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The aim of this paper is to offer sufficient conditions for property (B) and/or the oscillation of
the third-order nonlinear functional differential equation with mixed arguments [a(t)[x′′(t)]γ ]′ =
q(t)f(x[τ(t)])+p(t)h(x[σ(t)]). Both cases

∫∞
a−1/γ (s)ds = ∞ and

∫∞
a−1/γ (s)ds < ∞ are considered.

We deduce properties of the studied equations via new comparison theorems. The results obtained
essentially improve and complement earlier ones.

1. Introduction

We are concerned with the oscillatory and certain asymptotic behavior of all solutions of the
third-order functional differential equations

[
a(t)
[
x′′(t)

]γ]′ = q(t)f(x[τ(t)]) + p(t)h(x[σ(t)]). (E)

Throughout the paper, it is assumed that a, q, p ∈ C([t0,∞)), τ, σ ∈ C1([t0,∞)), f, h ∈
C((−∞,∞)), and

(H1) γ is the ratio of two positive odd integers,

(H2) a(t), q(t), p(t) are positive,

(H3) τ(t) ≤ t, σ(t) ≥ t, τ ′(t) > 0, σ ′(t) > 0, limt→∞τ(t) = ∞,

(H4) f1/γ(x)/x ≥ 1, xh(x) > 0, f ′(x) ≥ 0, and h′(x) ≥ 0 for x /= 0,

(H5) −f(−xy) ≥ f(xy) ≥ f(x)f(y) for xy > 0 and −h(−xy) ≥ h(xy) ≥ h(x)h(y) for
xy > 0.
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By a solution of (E), we mean a function x(t) ∈ C2([Tx,∞)), Tx ≥ t0, which has
the property a(t)(x′′(t))γ ∈ C1([Tx,∞)) and satisfies (E) on [Tx,∞). We consider only those
solutions x(t) of (E) which satisfy sup{|x(t)| : t ≥ T} > 0 for all T ≥ Tx. We assume that (E)
possesses such a solution. A solution of (E) is called oscillatory if it has arbitrarily large zeros
on [Tx,∞), and, otherwise, it is nonoscillatory. Equation (E) is said to be oscillatory if all its
solutions are oscillatory.

Recently, (E) and its particular cases (see [1–17]) have been intensively studied. The
effort has been oriented to provide sufficient conditions for every (E) to satisfy

lim
t→∞

|x(t)| = ∞ (1.1)

or to eliminate all nonoscillatory solutions. Following [6, 8, 13, 15], we say that (E) has
property (B) if each of its nonoscillatory solutions satisfies (1.1).

We will discuss both cases

∫∞

t0

a−1/γ(s)ds < ∞, (1.2)

∫∞

t0

a−1/γ(s)ds = ∞. (1.3)

We will establish suitable comparison theorems that enable us to study properties of
(E) regardless of the fact that (1.3) or (1.2) holds. We will compare (E) with the first-order
advanced/delay equations, in the sense that the oscillation of these first-order equations
yields property (B) or the oscillation of (E).

In the paper, we are motivated by an interesting result of Grace et al. [10], where the
oscillation criteria for (E) are discussed. This result has been complemented by Baculı́ková
et al. [5]. When studying properties of (E), the authors usually reduce (E) onto the
corresponding differential inequalities

[
a(t)
[
x′′(t)

]γ]′ ≥ q(t)f(x[τ(t)]),
[
a(t)
[
x′′(t)

]γ]′ ≥ p(t)h(x[σ(t)]),
(Eσ)

and further study only properties of these inequalities. Therefore, the criteria obtained
withhold information either from delay argument τ(t) and the corresponding functions q(t)
and f(u) or from advanced argument σ(t) and the corresponding functions p(t) and h(u). In
the paper, we offer a technique for obtaining new criteria for property (B) and the oscillation
of (E) that involve both arguments τ(t) and σ(t). Consequently, our results are new even for
the linear case of (E) and properly complement and extend earlier ones presented in [1–17].

Remark 1.1. All functional inequalities considered in this paper are assumed to hold eventu-
ally; that is, they are satisfied for all t large enough.

