concise sufficient conditions to ensure the existence and
uniqueness of solution and the global exponential stability of trivial equilibrium.The presented algebraic criteria are easily checked
and do not require the differentiability of delays.

1. Introduction

Since cellular neural networks (CNNs) were proposed by
Chua and Yang in 1988 [1, 2], many researchers have put
great effort into this subject due to their numerous successful
applications in various fields such as optimization, linear
and nonlinear programming, associative memory, pattern
recognition, and computer vision.

Owing to the finite switching speed of amplifiers, there
is no doubt that time delays exist in the communication and
response of neurons. Moreover, as neural networks usually
have a spatial extent due to the presences of a multitude of
parallel pathways with a variety of axon sizes and lengths,
there is a distribution of conduction velocities along these
pathways and a distribution of propagation designed with
discrete delays. Therefore, a more appropriate and ideal way
is to incorporate continuously distributed delays with a result
that a more effective model of cellular neural networks with
time-varying and distributed delays proposed.

In fact, beside delay effects, stochastic and impulsive as
well as diffusing effects are also likely to exist in neural
networks. So far, there have been many results [3–11] on
the study of dynamic behaviors of complex CNNs such as
impulsive delayed reaction-diffusion CNNs and stochastic
delayed reaction-diffusion CNNs. Summing up the existing
researches on the stability of complex CNNs, we see that
the primary method is Lyapunov theory. However, there are

also lots of difficulties in the applications of corresponding
theories to specific problems. It is therefore necessary to seek
some new methods to deal with the stability in order to
overcome those difficulties.

Recently, it is inspiring that Burton and other authors
have applied the fixed point theory to investigate the stability
of deterministic systems and obtained some more applicable
conclusions, for example, see the monograph [12] and the
work in [13–24]. In addition, more recently, there have been
a few papers where the fixed point theory is employed to
investigate the stability of stochastic (delayed) differential
equations, for instance, see [25–31]. Precisely, in [26–28],
Luo used the fixed point theory to study the exponential
stability of mild solutions for stochastic partial differential
equations with bounded delays and with infinite delays. In
[29, 30], Sakthivel used the fixed point theory to discuss
the asymptotic stability in pth moment of mild solutions to
nonlinear impulsive stochastic partial differential equations
with bounded delays and with infinite delays. In [31], Luo
used the fixed point theory to study the exponential stability
of stochastic Volterra-Levin equations. We wonder if we can
obtain some new and more applicable stability criteria of
complex CNNs by applying the fixed point theory.

With this motivation, in this paper, we aim to discuss the
global exponential stability of impulsive CNNs with time-
varying and distributed delays. It is worth noting that our
research technique is based on the contraction mapping
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principle rather than the usual method of Lyapunov the-
ory. We deal with, by employing the fixed point theorem,
the existence and uniqueness of solution and the global
exponential stability of trivial equilibrium at the same time,
for which Lyapunov method feels helpless. The obtained
stability criteria are easily checked and do not require the
differentiability of delays.

2. Preliminaries

Let 𝑅𝑛 denote the n-dimensional Euclidean space and ‖ ⋅ ‖

represent the Euclidean norm N ≜ {1, 2, . . . , 𝑛} and 𝑅
+

=

[0,∞). 𝐶[𝑋, 𝑌] corresponds to the space of continuous
mappings from the topological space 𝑋 to the topological
space 𝑌.

In this paper, we consider the following impulsive cellular
neural networks with time-varying and distributed delays:

d𝑥
𝑖
(𝑡)

d𝑡
= − 𝑎

𝑖
𝑥
𝑖
(𝑡) +

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑥
𝑗
(𝑡))

+

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
𝑔
𝑗
(𝑥
𝑗
(𝑡 − 𝜏
𝑖𝑗
(𝑡)))

+

𝑛

∑

𝑗=1

𝑑
𝑖𝑗
∫

𝜌(𝑡)

0

𝜎
𝑗
(𝑥
𝑗
(𝑡 − 𝜃)) d𝜃

𝑡 ≥ 0, 𝑡 ̸= 𝑡
𝑘
,

(1)

Δ𝑥
𝑖
(𝑡
𝑘
) = 𝑥
𝑖
(𝑡
𝑘
+ 0) − 𝑥

𝑖
(𝑡
𝑘
) = 𝐼
𝑖𝑘
(𝑥
𝑖
(𝑡
𝑘
)) ,

𝑘 = 1, 2, . . . ,
(2)

where 𝑖 ∈ N and 𝑛 is the number of neurons in the neural
network. 𝑥

𝑖
(𝑡) corresponds to the state of the 𝑖th neuron

at time 𝑡. 𝑓
𝑗
, 𝑔
𝑗
, and 𝜎

𝑗
denote the activation functions,

respectively. The constant 𝑎
𝑖
> 0 represents the rate with

which the 𝑖th neuronwill reset its potential to the resting state
when disconnected from the network and external inputs.
The constants 𝑏

𝑖𝑗
, 𝑐
𝑖𝑗
, and𝑑

𝑖𝑗
represent the connectionweights

of the jth neuron to the 𝑖th neuron, respectively. 𝜏
𝑖𝑗
(𝑡) and 𝜌(𝑡)

correspond to the transmission delays meeting 0 ≤ 𝜏
𝑖𝑗
(𝑡) ≤ 𝜏

(𝜏 = constant) and 0 ≤ 𝜌(𝑡) ≤ 𝜌 (𝜌 = constant). The fixed
impulsive moments 𝑡

𝑘
(𝑘 = 1, 2, . . .) satisfy 0 = 𝑡

0
< 𝑡
1
<

𝑡
2
< ⋅ ⋅ ⋅ and lim

𝑘→∞
𝑡
𝑘
= ∞. 𝑥

𝑖
(𝑡
𝑘
+ 0) and 𝑥

𝑖
(𝑡
𝑘
− 0) stand

for the right-hand and left-hand limits of 𝑥
𝑖
(𝑡) at time 𝑡

𝑘
,

respectively. 𝐼
𝑖𝑘
(𝑥
𝑖
(𝑡
𝑘
)) shows the impulsive perturbation of

the 𝑖th neuron at the impulsive moment 𝑡
𝑘
.

Throughout this paper, we always assume that 𝑓
𝑖
(0) =

𝑔
𝑖
(0) = 𝜎

𝑖
(0) = 𝐼

𝑖𝑘
(0) = 0 for 𝑖 ∈ N and 𝑘 = 1, 2, . . .. Thereby,

problems (1) and (2) admit a trivial equilibrium x = 0.
Denote by x(𝑡) ≜ x(𝑡; 𝑠, 𝜑) =

(𝑥
1
(𝑡; 𝑠, 𝜑

1
), . . . , 𝑥

𝑛
(𝑡; 𝑠, 𝜑

𝑛
))
𝑇

∈ 𝑅
𝑛 the solution to (1)

and (2) with the initial condition

𝑥
𝑖
(𝑠) = 𝜑

𝑖
(𝑠) , −𝑚

∗

≤ 𝑠 ≤ 0, 𝑖 ∈ N, (3)

where 𝑚∗ = max{𝜏, 𝜌}, 𝜑
𝑖
(𝑠) ∈ 𝐶[[−𝑚

∗

, 0], 𝑅] and 𝜑(𝑠) =

(𝜑
1
(𝑠), . . . , 𝜑

𝑛
(𝑠))
𝑇

∈ 𝑅
𝑛.

The solution x(𝑡) ≜ x(𝑡; 𝑠, 𝜑) ∈ 𝑅
𝑛 to (1)–(3) is, for

the time variable 𝑡, a piecewise continuous vector-valued

function with the first-kind discontinuous points 𝑡
𝑘
(𝑘 =

1, 2, . . .), where it is left-continuous; that is, the following
relations are true:

𝑥
𝑖
(𝑡
𝑘
− 0) = 𝑥

𝑖
(𝑡
𝑘
) , 𝑥
𝑖
(𝑡
𝑘
+ 0) = 𝑥

𝑖
(𝑡
𝑘
) + 𝐼
𝑖𝑘
(𝑥
𝑖
(𝑡
𝑘
)) ,

𝑖 ∈ N, 𝑘 = 1, 2, . . . .

(4)

Definition 1. The trivial equilibrium x = 0 is said to be
globally exponentially stable if for any initial condition 𝜑(𝑠) ∈
𝐶[[−𝑚

∗

, 0], 𝑅
𝑛

], there exists a pair of positive constants 𝜆 and
𝑀 such that

󵄩󵄩󵄩󵄩x (𝑡; 𝑠, 𝜑)
󵄩󵄩󵄩󵄩 ≤ 𝑀e−𝜆𝑡, ∀𝑡 ≥ 0. (5)

The consideration of this paper is based on the following
fixed point theorem.

Theorem 2 (see [32]). Let Υ be a contraction operator on a
complete metric spaceΘ, then there exists a unique point 𝜁 ∈ Θ

for which Υ(𝜁) = 𝜁.

3. Main Results

In this section, we will, for (1)–(3), use the contraction
mapping principle to prove the existence and uniqueness of
the solution and the global exponential stability of trivial
equilibrium all at once. Before proceeding, we firstly intro-
duce some assumptions as follows.

(A1) There exist nonnegative constants 𝑙
𝑗
such that for any

𝜂, 𝜐 ∈ 𝑅,
󵄨󵄨󵄨󵄨󵄨
𝑓
𝑗
(𝜂) − 𝑓

𝑗
(𝜐)

󵄨󵄨󵄨󵄨󵄨
≤ 𝑙
𝑗

󵄨󵄨󵄨󵄨𝜂 − 𝜐
󵄨󵄨󵄨󵄨 , 𝑗 ∈ N. (6)

(A2) There exist nonnegative constants 𝑘
𝑗
such that for any

𝜂, 𝜐 ∈ 𝑅,
󵄨󵄨󵄨󵄨󵄨
𝑔
𝑗
(𝜂) − 𝑔

𝑗
(𝜐)

󵄨󵄨󵄨󵄨󵄨
≤ 𝑘
𝑗

󵄨󵄨󵄨󵄨𝜂 − 𝜐
󵄨󵄨󵄨󵄨 , 𝑗 ∈ N. (7)

(A3) There exist nonnegative constants 𝑝
𝑗𝑘

such that for
any 𝜂, 𝜐 ∈ 𝑅,

󵄨󵄨󵄨󵄨󵄨
𝐼
𝑗𝑘
(𝜂) − 𝐼

𝑗𝑘
(𝜐)

󵄨󵄨󵄨󵄨󵄨
≤ 𝑝
𝑗𝑘

󵄨󵄨󵄨󵄨𝜂 − 𝜐
󵄨󵄨󵄨󵄨 , 𝑗 ∈ N, 𝑘 = 1, 2, . . . .

(8)

(A4) There exist nonnegative constants𝜔
𝑗
such that for any

𝜂, 𝜐 ∈ 𝑅,
󵄨󵄨󵄨󵄨󵄨
𝜎
𝑗
(𝜂) − 𝜎

𝑗
(𝜐)

󵄨󵄨󵄨󵄨󵄨
≤ 𝜔
𝑗

󵄨󵄨󵄨󵄨𝜂 − 𝜐
󵄨󵄨󵄨󵄨 , 𝑗 ∈ N. (9)

LetH = H
1
× ⋅ ⋅ ⋅ ×H

𝑛
, and letH

𝑖
(𝑖 ∈ N) be the space

embracing functions 𝜙
𝑖
(𝑡) : [−𝑚

∗

, +∞) → 𝑅, wherein 𝜙
𝑖
(𝑡)

satisfies the following:

(1) 𝜙
𝑖
(𝑡) is continuous on 𝑡 ̸= 𝑡

𝑘
(𝑘 = 1, 2, . . .),

(2) lim
𝑡→ 𝑡
−

𝑘

𝜙
𝑖
(𝑡) and lim

𝑡→ 𝑡
+

𝑘

𝜙
𝑖
(𝑡) exist; moreover,

lim
𝑡→ 𝑡
−

𝑘

𝜙
𝑖
(𝑡) = 𝜙

𝑖
(𝑡
𝑘
) for 𝑘 = 1, 2, . . .,
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(3) 𝜙
𝑖
(𝑠) = 𝜑

𝑖
(𝑠) on 𝑠 ∈ [−𝑚

∗

, 0],

(4) e𝛼𝑡𝜙
𝑖
(𝑡) → 0 as 𝑡 → ∞, where 𝛼 = const and 0 <

𝛼 < min
𝑖∈N{𝑎
𝑖
},

where 𝑡
𝑘
and 𝜑

𝑖
(𝑠) are defined as shown in Section 2. AlsoH

is a complete metric space when it is equipped with a metric
defined by

𝑑 (q (𝑡) , h (𝑡)) =
𝑛

∑

𝑖=1

sup
𝑡≥−𝑚

∗

󵄨󵄨󵄨󵄨𝑞𝑖 (𝑡) − ℎ
𝑖
(𝑡)

󵄨󵄨󵄨󵄨 , (10)

where q(𝑡) = (𝑞
1
(𝑡), . . . , 𝑞

𝑛
(𝑡)) ∈ H and h(𝑡) =

(ℎ
1
(𝑡), . . . , ℎ

𝑛
(𝑡)) ∈ H.

Theorem 3. Assume that conditions (A1)–(A4) hold provided
that

(i) there exists a constant 𝜇 such that inf
𝑘=1,2,...

{𝑡
𝑘
−𝑡
𝑘−1

} ≥

𝜇,

(ii) there exist constants 𝑝
𝑖
such that 𝑝

𝑖𝑘
≤ 𝑝
𝑖
𝜇 for 𝑖 ∈ N

and 𝑘 = 1, 2, . . .,

(iii) ∑𝑛
𝑖=1

{(1/𝑎
𝑖
)max
𝑗∈N|𝑏
𝑖𝑗
𝑙
𝑗
| + (1/𝑎

𝑖
)max
𝑗∈N|𝑐
𝑖𝑗
𝑘
𝑗
| +

(𝜌/𝑎
𝑖
)max
𝑗∈N|𝜔

𝑗
𝑑
𝑖𝑗
|} +max

𝑖∈N{𝑝
𝑖
(𝜇 + (1/𝑎

𝑖
))} ≜ 𝜒 <

1,

and then the trivial equilibrium x = 0 is globally
exponentially stable.

Proof. Multiplying both sides of (1) with e𝑎𝑖𝑡 gives, for 𝑡 > 0

and 𝑡 ̸= 𝑡
𝑘
,

de𝑎𝑖𝑡𝑥
𝑖
(𝑡) = e𝑎𝑖𝑡d𝑥

𝑖
(𝑡) + 𝑎

𝑖
𝑥
𝑖
(𝑡) e𝑎𝑖𝑡d𝑡

= e𝑎𝑖𝑡
{

{

{

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑥
𝑗
(𝑡)) +

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
𝑔
𝑗
(𝑥
𝑗
(𝑡 − 𝜏
𝑖𝑗
(𝑡)))

+

𝑛

∑

𝑗=1

𝑑
𝑖𝑗
∫

𝜌(𝑡)

0

𝜎
𝑗
(𝑥
𝑗
(𝑡 − 𝜃)) d𝜃

}

}

}

d𝑡,

(11)

which yields after integrating from 𝑡
𝑘−1

+ 𝜀 (𝜀 > 0) to 𝑡 ∈

(𝑡
𝑘−1

, 𝑡
𝑘
) (𝑘 = 1, 2, . . .) that

𝑥
𝑖
(𝑡) e𝑎𝑖𝑡

= 𝑥
𝑖
(𝑡
𝑘−1

+ 𝜀) e𝑎𝑖(𝑡𝑘−1+𝜀)

+ ∫

𝑡

𝑡
𝑘−1

+𝜀

e𝑎𝑖𝑠
{{{{{

{{{{{

{

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑥
𝑗
(𝑠))+

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
𝑔
𝑗
(𝑥
𝑗
(𝑠 − 𝜏
𝑖𝑗
(𝑠)))

+

𝑛

∑

𝑗=1

𝑑
𝑖𝑗
∫

𝜌(𝑠)

0

𝜎
𝑗
(𝑥
𝑗
(𝑠 − 𝜃)) d𝜃

}}}}}

}}}}}

}

d𝑠.

(12)

Letting 𝜀 → 0 in (12), we have, for 𝑡 ∈ (𝑡
𝑘−1

, 𝑡
𝑘
) (𝑘 =

1, 2, . . .),

𝑥
𝑖
(𝑡) e𝑎𝑖𝑡

= 𝑥
𝑖
(𝑡
𝑘−1

+ 0) e𝑎𝑖𝑡𝑘−1

+ ∫

𝑡

𝑡
𝑘−1

e𝑎𝑖𝑠
{{{{{

{{{{{

{

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑥
𝑗
(𝑠))+

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
𝑔
𝑗
(𝑥
𝑗
(𝑠 − 𝜏
𝑖𝑗
(𝑠)))

+

𝑛

∑

𝑗=1

𝑑
𝑖𝑗
∫

𝜌(𝑠)

0

𝜎
𝑗
(𝑥
𝑗
(𝑠 − 𝜃)) d𝜃

}}}}}

}}}}}

}

d𝑠.

(13)

Setting 𝑡 = 𝑡
𝑘
− 𝜀 (𝜀 > 0) in (13), we get

𝑥
𝑖
(𝑡
𝑘
− 𝜀) e𝑎𝑖(𝑡𝑘−𝜀)

= 𝑥
𝑖
(𝑡
𝑘−1

+ 0) e𝑎𝑖𝑡𝑘−1

+ ∫

𝑡
𝑘

−𝜀

𝑡
𝑘−1

e𝑎𝑖𝑠
{{{{{

{{{{{

{

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑥
𝑗
(𝑠))+

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
𝑔
𝑗
(𝑥
𝑗
(𝑠 − 𝜏
𝑖𝑗
(𝑠)))

+

𝑛

∑

𝑗=1

𝑑
𝑖𝑗
∫

𝜌(𝑠)

0

𝜎
𝑗
(𝑥
𝑗
(𝑠 − 𝜃)) d𝜃

}}}}}

}}}}}

}

d𝑠,

(14)

which generates by letting 𝜀 → 0

𝑥
𝑖
(𝑡
𝑘
− 0) e𝑎𝑖𝑡𝑘

= 𝑥
𝑖
(𝑡
𝑘−1

+ 0) e𝑎𝑖𝑡𝑘−1

+ ∫

𝑡
𝑘

𝑡
𝑘−1

e𝑎𝑖𝑠
{{{{{

{{{{{

{

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑥
𝑗
(𝑠))+

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
𝑔
𝑗
(𝑥
𝑗
(𝑠 − 𝜏
𝑖𝑗
(𝑠)))

+

𝑛

∑

𝑗=1

𝑑
𝑖𝑗
∫

𝜌(𝑠)

0

𝜎
𝑗
(𝑥
𝑗
(𝑠 − 𝜃)) d𝜃

}}}}}

}}}}}

}

d𝑠.