2. Main Results

The following results are elementary but useful in what comes next.
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Lemma 2.1. Assume that A ≥ 0, B ≥ 0, α ≥ 1. Then,

(A + B)α ≥ Aα + Bα. (2.1)

Proof. If A = 0 or B = 0, then (2.1) holds. For A/= 0, setting x = B/A, condition (2.1) takes the
form (1 + x)α ≥ 1 + xα, which is for x > 0 evidently true.

Lemma 2.2. Assume that A ≥ 0, B ≥ 0, 0 < α ≤ 1. Then,

(A + B)α ≥ Aα + Bα

21−α
. (2.2)

Proof. We may assume that 0 < A < B. Consider a function g(u) = uα. Since g ′′(u) < 0 for
u > 0, function g(u) is concave down; that is,

g

(
A + B

2

)
≥ g(A) + g(B)

2
(2.3)

which implies (2.2).

The following result presents a useful relationship between an existence of positive
solutions of the advanced differential inequality and the corresponding advanced differential
equation.

Lemma 2.3. Suppose that p(t), σ(t), and h(u) satisfy (H2), (H3), and (H4), respectively. If the first-
order advanced differential inequality

z′(t) − p(t)h(z(σ(t))) ≥ 0 (2.4)

has an eventually positive solution, so does the advanced differential equation

z′(t) − p(t)h(z(σ(t))) = 0. (2.5)

Proof. Let z(t) be a positive solution of (2.4) on [t1,∞). Then, z(t) satisfies the inequality

z(t) ≥ z(t1) +
∫ t

t1

p(s)h(z(σ(s)))ds. (2.6)

Let

y1(t) = z(t),

yn(t) = z(t1) +
∫ t

t1

p(s)h
(
yn−1(σ(s))

)
ds, n = 2, 3 . . . .

(2.7)
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It follows from the definition of yn(t) and (H4) that the sequence {yn} has the property

z(t) = y1(t) ≥ y2(t) ≥ · · · ≥ z(t1), t ≥ t1. (2.8)

Hence, {yn} converges pointwise to a function y(t), where z(t) ≥ y(t) ≥ z(t1). Let hn(t) =
p(t)h(yn(σ(t))), n = 1, 2, . . ., then h1(t) ≥ h2(t) ≥ · · · ≥ 0. Since h1(t) is integrable on [t1, t] and
limn→∞hn(t) = p(t)h(y(σ(t))), it follows by Lebesgue’s dominated convergence theorem that

y(t) = z(t1) +
∫ t

t1

p(s)h
(
y(σ(s))

)
ds. (2.9)

Thus, y(t) satisfies (2.5).

We start ourmain results with the classification of the possible nonoscillatory solutions
of (E).

Lemma 2.4. Let x(t) be a nonoscillatory solution of (E). Then, x(t) satisfies, eventually, one of the
following conditions

(I)

x(t)x′(t) > 0, x(t)x′′(t) > 0, x(t)
[
a(t)
[
x′′(t)

]γ]′
> 0, (2.10)

(II)

x(t)x′(t) > 0, x(t)x′′(t) < 0, x(t)
[
a(t)
[
x′′(t)

]γ]′
> 0, (2.11)

and if (1.2) holds, then also

(III)

x(t)x′(t) < 0, x(t)x′′(t) > 0, x(t)
[
a(t)
[
x′′(t)

]γ]′
> 0. (2.12)

Proof. Let x(t) be a nonoscillatory solution of (E), say x(t) > 0 for t ≥ t0. It follows from (E)
that [a(t)[x′′(t)]γ] > 0, eventually. Thus, x′′(t) and x′(t) are of fixed sign for t ≥ t1, t1 large
enough. At first, we assume that x′′(t) < 0. Then, either x′(t) > 0 or x′(t) < 0, eventually. But
x′′(t) < 0 together with x′(t) < 0 imply that x(t) < 0. A contradiction, that is, Case (II) holds.