(15)

Noting 𝑥
𝑖
(𝑡
𝑘
− 0) = 𝑥

𝑖
(𝑡
𝑘
), (15) can be rearranged as

𝑥
𝑖
(𝑡
𝑘
) e𝑎𝑖𝑡𝑘

= 𝑥
𝑖
(𝑡
𝑘−1

+ 0) e𝑎𝑖𝑡𝑘−1

+ ∫

𝑡
𝑘

𝑡
𝑘−1

e𝑎𝑖𝑠
{{{{{

{{{{{

{

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑥
𝑗
(𝑠))+

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
𝑔
𝑗
(𝑥
𝑗
(𝑠 − 𝜏
𝑖𝑗
(𝑠)))

+

𝑛

∑

𝑗=1

𝑑
𝑖𝑗
∫

𝜌(𝑠)

0

𝜎
𝑗
(𝑥
𝑗
(𝑠 − 𝜃)) d𝜃

}}}}}

}}}}}

}

d𝑠.

(16)

Combining (13) and (16), we derive that

𝑥
𝑖
(𝑡) e𝑎𝑖𝑡

= 𝑥
𝑖
(𝑡
𝑘−1

+ 0) e𝑎𝑖𝑡𝑘−1

+ ∫

𝑡

𝑡
𝑘−1

e𝑎𝑖𝑠
{{{{{

{{{{{

{

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑥
𝑗
(𝑠))+

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
𝑔
𝑗
(𝑥
𝑗
(𝑠 − 𝜏
𝑖𝑗
(𝑠)))

+

𝑛

∑

𝑗=1

𝑑
𝑖𝑗
∫

𝜌(𝑠)

0

𝜎
𝑗
(𝑥
𝑗
(𝑠 − 𝜃)) d𝜃

}}}}}

}}}}}

}

d𝑠

(17)
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is true for 𝑡 ∈ (𝑡
𝑘−1

, 𝑡
𝑘
] (𝑘 = 1, 2, . . .). Hence, we get, for 𝑡 ∈

(𝑡
𝑘−1

, 𝑡
𝑘
] (𝑘 = 1, 2, . . .),

𝑥
𝑖
(𝑡) e𝑎𝑖𝑡

= {𝑥
𝑖
(𝑡
𝑘−1

) + 𝐼
𝑖(𝑘−1)

(𝑥
𝑖
(𝑡
𝑘−1

))} e𝑎𝑖𝑡𝑘−1

+ ∫

𝑡

𝑡
𝑘−1

e𝑎𝑖𝑠
{{{{{

{{{{{

{

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑥
𝑗
(𝑠))+

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
𝑔
𝑗
(𝑥
𝑗
(𝑠 − 𝜏
𝑖𝑗
(𝑠)))

+

𝑛

∑

𝑗=1

𝑑
𝑖𝑗
∫

𝜌(𝑠)

0

𝜎
𝑗
(𝑥
𝑗
(𝑠 − 𝜃)) d𝜃

}}}}}

}}}}}

}

d𝑠

= 𝑥
𝑖
(𝑡
𝑘−1

) e𝑎𝑖𝑡𝑘−1

+ ∫

𝑡

𝑡
𝑘−1

e𝑎𝑖𝑠
{{{{{

{{{{{

{

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑥
𝑗
(𝑠))+

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
𝑔
𝑗
(𝑥
𝑗
(𝑠 − 𝜏
𝑖𝑗
(𝑠)))

+

𝑛

∑

𝑗=1

𝑑
𝑖𝑗
∫

𝜌(𝑠)

0

𝜎
𝑗
(𝑥
𝑗
(𝑠 − 𝜃)) d𝜃

}}}}}

}}}}}

}

d𝑠

+ 𝐼
𝑖(𝑘−1)

(𝑥
𝑖
(𝑡
𝑘−1

)) e𝑎𝑖𝑡𝑘−1 ,
(18)

which results in
𝑥
𝑖
(𝑡
𝑘−1

) e𝑎𝑖𝑡𝑘−1

= 𝑥
𝑖
(𝑡
𝑘−2

) e𝑎𝑖𝑡𝑘−2

+ ∫

𝑡
𝑘−1

𝑡
𝑘−2

e𝑎𝑖𝑠
{{{{{

{{{{{

{

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑥
𝑗
(𝑠))+

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
𝑔
𝑗
(𝑥
𝑗
(𝑠 − 𝜏
𝑖𝑗
(𝑠)))

+

𝑛

∑

𝑗=1

𝑑
𝑖𝑗
∫

𝜌(𝑠)

0

𝜎
𝑗
(𝑥
𝑗
(𝑠 − 𝜃)) d𝜃

}}}}}

}}}}}

}

d𝑠

+ 𝐼
𝑖(𝑘−2)

(𝑥
𝑖
(𝑡
𝑘−2

)) e𝑎𝑖𝑡𝑘−2

...

𝑥
𝑖
(𝑡
2
) e𝑎𝑖𝑡2

= 𝑥
𝑖
(𝑡
1
) e𝑎𝑖𝑡1

+ ∫

𝑡
2

𝑡
1

e𝑎𝑖𝑠
{{{{{

{{{{{

{

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑥
𝑗
(𝑠))+

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
𝑔
𝑗
(𝑥
𝑗
(𝑠 − 𝜏
𝑖𝑗
(𝑠)))

+

𝑛

∑

𝑗=1

𝑑
𝑖𝑗
∫

𝜌(𝑠)

0

𝜎
𝑗
(𝑥
𝑗
(𝑠 − 𝜃)) d𝜃

}}}}}

}}}}}

}

d𝑠

+ 𝐼
𝑖1
(𝑥
𝑖
(𝑡
1
)) e𝑎𝑖𝑡1 ,

𝑥
𝑖
(𝑡
1
) e𝑎𝑖𝑡1

= 𝜑
𝑖
(0)

+ ∫

𝑡
1

0

e𝑎𝑖𝑠
{{{{{

{{{{{

{

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑥
𝑗
(𝑠))+

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
𝑔
𝑗
(𝑥
𝑗
(𝑠 − 𝜏
𝑖𝑗
(𝑠)))

+

𝑛

∑

𝑗=1

𝑑
𝑖𝑗
∫

𝜌(𝑠)

0

𝜎
𝑗
(𝑥
𝑗
(𝑠 − 𝜃)) d𝜃

}}}}}

}}}}}

}

d𝑠.

(19)

We therefore conclude, for 𝑡 > 0,

𝑥
𝑖
(𝑡)

= 𝜑
𝑖
(0) e−𝑎𝑖𝑡

+ e−𝑎𝑖𝑡 ∫
𝑡

0

e𝑎𝑖𝑠
{{{{{

{{{{{

{

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑥
𝑗
(𝑠))+

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
𝑔
𝑗
(𝑥
𝑗
(𝑠 − 𝜏
𝑖𝑗
(𝑠)))

+

𝑛

∑

𝑗=1

𝑑
𝑖𝑗
∫

𝜌(𝑠)

0

𝜎
𝑗
(𝑥
𝑗
(𝑠 − 𝜃)) d𝜃

}}}}}

}}}}}

}

d𝑠

+ e−𝑎𝑖𝑡 ∑
0<𝑡
𝑘

<𝑡

{𝐼
𝑖𝑘
(𝑥
𝑖
(𝑡
𝑘
)) e𝑎𝑖𝑡𝑘} .

(20)

Note that 𝑥
𝑖
(0) = 𝜑

𝑖
(0) in (20).We then define the follow-

ing operator 𝜋 acting onH, for y(𝑡) = (𝑦
1
(𝑡), . . . , 𝑦

𝑛
(𝑡)) ∈ H:

𝜋 (y) (𝑡) = (𝜋 (𝑦
1
) (𝑡) , . . . , 𝜋 (𝑦

𝑛
) (𝑡)) , (21)

where 𝜋(𝑦
𝑖
)(𝑡) : [−𝑚

∗

, +∞) → 𝑅 (𝑖 ∈ N) obeys the rule as
follows:
𝜋 (𝑦
𝑖
) (𝑡)

= 𝜑
𝑖
(0) e−𝑎𝑖𝑡

+ e−𝑎𝑖𝑡∫
𝑡

0

e𝑎𝑖𝑠
{{{{{

{{{{{

{

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑦
𝑗
(𝑠))+

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
𝑔
𝑗
(𝑦
𝑗
(𝑠 − 𝜏
𝑖𝑗
(𝑠)))

+

𝑛

∑

𝑗=1

𝑑
𝑖𝑗
∫

𝜌(𝑠)

0

𝜎
𝑗
(𝑦
𝑗
(𝑠 − 𝜃)) d𝜃

}}}}}

}}}}}

}

d𝑠

+ e−𝑎𝑖𝑡 ∑
0<𝑡
𝑘

<𝑡

{𝐼
𝑖𝑘
(𝑦
𝑖
(𝑡
𝑘
)) e𝑎𝑖𝑡𝑘}

(22)

on 𝑡 ≥ 0 and 𝜋(𝑦
𝑖
)(𝑠) = 𝜑

𝑖
(𝑠) on 𝑠 ∈ [−𝑚

∗

, 0].
In what follows, we will apply the contraction mapping

principle to prove the existence and uniqueness of solution
and the global exponential stability of trivial equilibrium at
the same time.The subsequent proof can be divided into two
steps.
Step 1. We need to prove that 𝜋(H) ⊂ H. For 𝑦

𝑖
(𝑡) ∈ H

𝑖

(𝑖 ∈ N), it is necessary to show that 𝜋(𝑦
𝑖
)(𝑡) ⊂ H

𝑖
. As defined

above, we see that 𝜋(𝑦
𝑖
)(𝑠) = 𝜑

𝑖
(𝑠) on 𝑠 ∈ [−𝑚

∗

, 0]. Owing to
the continuity of 𝜑

𝑖
(𝑠) on 𝑠 ∈ [−𝑚

∗

, 0], we immediately know
that 𝜋(𝑦

𝑖
)(𝑡) is continuous on 𝑡 ∈ [−𝑚

∗

, 0].
Choose a fixed time 𝑡 > 0, and it is then derived from (22)

that
𝜋 (𝑦
𝑖
) (𝑡 + 𝑟) − 𝜋 (𝑦

𝑖
) (𝑡) = 𝑄

1
+ 𝑄
2
+ 𝑄
3
+ 𝑄
4
+ 𝑄
5
, 𝑡 > 0,

(23)

where,

𝑄
1
= 𝜑
𝑖
(0) e−𝑎𝑖(𝑡+𝑟) − 𝜑

𝑖
(0) e−𝑎𝑖𝑡,

𝑄
2
= e−𝑎𝑖(𝑡+𝑟) ∫

𝑡+𝑟

0

e𝑎𝑖𝑠
𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑦
𝑗
(𝑠)) d𝑠

− e−𝑎𝑖𝑡 ∫
𝑡

0

e𝑎𝑖𝑠
𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑦
𝑗
(𝑠)) d𝑠,
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𝑄
3
= e−𝑎𝑖(𝑡+𝑟) ∫

𝑡+𝑟

0

e𝑎𝑖𝑠
𝑛

∑

𝑗=1

𝑐
𝑖𝑗
𝑔
𝑗
(𝑦
𝑗
(𝑠 − 𝜏

𝑖𝑗
(𝑠))) d𝑠

− e−𝑎𝑖𝑡 ∫
𝑡

0

e𝑎𝑖𝑠
𝑛

∑

𝑗=1

𝑐
𝑖𝑗
𝑔
𝑗
(𝑦
𝑗
(𝑠 − 𝜏

𝑖𝑗
(𝑠))) d𝑠,

𝑄
4
= e−𝑎𝑖(𝑡+𝑟) ∫

𝑡+𝑟

0

e𝑎𝑖𝑠
𝑛

∑

𝑗=1

𝑑
𝑖𝑗
∫

𝜌(𝑠)

0

𝜎
𝑗
(𝑦
𝑗
(𝑠 − 𝜃)) d𝜃d𝑠

− e−𝑎𝑖𝑡 ∫
𝑡

0

e𝑎𝑖𝑠
𝑛

∑

𝑗=1

𝑑
𝑖𝑗
∫

𝜌(𝑠)

0

𝜎
𝑗
(𝑦
𝑗
(𝑠 − 𝜃)) d𝜃d𝑠,

𝑄
5
= e−𝑎𝑖(𝑡+𝑟) ∑

0<𝑡
𝑘

<(𝑡+𝑟)

{𝐼
𝑖𝑘
(𝑦
𝑖
(𝑡
𝑘
)) e𝑎𝑖𝑡𝑘}

− e−𝑎𝑖𝑡 ∑
0<𝑡
𝑘

<𝑡

{𝐼
𝑖𝑘
(𝑦
𝑖
(𝑡
𝑘
)) e𝑎𝑖𝑡𝑘} .

(24)

Since 𝑦
𝑖
(𝑡) ∈ H

𝑖
, we know that 𝑦

𝑖
(𝑡) is continuous on

𝑡 ̸= 𝑡
𝑘
(𝑘 = 1, 2, . . .); moreover, lim

𝑡→ 𝑡
−

𝑘

𝑦
𝑖
(𝑡) and lim

𝑡→ 𝑡
+

𝑘

𝑦
𝑖
(𝑡)

exist, in addition, lim
𝑡→ 𝑡
−

𝑘

𝑦
𝑖
(𝑡) = 𝑦

𝑖
(𝑡
𝑘
).

Letting 𝑡 ̸= 𝑡
𝑘
(𝑘 = 1, 2, . . .) in (23), it is easy to see that

𝑄
𝑖
→ 0 as 𝑟 → 0 for 𝑖 = 1, . . . , 5. Thus, 𝜋(𝑦

𝑖
)(𝑡 + 𝑟) −

𝜋(𝑦
𝑖
)(𝑡) → 0 as 𝑟 → 0 holds on 𝑡 > 0 and 𝑡 ̸= 𝑡

𝑘
(𝑘 =

1, 2, . . .).
Letting 𝑡 = 𝑡

𝑘
(𝑘 = 1, 2, . . .) in (23), it is not difficult to

find that 𝑄
𝑖
→ 0 as 𝑟 → 0 for 𝑖 = 1, . . . , 4. Letting 𝑟 < 0 be

small enough, we compute

𝑄
5
= e−𝑎𝑖(𝑡𝑘+𝑟) ∑

0<𝑡
𝑚

<(𝑡
𝑘

+𝑟)

𝐼
𝑖𝑚
(𝑦
𝑖
(𝑡
𝑚
)) e𝑎𝑖𝑡𝑚

− e−𝑎𝑖𝑡𝑘 ∑

0<𝑡
𝑚

<𝑡
𝑘

𝐼
𝑖𝑚
(𝑦
𝑖
(𝑡
𝑚
)) e𝑎𝑖𝑡𝑚

= {e−𝑎𝑖(𝑡𝑘+𝑟) − e−𝑎𝑖𝑡𝑘} ∑

0<𝑡
𝑚

<𝑡
𝑘

{𝐼
𝑖𝑚
(𝑦
𝑖
(𝑡
𝑚
)) e𝑎𝑖𝑡𝑚}

(25)

which implies lim
𝑟→0
− 𝑄
5
= 0. Letting 𝑟 > 0 be small enough,

we have

𝑄
5
= e−𝑎𝑖(𝑡𝑘+𝑟) ∑

0<𝑡
𝑚

<(𝑡
𝑘

+𝑟)

𝐼
𝑖𝑚
(𝑦
𝑖
(𝑡
𝑚
)) e𝑎𝑖𝑡𝑚

− e−𝑎𝑖𝑡𝑘 ∑

0<𝑡
𝑚

<𝑡
𝑘

𝐼
𝑖𝑚
(𝑦
𝑖
(𝑡
𝑚
)) e𝑎𝑖𝑡𝑚

= e−𝑎𝑖(𝑡𝑘+𝑟){ ∑

0<𝑡
𝑚

<𝑡
𝑘

{𝐼
𝑖𝑚
(𝑦
𝑖
(𝑡
𝑚
)) e𝑎𝑖𝑡𝑚}+𝐼

𝑖𝑘
(𝑦
𝑖
(𝑡
𝑘
)) e𝑎𝑖𝑡𝑘}

− e−𝑎𝑖𝑡𝑘 ∑

0<𝑡
𝑚

<𝑡
𝑘

{𝐼
𝑖𝑚
(𝑦
𝑖
(𝑡
𝑚
)) e𝑎𝑖𝑡𝑚}

= {e−𝑎𝑖(𝑡𝑘+𝑟) − e−𝑎𝑖𝑡𝑘} ∑

0<𝑡
𝑚

<𝑡
𝑘

{𝐼
𝑖𝑚
(𝑦
𝑖
(𝑡
𝑚
)) e𝑎𝑖𝑡𝑚}

+ e−𝑎𝑖(𝑡𝑘+𝑟)𝐼
𝑖𝑘
(𝑦
𝑖
(𝑡
𝑘
)) e𝑎𝑖𝑡𝑘 ,

(26)

which implies lim
𝑟→0
+ 𝑄
5
= e−𝑎𝑖𝑡𝑘𝐼

𝑖𝑘
(𝑦
𝑖
(𝑡
𝑘
))e𝑎𝑖𝑡𝑘 .

According to the above discussion, we see that 𝜋(𝑦
𝑖
)(𝑡) :

[−𝑚
∗

, +∞) → 𝑅 is continuous on 𝑡 ̸= 𝑡
𝑘
(𝑘 = 1, 2, . . .),

while for 𝑡 = 𝑡
𝑘

(𝑘 = 1, 2, . . .), lim
𝑡→ 𝑡
−

𝑘

𝜋(𝑦
𝑖
)(𝑡)

and lim
𝑡→ 𝑡
+

𝑘

𝜋(𝑦
𝑖
)(𝑡) exist; moreover, lim

𝑡→ 𝑡
−

𝑘

𝜋(𝑦
𝑖
)(𝑡) =

𝜋(𝑦
𝑖
)(𝑡
𝑘
) ̸= lim

𝑡→ 𝑡
+

𝑘

𝜋(𝑦
𝑖
)(𝑡).

Next, we will prove that e𝛼𝑡𝜋(𝑦
𝑖
)(𝑡) → 0 as 𝑡 → ∞ for

𝑖 ∈ N. To begin with, we give the expression of e𝛼𝑡𝜋(𝑦
𝑖
)(𝑡) as

follows:

e𝛼𝑡𝜋 (𝑦
𝑖
) (𝑡) = 𝑊

1
+𝑊
2
+𝑊
3
+𝑊
4
+𝑊
5
, 𝑡 > 0, (27)

where

𝑊
1
= 𝜑
𝑖
(0)e−(𝑎𝑖−𝛼)𝑡,

𝑊
2
= e𝛼𝑡e−𝑎𝑖𝑡 ∫𝑡

0

e𝑎𝑖𝑠∑𝑛
𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑦
𝑗
(𝑠))d𝑠,

𝑊
5
= e𝛼𝑡e−𝑎𝑖𝑡∑

0<𝑡
𝑘

<𝑡
{𝐼
𝑖𝑘
(𝑦
𝑖
(𝑡
𝑘
))e𝑎𝑖𝑡𝑘},

𝑊
3
= e𝛼𝑡e−𝑎𝑖𝑡 ∫𝑡

0

e𝑎𝑖𝑠∑𝑛
𝑗=1

𝑐
𝑖𝑗
𝑔
𝑗
(𝑦
𝑗
(𝑠 − 𝜏
𝑖𝑗
(𝑠)))d𝑠, and

𝑊
4
= e𝛼𝑡e−𝑎𝑖𝑡 ∫𝑡

0

e𝑎𝑖𝑠∑𝑛
𝑗=1

𝑑
𝑖𝑗
∫
𝜌(𝑠)

0

𝜎
𝑗
(𝑦
𝑗
(𝑠 − 𝜃))d𝜃d𝑠.