Now, we suppose that x′′(t) > 0, then either Case (I) or Case (III) holds. On the other
hand, if (1.3) holds, then Case (III) implies that a(t)[x′′(t)]γ ≥ c > 0, t ≥ t1. Integrating from t1
to t, we have

x′(t) − x′(t1) ≥ c1/γ
∫ t

t1

a−1/γ(s)ds, (2.13)

which implies that x′(t) → ∞ as t → ∞, and we deduce that Case (III) may occur only if
(1.2) is satisfied. The proof is complete.
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Remark 2.5. It follows from Lemma 2.4 that if (1.3) holds, then only Cases (I) and (II) may
occur.

In the following results, we provide criteria for the elimination of Cases (I)–(III) of
Lemma 2.4 to obtain property (B)/oscillation of (E).

Let us denote for our further references that

P(t) =
∫∞

t

a−1/γ(u)
(∫∞

u

p(s)ds
)1/γ

du, (2.14)

Q(t) =
∫∞

t

a−1/γ(u)

(∫∞

u

q
(
τ−1(s)

)

τ ′
(
τ−1(s)

)ds

)1/γ

du. (2.15)

Theorem 2.6. Let 0 < γ ≤ 1. Assume that x(t) is a nonoscillatory solution of (E). If the first-order
advanced differential equation

z′(t) − P(t)e−
∫ t
t1
Q(s)ds

h1/γ
(
e
∫σ(t)
t1

Q(s)ds
)
h1/γ(z[σ(t)]) = 0 (E1)

is oscillatory, then Case (II) cannot hold.

Proof. Let x(t) be a nonoscillatory solution of (E), satisfying Case (II) of Lemma 2.4. We may
assume that x(t) > 0 for t ≥ t0. Integrating (E) from t to∞, one gets

−a(t)[x′′(t)]γ ≥
∫∞

t

q(s)f(x[τ(s)])ds +
∫∞

t

p(s)h(x[σ(s)])ds. (2.16)

On the other hand, the substitution τ(s) = u gives

∫∞

t

q(s)f(x[τ(s)])ds =
∫∞

τ(t)

q
(
τ−1(u)

)

τ ′
(
τ−1(u)

)f(x(u))du

≥
∫∞

t

q
(
τ−1(s)

)

τ ′
(
τ−1(s)

)f(x(s))ds.

(2.17)

Using (2.17) in (2.16), we find

−x′′(t) ≥ a−1/γ(t)

(∫∞

t

q
(
τ−1(s)

)

τ ′
(
τ−1(s)

)f(x(s))ds +
∫∞

t

p(s)h(x[σ(s)])ds

)1/γ

. (2.18)
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Taking into account the monotonicity of x(t), it follows from Lemma 2.1 that

− x′′(t) ≥ f1/γ(x(t))
a1/γ(t)

(∫∞

t

q
(
τ−1(s)

)

τ ′
(
τ−1(s)

)ds

)1/γ

+
h1/γ(x[σ(t)])

a1/γ(t)

(∫∞

t

p(s)ds
)1/γ

,

(2.19)

where we have used (H3) and (H4). An integration from t to∞ yields

x′(t) ≥
∫∞

t

f1/γ(x(u))
a1/γ(u)

(∫∞

u

q
(
τ−1(s)

)

τ ′
(
τ−1(s)

)ds

)1/γ

du

+
∫∞

t

h1/γ(x[σ(u)])
a1/γ(u)

(∫∞

u

p(s)ds
)1/γ

du

≥ f1/γ(x(t))Q(t) + h1/γ(x[σ(t)])P(t).

(2.20)

Regarding (H4), it follows that x(t) is a positive solution of the differential inequality

x′(t) −Q(t)x(t) ≥ P(t)h1/γ(x[σ(t)]). (2.21)

Applying the transformation

x(t) = w(t)e
∫ t
t1
Q(s)ds

, (2.22)

we can easily verify that w(t) is a positive solution of the advanced differential inequality

w′(t) − P(t)e−
∫ t
t1
Q(s)ds

h1/γ
(
e
∫σ(t)
t1

Q(s)ds
)
h1/γ(w[σ(t)]) ≥ 0. (2.23)

By Lemma 2.3, we conclude that the corresponding differential equation (E1) has also a
positive solution. A contradiction. Therefore, x(t) cannot satisfy Case (II).
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Remark 2.7. It follows from the proof of Theorem 2.8 that if at least one of the following
conditions is satisfied:

∫∞

t0

p(s)ds = ∞,

∫∞

t0

q
(
τ−1(s)

)

τ ′
(
τ−1(s)

)ds = ∞,

∫∞

t0

a−1/γ(u)
(∫∞

u

p(s)ds
)1/γ

du = ∞,

∫∞

t0

a−1/γ(u)

(∫∞

u

q
(
τ−1(s)

)

τ ′
(
τ−1(s)

)ds

)1/γ

du = ∞,

(2.24)

then any nonoscillatory solution x(t) of (E) cannot satisfy Case (II). Therefore, we may
assume that the corresponding integrals in (2.14)-(2.15) are convergent.

Now, we are prepared to provide new criteria for property (B) of (E) and also the rate
of divergence of all nonoscillatory solutions.

Theorem 2.8. Let (1.3) hold and 0 < γ ≤ 1. Assume that (E1) is oscillatory. Then, (E) has property
(B) and, what is more, the following rate of divergence for each of its nonoscillatory solutions holds:

|x(t)| ≥ c

∫ t

t1

a−1/γ(s)(t − s)ds, c > 0. (2.25)

Proof. Let x(t) be a positive solution of (E). It follows from Lemma 2.4 and Remark 2.5 that
x(t) satisfies either Case (I) or (II). But Theorem 2.6 implies that the Case (II) cannot hold.
Therefore, x(t) satisfies Case (I), which implies (1.1); that is, (E) has property (B). On the
other hand, there is a constant c > 0 such that

a(t)
(
x′′(t)

)γ ≥ cγ . (2.26)

Integrating twice from t1 to t, we have

x(t) ≥ c

∫ t

t1

(∫u

t1

a−1/γ(s)ds

)

du = c

∫ t

t1

a−1/γ(s)(t − s)ds, (2.27)

which is the desired estimate.

Employing an additional condition on the function h(x), we get easily verifiable
criterion for property (B) of (E).
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Corollary 2.9. Let 0 < γ ≤ 1 and (1.3) hold. Assume that

h1/γ(x)/x ≥ 1, |x| ≥ 1, (2.28)

lim inf
t→∞

∫σ(t)

t

P(u)e
∫σ(u)
u Q(s)dsdu >

1
e
. (2.29)

Then, (E) has property (B).

Proof. First note that (2.29) implies

∫∞

t0

P(u)e
∫σ(u)
u Q(s)dsdu = ∞. (2.30)

By Theorem 2.8, it is sufficient to show that (E1) is oscillatory. Assume the converse, let (E1)
have an eventually positive solution z(t). Then, z′(t) > 0 and so z(σ(t)) > c > 0. Integrating
(E1) from t1 to t, we have in view of (2.28)

z(t) ≥
∫ t

t1

P(u)e−
∫u
t1
Q(s)ds

h1/γ
(
e
∫σ(u)
t1

Q(s)ds
)
h1/γ(z[σ(u)])du

≥ h1/γ(c)
∫ t

t1

P(u)e
∫σ(u)
u Q(s)dsdu.

(2.31)

Using (2.30) in the previous inequalities, we get z(t) → ∞ as t → ∞. Therefore, z(t) ≥ 1,
eventually. Now, using (2.28) in (E1), one can verify that z(t) is a positive solution of the
differential inequality

z′(t) − P(t)e
∫σ(t)
t Q(s)dsz(σ(t)) ≥ 0. (2.32)

But, by [14, Theorem 2.4.1], condition (2.29) ensures that (2.32) has no positive solutions.
This is a contradiction, and we conclude that (E) has property (B).

Example 2.10. Consider the third-order nonlinear differential equation with mixed arguments

(
t1/3
(
x′′(t)

)1/3)′ =
a

t4/3
x1/3(λt) +

b

t4/3
xβ(ωt), (Ex1)

where a, b > 0, 0 < λ < 1, ω > 1, and β ≥ 1/3 is a ratio of two positive odd integers. Since

P(t) =
27b3

t
, Q(t) =

27a3λ

t
, (2.33)

Corollary 2.9 implies that (Ex1) has property (B) provided that

b3ω27a3λ lnω >
1
27e

. (2.34)
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Moreover, by Theorem 2.8, the rate of divergence of every nonoscillatory solution of (Ex1) is

|x(t)| ≥ ct ln t, c > 0. (2.35)

For β = 1/3 and δ > 1 satisfying δ1/3(δ − 1)4/3 = 3aλδ/3 + 3bωδ/3, one such solution is tδ.

Now, we turn our attention to the case when γ ≥ 1.

Theorem 2.11. Let γ ≥ 1. Assume that x(t) is a nonoscillatory solution of (E). If the first-order
advanced differential equation

z′(t) − 2(1−γ)/γP(t)e[−2
(1−γ)/γ ∫ t

t1
Q(s)ds]

h1/γ
(
e2

(1−γ)/γ ∫σ(t)
t1

Q(s)ds
)
h1/γ(z[σ(t)]) = 0 (E2)

is oscillatory, then Case (II) cannot hold.

Proof. Let x(t) be an eventually positive solution of (E), satisfying Case (II) of Lemma 2.4.
Then, (2.18) holds. Lemma 2.2, in view of the monotonicity of x(t), (H3), and (H4), implies

−x′′(t) ≥ f1/γ(x(t))
2(γ−1)/γa1/γ(t)

(∫∞

t

q
(
τ−1(s)

)

τ ′
(
τ−1(s)

)ds

)1/γ

+
h1/γ(x[σ(t)])
2(γ−1)/γa1/γ(t)

(∫∞

t

p(s)ds
)1/γ

.

(2.36)

An integration from t to∞ yields

x′(t) ≥
∫∞

t

f1/γ(x(u))
2(γ−1)/γa1/γ(u)

(∫∞

u

q
(
τ−1(s)

)

τ ′
(
τ−1(s)

)ds

)1/γ

du

+
∫∞

t

h1/γ(x[σ(u)])
2(γ−1)/γa1/γ(u)

(∫∞

u

p(s)ds
)1/γ

du

≥ f1/γ(x(t))2(1−γ)/γQ(t) + h1/γ(x[σ(t)])2(1−γ)/γP(t).

(2.37)

Noting (H4), we see that x(t) is a positive solution of the differential inequality

x′(t) ≥ 2(1−γ)/γQ(t)x(t) + 2(1−γ)/γP(t)h1/γ(x[σ(t)]). (2.38)

Setting

x(t) = w(t)e[2
(1−γ)/γ ∫ t

t1
Q(s)ds]

, (2.39)
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one can see that w(t) is a positive solution of the advanced differential inequality

w′(t) − 2(1−γ)/γP(t)e[−2
(1−γ)/γ ∫ t

t1
Q(s)ds]

h1/γ
(
e
2(1−γ)/γ

∫σ(t)
t1

Q(s)ds
)
h1/γ(w[σ(t)]) ≥ 0. (2.40)

By Lemma 2.3, we deduce that the corresponding differential equation (E2) has also a positive
solution. A contradiction. Therefore, x(t) cannot satisfy Case (II).

The following result is obvious.

Theorem 2.12. Let (1.3) hold and γ ≥ 1. Assume that (E2) is oscillatory. Then, (E) has property (B)
and, what is more, each of its nonoscillatory solutions satisfies (2.25).

Now, we present easily verifiable criterion for property (B) of (E).

Corollary 2.13. Let (1.3) and (2.28) hold and γ ≥ 1. If

lim inf
t→∞

∫σ(t)

t

P(u)e[2
(1−γ)/γ ∫σ(u)

u Q(s)ds]du >
2(γ−1)/γ

e
, (2.41)

then (E) has property (B).

Proof. The proof is similar to the proof of Corollary 2.9 and so it can be omitted.

Remark 2.14. Theorems 2.6, 2.8, 2.11, and 2.12 and Corollaries 2.9 and 2.13 provide criteria
for property (B) that include both delay and advanced arguments and all coefficients and
functions of (E). Our results are new even for the linear case of (E).