First, it is obvious that lim
𝑡→∞

𝑊
1

= 0 as 𝑎
𝑖
− 𝛼 >

0. Furthermore, for 𝑦
𝑗
(𝑡) ∈ H

𝑗
(𝑗 ∈ N), we see

lim
𝑡→∞

e𝛼𝑡𝑦
𝑗
(𝑡) = 0. Then, for any 𝜀 > 0, there exists a

𝑇
𝑗
> 0 such that 𝑠 ≥ 𝑇

𝑗
implies |e𝛼𝑠 𝑦

𝑗
(𝑠)| < 𝜀. Choose

𝑇
∗

= max
𝑗∈N{𝑇

𝑗
}. It is derived form (A1) that

𝑊
2
≤ e𝛼𝑡e−𝑎𝑖𝑡 ∫

𝑡

0

e𝑎𝑖𝑠
𝑛

∑

𝑗=1

{
󵄨󵄨󵄨󵄨󵄨
𝑏
𝑖𝑗
𝑙
𝑗

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝑠)

󵄨󵄨󵄨󵄨󵄨
} d𝑠

= e𝛼𝑡e−𝑎𝑖𝑡 ∫
𝑡

0

e𝑎𝑖𝑠e−𝛼𝑠
𝑛

∑

𝑗=1

{
󵄨󵄨󵄨󵄨󵄨
𝑏
𝑖𝑗
𝑙
𝑗

󵄨󵄨󵄨󵄨󵄨
e𝛼𝑠 󵄨󵄨󵄨󵄨󵄨𝑦𝑗 (𝑠)

󵄨󵄨󵄨󵄨󵄨
} d𝑠

= e−(𝑎𝑖−𝛼)𝑡 ∫
𝑇
∗

0

e(𝑎𝑖−𝛼)𝑠
𝑛

∑

𝑗=1

{
󵄨󵄨󵄨󵄨󵄨
𝑏
𝑖𝑗
𝑙
𝑗

󵄨󵄨󵄨󵄨󵄨
e𝛼𝑠 󵄨󵄨󵄨󵄨󵄨𝑦𝑗 (𝑠)

󵄨󵄨󵄨󵄨󵄨
} d𝑠

+ e−(𝑎𝑖−𝛼)𝑡 ∫
𝑡

𝑇
∗

e(𝑎𝑖−𝛼)𝑠
𝑛

∑

𝑗=1

{
󵄨󵄨󵄨󵄨󵄨
𝑏
𝑖𝑗
𝑙
𝑗

󵄨󵄨󵄨󵄨󵄨
e𝛼𝑠 󵄨󵄨󵄨󵄨󵄨𝑦𝑗 (𝑠)

󵄨󵄨󵄨󵄨󵄨
} d𝑠

≤ e−(𝑎𝑖−𝛼)𝑡
𝑛

∑

𝑗=1

{
󵄨󵄨󵄨󵄨󵄨
𝑏
𝑖𝑗
𝑙
𝑗

󵄨󵄨󵄨󵄨󵄨
sup
𝑠∈[0,𝑇

∗

]

󵄨󵄨󵄨󵄨󵄨
e𝛼𝑠𝑦
𝑗
(𝑠)

󵄨󵄨󵄨󵄨󵄨
}{∫

𝑇
∗

0

e(𝑎𝑖−𝛼)𝑠d𝑠}

+ 𝜀

𝑛

∑

𝑗=1

{
󵄨󵄨󵄨󵄨󵄨
𝑏
𝑖𝑗
𝑙
𝑗

󵄨󵄨󵄨󵄨󵄨
} e−(𝑎𝑖−𝛼)𝑡 ∫

𝑡

𝑇
∗

e(𝑎𝑖−𝛼)𝑠d𝑠

≤ e−(𝑎𝑖−𝛼)𝑡
𝑛

∑

𝑗=1

{
󵄨󵄨󵄨󵄨󵄨
𝑏
𝑖𝑗
𝑙
𝑗

󵄨󵄨󵄨󵄨󵄨
sup
𝑠∈[0,𝑇

∗

]

󵄨󵄨󵄨󵄨󵄨
e𝛼𝑠𝑦
𝑗
(𝑠)

󵄨󵄨󵄨󵄨󵄨
}{∫

𝑇
∗

0

e(𝑎𝑖−𝛼)𝑠d𝑠}

+
𝜀

𝑎
𝑖
− 𝛼

𝑛

∑

𝑗=1

{
󵄨󵄨󵄨󵄨󵄨
𝑏
𝑖𝑗
𝑙
𝑗

󵄨󵄨󵄨󵄨󵄨
} ,

(28)

which leads to𝑊
2
→ 0 as 𝑡 → ∞.
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Similarly, for the given 𝜀 > 0 above, there also exists a
𝑇
󸀠

𝑗
> 0 such that 𝑠 ≥ 𝑇

󸀠

𝑗
− 𝜏 implies |e𝛼𝑠𝑦

𝑗
(𝑠)| < 𝜀. Select

�̂� = max
𝑗∈N{𝑇

󸀠

𝑗
}. It follows from (A2) that

𝑊
3
≤ e𝛼𝑡e−𝑎𝑖𝑡 ∫

𝑡

0

e𝑎𝑖𝑠
𝑛

∑

𝑗=1

{
󵄨󵄨󵄨󵄨󵄨
𝑐
𝑖𝑗
𝑘
𝑗

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝑠 − 𝜏

𝑖𝑗
(𝑠))

󵄨󵄨󵄨󵄨󵄨
} d𝑠

≤ e−(𝑎𝑖−𝛼)𝑡

× ∫

𝑡

0

e𝑎𝑖𝑠e−𝛼{𝑠−𝜏}

×

𝑛

∑

𝑗=1

{
󵄨󵄨󵄨󵄨󵄨
𝑐
𝑖𝑗
𝑘
𝑗

󵄨󵄨󵄨󵄨󵄨
e𝛼[𝑠−𝜏𝑖𝑗(𝑠)] 󵄨󵄨󵄨󵄨󵄨𝑦𝑗 (𝑠 − 𝜏

𝑖𝑗
(𝑠))

󵄨󵄨󵄨󵄨󵄨
} d𝑠

= e𝛼𝜏e−(𝑎𝑖−𝛼)𝑡

× ∫

̂
𝑇

0

e(𝑎𝑖−𝛼)𝑠
𝑛

∑

𝑗=1

{
󵄨󵄨󵄨󵄨󵄨
𝑐
𝑖𝑗
𝑘
𝑗

󵄨󵄨󵄨󵄨󵄨
e𝛼[𝑠−𝜏𝑖𝑗(𝑠)] 󵄨󵄨󵄨󵄨󵄨𝑦𝑗 (𝑠 − 𝜏

𝑖𝑗
(𝑠))

󵄨󵄨󵄨󵄨󵄨
} d𝑠

+ e𝛼𝜏e−(𝑎𝑖−𝛼)𝑡

× ∫

𝑡

̂
𝑇

e(𝑎𝑖−𝛼)𝑠
𝑛

∑

𝑗=1

{
󵄨󵄨󵄨󵄨󵄨
𝑐
𝑖𝑗
𝑘
𝑗

󵄨󵄨󵄨󵄨󵄨
e𝛼[𝑠−𝜏𝑖𝑗(𝑠)] 󵄨󵄨󵄨󵄨󵄨𝑦𝑗 (𝑠 − 𝜏

𝑖𝑗
(𝑠))

󵄨󵄨󵄨󵄨󵄨
} d𝑠

≤ e𝛼𝜏
𝑛

∑

𝑗=1

{

{

{

󵄨󵄨󵄨󵄨󵄨
𝑐
𝑖𝑗
𝑘
𝑗

󵄨󵄨󵄨󵄨󵄨
sup
𝑠∈[−𝜏,̂𝑇]

󵄨󵄨󵄨󵄨󵄨
e𝛼𝑠𝑦
𝑗
(𝑠)

󵄨󵄨󵄨󵄨󵄨

}

}

}

× e−(𝑎𝑖−𝛼)𝑡 ∫
̂
𝑇

0

e(𝑎𝑖−𝛼)𝑠d𝑠

+ e𝛼𝜏𝜀
𝑛

∑

𝑗=1

{
󵄨󵄨󵄨󵄨󵄨
𝑐
𝑖𝑗
𝑘
𝑗

󵄨󵄨󵄨󵄨󵄨
} e−(𝑎𝑖−𝛼)𝑡 ∫

𝑡

̂
𝑇

e(𝑎𝑖−𝛼)𝑠d𝑠

≤ e𝛼𝜏
𝑛

∑

𝑗=1

{

{

{

󵄨󵄨󵄨󵄨󵄨
𝑐
𝑖𝑗
𝑘
𝑗

󵄨󵄨󵄨󵄨󵄨
sup
𝑠∈[−𝜏,̂𝑇]

󵄨󵄨󵄨󵄨󵄨
e𝛼𝑠𝑦
𝑗
(𝑠)