Remark 2.15. It is useful to notice that if we apply the traditional approach to (E), that is, if
we replace (E) by the corresponding differential inequality (Eσ), then conditions (2.29) of
Corollary 2.9 and (2.41) of Corollary 2.13 would take the forms

lim inf
t→∞

∫σ(t)

t

P(u)du >
1
e
, lim inf

t→∞

∫σ(t)

t

P(u)du >
2(γ−1)/γ

e
, (2.42)

respectively, which are evidently second to (2.29) and (2.41).

Example 2.16. Consider the third-order nonlinear differential equation with mixed arguments

(
t(x′′(t))3

)′
=

a

t6
x3(λt) +

b

t6
xβ(ωt), (Ex2)

where a, b > 0, 0 < λ < 1, β ≥ 3 is a ratio of two positive odd integers and ω > 1. It is easy to
see that conditions (2.14) and (2.15) for (Ex2) reduce to

P(t) =
b1/3

51/3t
, Q(t) =

λ5/3a1/3

51/3t
, (2.43)
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respectively. It follows from Corollary 2.13 that (Ex2) has property (B) provided that

b1/3
[
ωλ5/3a1/3/22/351/3

]
lnω ≥ 22/351/3

e
. (2.44)

Moreover, (2.25) provides the following rate of divergence for every nonoscillatory solution
of (Ex2):

|x(t)| ≥ ct5/3, c > 0. (2.45)

Now, we eliminate Case (I) of Lemma 2.4, to get the oscillation of (E).

Theorem 2.17. Let x(t) be a nonoscillatory solution of (E). Assume that there exists a function
ξ(t) ∈ C1([t0,∞)) such that

ξ′(t) ≥ 0, ξ(t) < t, η(t) = σ(ξ(ξ(t))) > t. (2.46)

If the first-order advanced differential equation

z′(t) −
⎧
⎨

⎩

∫ t

ξ(t)
a−1/γ(u)

(∫u

ξ(u)
p(s)ds

)1/γ

du

⎫
⎬

⎭
h1/γ(z

[
η(t)
])

= 0 (E3)

is oscillatory, then Case (I) cannot hold.

Proof. Let x(t) be an eventually positive solution of (E), satisfying Case (I). It follows from
(E) that

[
a(t)[x′′(t)]γ

]′ ≥ p(t)h(x[σ(t)]). (2.47)

Integrating from ξ(t) to t, we have

a(t)[x′′(t)]γ − a(ξ(t))[x′′(ξ(t))]
γ ≥
∫ t

ξ(t)
p(s)h(x[σ(s)])ds

≥ h(x[σ(ξ(t))])
∫ t

ξ(t)
p(s)ds.

(2.48)

Therefore,

x′′(t) ≥ h1/γ(x[σ(ξ(t))])a−1/γ(t)

(∫ t

ξ(t)
p(s)ds

)1/γ

. (2.49)
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An integration from ξ(t) to t yields

x′(t) ≥
∫ t

ξ(t)
h1/γ(x[σ(ξ(u))])a−1/γ(u)

(∫u

ξ(u)
p(s)ds

)1/γ

du

≥ h1/γ(x
[
η(t)
])
∫ t

ξ(t)
a−1/γ(u)

(∫u

ξ(u)
p(s)ds

)1/γ

du.

(2.50)

Consequently, x(t) is a positive solution of the advanced differential inequality

x′(t) −
⎧
⎨

⎩

∫ t

ξ(t)
a−1/γ(u)

(∫u

ξ(u)
p(s)ds

)1/γ

du

⎫
⎬

⎭
h1/γ(x

[
η(t)
]) ≥ 0. (2.51)

Hence, by Lemma 2.3, we conclude that the corresponding differential equation (E3) also has
a positive solution, which contradicts the oscillation of (E3). Therefore, x(t) cannot satisfy
Case (I).

Combining Theorem 2.17 with Theorems 2.6 and 2.11, we get two criteria for the
oscillation of (E).

Theorem 2.18. Let (1.3) hold and 0 < γ ≤ 1. Assume that both of the first-order advanced equations
(E1) and (E3) are oscillatory, then (E) is oscillatory.