󵄨󵄨󵄨󵄨󵄨

}

}

}

× e−(𝑎𝑖−𝛼)𝑡 ∫
̂
𝑇

0

e(𝑎𝑖−𝛼)𝑠d𝑠 + e𝛼𝜏𝜀
𝑎
𝑖
− 𝛼

𝑛

∑

𝑗=1

{
󵄨󵄨󵄨󵄨󵄨
𝑐
𝑖𝑗
𝑘
𝑗

󵄨󵄨󵄨󵄨󵄨
} ,

(29)

which results in𝑊
3
→ 0 as 𝑡 → ∞. In addition, it is derived

from (A4) that

𝑊
4
≤ e𝛼𝑡e−𝑎𝑖𝑡 ∫

𝑡

0

e𝑎𝑖𝑠
𝑛

∑

𝑗=1

{𝑑
𝑖𝑗
∫

𝜌

0

𝜔
𝑗

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝑠 − 𝜃)

󵄨󵄨󵄨󵄨󵄨
d𝜃} d𝑠

= e𝛼𝑡e−𝑎𝑖𝑡

× ∫

𝑡

0

e𝑎𝑖𝑠e−𝛼𝑠
𝑛

∑

𝑗=1

{𝑑
𝑖𝑗
∫

𝜌

0

e𝛼𝜃𝜔
𝑗
e𝛼(𝑠−𝜃) 󵄨󵄨󵄨󵄨󵄨𝑦𝑗 (𝑠 − 𝜃)

󵄨󵄨󵄨󵄨󵄨
d𝜃}d𝑠

≤ e𝛼𝑡e−𝑎𝑖𝑡

× ∫

𝑡

0

e𝑎𝑖𝑠e−𝛼𝑠

×

𝑛

∑

𝑗=1

{

{

{

𝑑
𝑖𝑗

sup
𝜁∈[𝑠−𝜌,𝑠]

{e𝛼𝜁 󵄨󵄨󵄨󵄨󵄨𝑦𝑗 (𝜁)
󵄨󵄨󵄨󵄨󵄨
} ∫

𝜌

0

e𝛼𝜃𝜔
𝑗
d𝜃

}

}

}

d𝑠.

(30)

Since e𝛼𝜁|𝑦
𝑗
(𝜁)| → 0 as 𝜁 → ∞, we know that, for any

𝜀 > 0, there exists a 𝑇󸀠󸀠
𝑗

> 0 such that 𝜁 > 𝑇
󸀠󸀠

𝑗
− 𝜌 implies

e𝛼𝜁|𝑦
𝑗
(𝜁)| < 𝜀. Selecting 𝑇 = max

𝑗∈N{𝑇
󸀠󸀠

𝑗
}, it follows from

(30) that

𝑊
4
≤ e(𝛼−𝑎𝑖)𝑡

× ∫

𝑇

0

e(𝑎𝑖−𝛼)𝑠
𝑛

∑

𝑗=1

{

{

{

𝑑
𝑖𝑗

sup
𝜁∈[𝑠−𝜌,𝑠]

{e𝛼𝜁 󵄨󵄨󵄨󵄨󵄨𝑦𝑗 (𝜁)
󵄨󵄨󵄨󵄨󵄨
}

× ∫

𝜌

0

e𝛼𝜃𝜔
𝑗
d𝜃

}

}

}

d𝑠

+ e(𝛼−𝑎𝑖)𝑡

× ∫

𝑡

𝑇

e(𝑎𝑖−𝛼)𝑠
𝑛

∑

𝑗=1

{

{

{

𝑑
𝑖𝑗

sup
𝜁∈[𝑠−𝜌,𝑠]

{e𝛼𝜁 󵄨󵄨󵄨󵄨󵄨𝑦𝑗 (𝜁)
󵄨󵄨󵄨󵄨󵄨
}

× ∫

𝜌

0

e𝛼𝜃𝜔
𝑗
d𝜃

}

}

}

d𝑠

≤
e𝛼𝜌

𝛼

{

{

{

𝑛

∑

𝑗=1

𝑑
𝑖𝑗
𝜔
𝑗

sup
𝜁∈[−𝜌,𝑇]

{e𝛼𝜁 󵄨󵄨󵄨󵄨󵄨𝑦𝑗 (𝜁)
󵄨󵄨󵄨󵄨󵄨
}
}

}

}

× e(𝛼−𝑎𝑖)𝑡 ∫
𝑇

0

e(𝑎𝑖−𝛼)𝑠d𝑠

+
e𝛼𝜌

𝛼

𝑛

∑

𝑗=1

{

{

{

𝑑
𝑖𝑗
𝜔
𝑗

sup
𝜁∈[𝑇−𝜌,𝑡]

{e𝛼𝜁 󵄨󵄨󵄨󵄨󵄨𝑦𝑗 (𝜁)
󵄨󵄨󵄨󵄨󵄨
}
}

}

}

× e(𝛼−𝑎𝑖)𝑡 ∫
𝑡

𝑇

e(𝑎𝑖−𝛼)𝑠d𝑠

≤ e(𝛼−𝑎𝑖)𝑡 𝑒
𝛼𝜌

𝛼

{

{

{

𝑛

∑

𝑗=1

𝑑
𝑖𝑗
𝜔
𝑗

sup
𝜁∈[−𝜌,𝑇]

{e𝛼𝜁 󵄨󵄨󵄨󵄨󵄨𝑦𝑗 (𝜁)
󵄨󵄨󵄨󵄨󵄨
}
}

}

}

× ∫

𝑇

0

e(𝑎𝑖−𝛼)𝑠d𝑠 + 𝜀

𝑛

∑

𝑗=1

{𝑑
𝑖𝑗
𝜔
𝑗
}

e𝛼𝜌

𝛼 (𝑎
𝑖
− 𝛼)

,

(31)

which yields𝑊
4
→ 0 as 𝑡 → ∞.

Furthermore, from (A3), we see that |𝐼
𝑖𝑘
(𝑥
𝑖
(𝑡
𝑘
))| ≤

𝑝
𝑖𝑘
|𝑦
𝑖
(𝑡
𝑘
)|. So,

𝑊
5
≤ e𝛼𝑡e−𝑎𝑖𝑡 ∑

0<𝑡
𝑘

<𝑡

{𝑝
𝑖𝑘

󵄨󵄨󵄨󵄨𝑦𝑖 (𝑡𝑘)
󵄨󵄨󵄨󵄨 e
𝑎
𝑖

𝑡
𝑘} . (32)

As 𝑦
𝑖
(𝑡) ∈ H

𝑖
, we have lim

𝑡→∞
e𝛼𝑡𝑦
𝑖
(𝑡) = 0. Then, for

any 𝜀 > 0, there exists a nonimpulsive point 𝑇
𝑖
> 0 such that
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𝑠 ≥ 𝑇
𝑖
implies |e𝛼𝑠𝑦

𝑖
(𝑠)| < 𝜀. It then follows from conditions

(i) and (ii) that

𝑊
5
≤ e𝛼𝑡e−𝑎𝑖𝑡

{

{

{

∑

0<𝑡
𝑘

<𝑇
𝑖

{𝑝
𝑖𝑘

󵄨󵄨󵄨󵄨𝑦𝑖 (𝑡𝑘)
󵄨󵄨󵄨󵄨 e
𝑎
𝑖

𝑡
𝑘}

+ ∑

𝑇
𝑖

<𝑡
𝑘

<𝑡

{𝑝
𝑖𝑘

󵄨󵄨󵄨󵄨𝑦𝑖 (𝑡𝑘)
󵄨󵄨󵄨󵄨 e
𝛼𝑡
𝑘e(𝑎𝑖−𝛼)𝑡𝑘}

}

}

}

≤ e𝛼𝑡e−𝑎𝑖𝑡 ∑

0<𝑡
𝑘

<𝑇
𝑖

{𝑝
𝑖𝑘

󵄨󵄨󵄨󵄨𝑦𝑖 (𝑡𝑘)
󵄨󵄨󵄨󵄨 e
𝑎
𝑖

𝑡
𝑘}

+ e𝛼𝑡e−𝑎𝑖𝑡𝑝
𝑖
𝜀 ∑

𝑇
𝑖

<𝑡
𝑘

<𝑡

{𝜇e(𝑎𝑖−𝛼)𝑡𝑘}

≤ e−(𝑎𝑖−𝛼)𝑡 ∑

0<𝑡
𝑘

<𝑇
𝑖

{𝑝
𝑖𝑘

󵄨󵄨󵄨󵄨𝑦𝑖 (𝑡𝑘)
󵄨󵄨󵄨󵄨 e
𝑎
𝑖

𝑡
𝑘}

+ e−(𝑎𝑖−𝛼)𝑡𝑝
𝑖
𝜀
{

{

{

∑

𝑇
𝑖

<𝑡
𝑟

<𝑡
𝑘

{e(𝑎𝑖−𝛼)𝑡𝑟 (𝑡
𝑟+1

− 𝑡
𝑟
)}

+𝜇e(𝑎𝑖−𝛼)𝑡𝑘
}

}

}

≤ e−(𝑎𝑖−𝛼)𝑡 ∑

0<𝑡
𝑘

<𝑇
𝑖

{𝑝
𝑖𝑘

󵄨󵄨󵄨󵄨𝑦𝑖 (𝑡𝑘)
󵄨󵄨󵄨󵄨 e
𝑎
𝑖

𝑡
𝑘}

+ e−(𝑎𝑖−𝛼)𝑡𝑝
𝑖
𝜀 ∫

𝑡

𝑇
𝑖

e(𝑎𝑖−𝛼)𝑠d𝑠

+ e−(𝑎𝑖−𝛼)𝑡𝑝
𝑖
𝜀𝜇e(𝑎𝑖−𝛼)𝑡

≤ e−(𝑎𝑖−𝛼)𝑡 ∑

0<𝑡
𝑘

<𝑇
𝑖

{𝑝
𝑖𝑘

󵄨󵄨󵄨󵄨𝑦𝑖 (𝑡𝑘)
󵄨󵄨󵄨󵄨 e
𝑎
𝑖

𝑡
𝑘}

+
𝑝
𝑖
𝜀

𝑎
𝑖
− 𝛼

+ 𝑝
𝑖
𝜀𝜇,

(33)

which means that𝑊
5
→ 0 as 𝑡 → ∞.

Now, we can derive from (27) that e𝛼𝑡𝜋(𝑦
𝑖
)(𝑡) → 0 as

𝑡 → ∞ for 𝑖 ∈ N. It is therefore concluded that 𝜋(𝑦
𝑖
)(𝑡) ⊂

H
𝑖
which results in 𝜋(H) ⊂ H.

Step 2. We need to prove that 𝜋 is contractive. For z =

(𝑧
1
(𝑡), . . . , 𝑧

𝑛
(𝑡)) ∈ H and y = (𝑦

1
(𝑡), . . . , 𝑦

𝑛
(𝑡)) ∈ H, we

estimate

󵄨󵄨󵄨󵄨𝜋 (𝑦
𝑖
) (𝑡) − 𝜋 (𝑧

𝑖
) (𝑡)

󵄨󵄨󵄨󵄨 ≤ 𝐽
1
+ 𝐽
2
+ 𝐽
3
+ 𝐽
4
, (34)

where

𝐽
1
= e−𝑎𝑖𝑡 ∫

𝑡

0

e𝑎𝑖𝑠
𝑛

∑

𝑗=1

[
󵄨󵄨󵄨󵄨󵄨
𝑏
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑓
𝑗
(𝑦
𝑗
(𝑠)) − 𝑓

𝑗
(𝑧
𝑗
(𝑠))

󵄨󵄨󵄨󵄨󵄨
] d𝑠,

𝐽
2
= e−𝑎𝑖𝑡 ∫

𝑡

0

e𝑎𝑖𝑠
𝑛

∑

𝑗=1

[
󵄨󵄨󵄨󵄨󵄨
𝑐
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑔
𝑗
(𝑦
𝑗
(𝑠 − 𝜏

𝑖𝑗
(𝑠)))

−𝑔
𝑗
(𝑧
𝑗
(𝑠 − 𝜏

𝑖𝑗
(𝑠)))

󵄨󵄨󵄨󵄨󵄨
] d𝑠,

𝐽
3
= e−𝑎𝑖𝑡 ∫

𝑡

0

e𝑎𝑖𝑠
𝑛

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑑
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
∫

𝜌(𝑠)

0

󵄨󵄨󵄨󵄨󵄨
𝜎
𝑗
(𝑦
𝑗
(𝑠 − 𝜃))

−𝜎
𝑗
(𝑧
𝑗
(𝑠 − 𝜃))

󵄨󵄨󵄨󵄨󵄨
d𝜃d𝑠,

𝐽
4
= e−𝑎𝑖𝑡 ∑

0<𝑡
𝑘

<𝑡

{e𝑎𝑖𝑡𝑘 󵄨󵄨󵄨󵄨𝐼𝑖𝑘 (𝑦𝑖 (𝑡𝑘)) − 𝐼
𝑖𝑘
(𝑧
𝑖
(𝑡
𝑘
))
󵄨󵄨󵄨󵄨} .

(35)

Note that

𝐽
1
≤ e−𝑎𝑖𝑡 ∫

𝑡

0

e𝑎𝑖𝑠
𝑛

∑

𝑗=1

[
󵄨󵄨󵄨󵄨󵄨
𝑏
𝑖𝑗
𝑙
𝑗

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝑠) − 𝑧

𝑗
(𝑠)

󵄨󵄨󵄨󵄨󵄨
] d𝑠

≤ max
𝑗∈N

󵄨󵄨󵄨󵄨󵄨
𝑏
𝑖𝑗
𝑙
𝑗

󵄨󵄨󵄨󵄨󵄨

𝑛

∑

𝑗=1

{ sup
𝑠∈[0,𝑡]

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝑠) − 𝑧

𝑗
(𝑠)

󵄨󵄨󵄨󵄨󵄨
}

× e−𝑎𝑖𝑡 ∫
𝑡

0

e𝑎𝑖𝑠d𝑠

≤
1

𝑎
𝑖

max
𝑗∈N

󵄨󵄨󵄨󵄨󵄨
𝑏
𝑖𝑗
𝑙
𝑗

󵄨󵄨󵄨󵄨󵄨

𝑛

∑

𝑗=1

{ sup
𝑠∈[0,𝑡]

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝑠) − 𝑧

𝑗
(𝑠)

󵄨󵄨󵄨󵄨󵄨
} ,

𝐽
2
≤ e−𝑎𝑖𝑡 ∫

𝑡

0

e𝑎𝑖𝑠
𝑛

∑

𝑗=1

[
󵄨󵄨󵄨󵄨󵄨
𝑐
𝑖𝑗
𝑘
𝑗

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝑠 − 𝜏

𝑖𝑗
(𝑠))

−𝑧
𝑗
(𝑠 − 𝜏

𝑖𝑗
(𝑠))

󵄨󵄨󵄨󵄨󵄨
] d𝑠

≤ max
𝑗∈N

󵄨󵄨󵄨󵄨󵄨
𝑐
𝑖𝑗
𝑘
𝑗

󵄨󵄨󵄨󵄨󵄨

𝑛

∑

𝑗=1

{ sup
𝜉∈[−𝜏,𝑡]

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝜉) − 𝑧

𝑗
(𝜉)

󵄨󵄨󵄨󵄨󵄨
}

× e−𝑎𝑖𝑡 ∫
𝑡

0

e𝑎𝑖𝑠d𝑠

≤
1

𝑎
𝑖

max
𝑗∈N

󵄨󵄨󵄨󵄨󵄨
𝑐
𝑖𝑗
𝑘
𝑗

󵄨󵄨󵄨󵄨󵄨

𝑛

∑

𝑗=1

{ sup
𝜉∈[−𝜏,𝑡]

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝜉) − 𝑧

𝑗
(𝜉)

󵄨󵄨󵄨󵄨󵄨
} ,

𝐽
3
≤ e−𝑎𝑖𝑡 ∫

𝑡

0

e𝑎𝑖𝑠
𝑛

∑

𝑗=1

{
󵄨󵄨󵄨󵄨󵄨
𝑑
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
∫

𝜌(𝑠)

0

𝜔
𝑗

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝑠 − 𝜃)

−𝑧
𝑗
(𝑠 − 𝜃)

󵄨󵄨󵄨󵄨󵄨
d𝜃} d𝑠

≤ e−𝑎𝑖𝑡 ∫
𝑡

0

e𝑎𝑖𝑠
𝑛

∑

𝑗=1

{

{

{

󵄨󵄨󵄨󵄨󵄨
𝑑
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
sup
𝜉∈[𝑠−𝜌,𝑠]

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝜉) − 𝑧

𝑗
(𝜉)

󵄨󵄨󵄨󵄨󵄨

× ∫

𝜌(𝑠)

0

𝜔
𝑗
d𝜃

}

}

}

d𝑠

≤ e−𝑎𝑖𝑡 ∫
𝑡

0

e𝑎𝑖𝑠
𝑛

∑

𝑗=1

{

{

{

𝜔
𝑗

󵄨󵄨󵄨󵄨󵄨
𝑑
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
sup
𝜉∈[−𝜌,𝑡]

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝜉)

−𝑧
𝑗
(𝜉)

󵄨󵄨󵄨󵄨󵄨
𝜌 (𝑠)

}

}

}

d𝑠
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≤ max
𝑗∈N

{𝜔
𝑗

󵄨󵄨󵄨󵄨󵄨
𝑑
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
}

𝑛

∑

𝑗=1

{

{

{

sup
𝜉∈[−𝜌,𝑡]

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝜉) − 𝑧

𝑗
(𝜉)

󵄨󵄨󵄨󵄨󵄨

}

}

}

× e−𝑎𝑖𝑡 ∫
𝑡

0

e𝑎𝑖𝑠𝜌 (𝑠) d𝑠

≤
𝜌

𝑎
𝑖

max
𝑗∈N

{𝜔
𝑗

󵄨󵄨󵄨󵄨󵄨
𝑑
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
}

𝑛

∑

𝑗=1

{

{

{

sup
𝜉∈[−𝜌,𝑡]

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝜉) − 𝑧

𝑗
(𝜉)

󵄨󵄨󵄨󵄨󵄨

}

}

}

,

𝐽
4
≤ e−𝑎𝑖𝑡 ∑

0<𝑡
𝑘

<𝑡

{e𝑎𝑖𝑡𝑘𝑝
𝑖𝑘

󵄨󵄨󵄨󵄨𝑦𝑖 (𝑡𝑘) − 𝑧
𝑖
(𝑡
𝑘
)
󵄨󵄨󵄨󵄨}

≤ 𝑝
𝑖
e−𝑎𝑖𝑡 sup
𝑠∈[0,𝑡]

󵄨󵄨󵄨󵄨𝑦𝑖 (𝑠) − 𝑧
𝑖
(𝑠)

󵄨󵄨󵄨󵄨 ∑

0<𝑡
𝑘

<𝑡

{e𝑎𝑖𝑡𝑘𝜇}

≤ 𝑝
𝑖
e−𝑎𝑖𝑡 sup
𝑠∈[0,𝑡]

󵄨󵄨󵄨󵄨𝑦𝑖 (𝑠) − 𝑧
𝑖
(𝑠)

󵄨󵄨󵄨󵄨

× { ∑

0<𝑡
𝑟

<𝑡
𝑘

{e𝑎𝑖𝑡𝑟 (𝑡
𝑟+1

− 𝑡
𝑟
)} + e𝑎𝑖𝑡𝑘𝜇}

≤ 𝑝
𝑖
sup
𝑠∈[0,𝑡]

󵄨󵄨󵄨󵄨𝑦𝑖 (𝑠) − 𝑧
𝑖
(𝑠)

󵄨󵄨󵄨󵄨 e
−𝑎
𝑖

𝑡

{∫

𝑡

0

e𝑎𝑖𝑠d𝑠 + e𝑎𝑖𝑡𝜇}

≤ 𝑝
𝑖
(𝜇 +

1

𝑎
𝑖

) sup
𝑠∈[0,𝑡]

󵄨󵄨󵄨󵄨𝑦𝑖 (𝑠) − 𝑧
𝑖
(𝑠)

󵄨󵄨󵄨󵄨 .

(36)

It is then derived from (36) that

sup
𝑡∈[−𝑚

∗

,𝑇]

󵄨󵄨󵄨󵄨𝜋 (𝑦
𝑖
) (𝑡) − 𝜋 (𝑧

𝑖
) (𝑡)

󵄨󵄨󵄨󵄨

≤
1

𝑎
𝑖

max
𝑗∈N

󵄨󵄨󵄨󵄨󵄨
𝑏
𝑖𝑗
𝑙
𝑗

󵄨󵄨󵄨󵄨󵄨

𝑛

∑

𝑗=1

{ sup
𝑠∈[−𝑚

∗

,𝑇]

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝑠) − 𝑧

𝑗
(𝑠)

󵄨󵄨󵄨󵄨󵄨
}

+
1

𝑎
𝑖

max
𝑗∈N

󵄨󵄨󵄨󵄨󵄨
𝑐
𝑖𝑗
𝑘
𝑗

󵄨󵄨󵄨󵄨󵄨

𝑛

∑

𝑗=1

{ sup
𝜉∈[−𝑚

∗

,𝑇]

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝜉) − 𝑧

𝑗
(𝜉)

󵄨󵄨󵄨󵄨󵄨
}

+
𝜌

𝑎
𝑖

max
𝑗∈N

{𝜔
𝑗

󵄨󵄨󵄨󵄨󵄨
𝑑
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
}

𝑛

∑

𝑗=1

{ sup
𝜉∈[−𝑚

∗

,𝑇]

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝜉) − 𝑧

𝑗
(𝜉)

󵄨󵄨󵄨󵄨󵄨
}

+ 𝑝
𝑖
(𝜇 +

1

𝑎
𝑖

) sup
𝑠∈[−𝑚

∗

,𝑇]

󵄨󵄨󵄨󵄨𝑦𝑖 (𝑠) − 𝑧
𝑖
(𝑠)

󵄨󵄨󵄨󵄨 ,

(37)

which means that

𝑛

∑

𝑖=1

sup
𝑡∈[−𝑚

∗

,𝑇]

󵄨󵄨󵄨󵄨𝜋 (𝑦
𝑖
) (𝑡) − 𝜋 (𝑧

𝑖
) (𝑡)

󵄨󵄨󵄨󵄨

≤ 𝜒

𝑛

∑

𝑗=1

{ sup
𝑠∈[−𝑚

∗

,𝑇]

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝑠) − 𝑧

𝑗
(𝑠)

󵄨󵄨󵄨󵄨󵄨
} ,

(38)

where

𝜒 ≜

𝑛

∑

𝑖=1

{
1

𝑎
𝑖

max
𝑗∈N

󵄨󵄨󵄨󵄨󵄨
𝑏
𝑖𝑗
𝑙
𝑗

󵄨󵄨󵄨󵄨󵄨
+

1

𝑎
𝑖

max
𝑗∈N

󵄨󵄨󵄨󵄨󵄨
𝑐
𝑖𝑗
𝑘
𝑗

󵄨󵄨󵄨󵄨󵄨
+

𝜌

𝑎
𝑖

max
𝑗∈N

󵄨󵄨󵄨󵄨󵄨
𝜔
𝑗
𝑑
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
}

+max
𝑖∈N

{𝑝
𝑖
(𝜇 +

1

𝑎
𝑖

)} .

(39)

In view of condition (iii), we know that 𝜋 is a contraction
mapping, and hence, there exists a unique fixed point y(⋅) of
𝜋 in H which means that yT(⋅) is the solution to (1)–(3) and
e𝛼𝑡‖yT(⋅)‖ → 0 as 𝑡 → ∞. This completes the proof.

Lemma 4. Assume conditions (A1)–(A4) hold. Provided that

(i) inf
𝑘=1,2,...

{𝑡
𝑘
− 𝑡
𝑘−1

} ≥ 1,
(ii) there exist constants 𝑝

𝑖
such that 𝑝

𝑖𝑘
≤ 𝑝
𝑖
for 𝑖 ∈ N

and 𝑘 = 1, 2, . . .,
(iii) ∑𝑛

𝑖=1
{(1/𝑎
𝑖
)max
𝑗∈N|𝑏
𝑖𝑗
𝑙
𝑗
| + (1/𝑎

𝑖
)max
𝑗∈N|𝑐
𝑖𝑗
𝑘
𝑗
| +

(𝜌/𝑎
𝑖
)max
𝑗∈N|𝜔

𝑗
𝑑
𝑖𝑗
|} +max

𝑖∈N{𝑝
𝑖
(1 + (1/𝑎

𝑖
))} ≜ 𝜒 <

1,

then the trivial equilibrium x = 0 is globally exponentially
stable.

Proof. Lemma 4 is a direct conclusion by letting 𝜇 = 1 in
Theorem 3.

Remark 5. In Theorem 3, we use the fixed point theorem to
prove the existence and uniqueness of solution and the global
exponential stability of trivial equilibrium all at once, while
Lyapunov method fails to do this.

Remark 6. The presented sufficient conditions in Theorem 3
and Lemma 4 do not require even the differentiability of
delays, let alone the monotone decreasing behavior of delays
which is necessary in some relevant works.

4. Example

Consider the following two-dimensional impulsive cellular
neural network with time-varying and distributed delays.

d𝑥
𝑖
(𝑡)

d𝑡
= − 𝑎

𝑖
𝑥
𝑖
(𝑡) +

2

∑

𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑥
𝑗
(𝑡))

+

2

∑

𝑗=1

𝑐
𝑖𝑗
𝑔
𝑗
(𝑥
𝑗
(𝑡 − 𝜏
𝑖𝑗
(𝑡)))

+

2

∑

𝑗=1

𝑑
𝑖𝑗
∫

𝜌(𝑡)

0

𝜎
𝑗
(𝑥
𝑗
(𝑡 − 𝜃)) d𝜃, 𝑡 ≥ 0, 𝑡 ̸= 𝑡

𝑘
,

Δ𝑥
𝑖
(𝑡
𝑘
) = 𝑥
𝑖
(𝑡
𝑘
+ 0) − 𝑥

𝑖
(𝑡
𝑘
) = arctan (0.4𝑥

𝑖
(𝑡
𝑘
)) ,

𝑘 = 1, 2, . . . ,

(40)
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with the initial conditions 𝑥
1
(𝑠) = cos(𝑠), 𝑥

2
(𝑠) = sin(𝑠) on

−𝑚
∗

≤ 𝑠 ≤ 0, where 𝜏
𝑖𝑗
(𝑡) = 0.8 + 0.4 cos(𝑡), 𝜌(𝑡) = 0.5 +

0.3 sin(𝑡), 𝑚∗ is defined as shown in (3), 𝑎
1
= 𝑎
2
= 7, 𝑏

𝑖𝑗
=

0, 𝑐
11

= 0, 𝑐
12

= 1/7, 𝑐
21

= −1/7, 𝑐
22

= −1/7, 𝑑
11

= 3/7,
𝑑
12

= 2/7, 𝑑
21

= 0, 𝑑
22

= 1/7, 𝑓
𝑗
(𝑠) = 𝑔

𝑗
(𝑠) = 𝜎

𝑗
(𝑠) =

(|𝑠 + 1| − |𝑠 − 1|)/2, and 𝑡
𝑘
= 𝑡
𝑘−1

+ 0.5𝑘.
It is easily to find that 𝜇 = 0.5, 𝑙

𝑗
= 𝑘
𝑗
= 𝜔
𝑗
= 1, and

𝑝
𝑖𝑘
= 0.4. Let 𝑝

𝑖
= 0.8 and compute

2

∑

𝑖=1

{
1

𝑎
𝑖

max
𝑗∈N

󵄨󵄨󵄨󵄨󵄨
𝑏
𝑖𝑗
𝑙
𝑗

󵄨󵄨󵄨󵄨󵄨
+

1

𝑎
𝑖

max
𝑗∈N

󵄨󵄨󵄨󵄨󵄨
𝑐
𝑖𝑗
𝑘
𝑗

󵄨󵄨󵄨󵄨󵄨
+

𝜌

𝑎
𝑖

max
𝑗∈N

󵄨󵄨󵄨󵄨󵄨
𝜔
𝑗
𝑑
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
}

+max
𝑖∈N

{𝑝
𝑖
(𝜇 +

1

𝑎
𝑖

)} < 1.

(41)

FromTheorem 3, we conclude that the trivial equilibrium
x = 0 of this two-dimensional impulsive cellular neural
network with time-varying and distributed delays is globally
exponentially stable.

5. Conclusions

This article is a new attempt of applying the fixed point theory
to the stability analysis of impulsive neural networks with
time-varying and distributed delays, which is different from
the existing relevant publications where Lyapunov theory
is the main technique. From what have been discussed
above, we see that the contraction mapping principle is
effective for not only the investigation of the existence and
uniqueness of solution but also for the stability analysis of
trivial equilibrium. In the future, we will continue to explore
the application of other kinds of fixed point theorems to the
stability research of complex neural networks.
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