Proof. Assume that (E) has a nonoscillatory solution. It follows from Remark 2.5 that x(t)
satisfies either Case (I) or (II). But both cases are excluded by the oscillation of (E1) and
(E3).

Corollary 2.19. Let 0 < γ ≤ 1. Assume that (1.3), (2.28), (2.29), and (2.46) hold. If

lim inf
t→∞

∫η(t)

t

⎧
⎨

⎩

∫v

ξ(v)
a−1/γ(u)

(∫u

ξ(u)
p(s)ds

)1/γ

du

⎫
⎬

⎭
dv >

1
e
, (2.52)

then (E) is oscillatory.

Proof. Conditions (2.29) and (2.52) guarantee the oscillation of (E1) and (E3), respectively.
The assertion now follows from Theorem 2.18.

Example 2.20. We consider oncemore the third-order differential equation (Ex1)with the same
restrictions as in Example 2.10. We set ξ(t) = α0t, where α0 = (1 +

√
ω)/2

√
ω. Then condition

(2.52) takes the form

b3
(1 − α0)

(
1 − α1/3

0

)3

α2
0

ln
(
ωα2

0

)
>

1
27e

, (2.53)

which by Corollary 2.19, implies the oscillation of (Ex1).
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The following results are obvious.

Theorem 2.21. Let (1.3) hold and γ ≥ 1. Assume that both of the first-order advanced equations (E2)
and (E3) are oscillatory, then (E) is oscillatory.

Corollary 2.22. Let γ ≥ 1. Assume that (1.3), (2.28), (2.41), (2.46), and (2.52) hold. Then (E) is
oscillatory.

Example 2.23. We recall again the differential equation (Ex2)with the same assumptions as in
Example 2.16. We set ξ(t) = α0t with α0 = (1 +

√
ω)/2

√
ω. Then condition (2.52) reduces to

b1/3
(1 − α0)

(
1 − α5

0

)1/3

α8/3
0

ln
(
ωα2

0

)
>

51/3

e
, (2.54)

which, by Corollary 2.22, guarantees the oscillation of (Ex2).

The following result is intended to exclude Case (III) of Lemma 2.4.

Theorem 2.24. Let x(t) be a nonoscillatory solution of (E). Assume that (1.2) holds. If the first-order
delay differential equation

z′(t) +

(∫ t

t1

q(s)ds

)1/γ(∫∞

t

a−1/γ(s)ds
)
f1/γ(z[τ(t)]) = 0. (E4)

is oscillatory, then Case (III) cannot hold.

Proof. Let x(t) be a positive solution of (E), satisfying Case (III) of Lemma 2.4. Using that
a(t)[x′′(t)]γ is increasing, we find that

−x′(t) ≥
∫∞

t

x′′(s)ds =
∫∞

t

(
a1/γ(s)x′′(s)

)
a−1/γ(s)ds

≥ a(t)1/γx′′(t)
∫∞

t

a−1/γ(s)ds.

(2.55)

Integrating the inequality [a(t)[x′′(t)]γ]′ ≥ q(t)f(x[τ(t)]) from t1 to t, we have

a(t)
[
x′′(t)

]γ ≥
∫ t

t1

q(s)f(x[τ(s)]ds) ≥ f(x[τ(t)])
∫ t

t1

q(s)ds. (2.56)

Thus,

a1/γ(t)x′′(t) ≥ f1/γ(x[τ(t)])

(∫ t

t1

q(s)ds

)1/γ

. (2.57)
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Combining (2.57) with (2.55), we find

0 ≥ x′(t) +

(∫ t

t1

q(s)ds

)1/γ(∫∞

t

a−1/γ(s)ds
)
f1/γ(x[τ(t)]). (2.58)

It follows from [16, Theorem 1] that the corresponding differential equation (E4) also has a
positive solution. A contradiction. For that reason, x(t) cannot satisfy Case (III).

The following results are immediate.

Theorem 2.25. Let (1.2) hold and 0 < γ ≤ 1. Assume that both of the first-order advanced equations
(E1) and (E4) are oscillatory, then (E) has property (B).

Theorem 2.26. Let (1.2) hold and 0 < γ ≤ 1. Assume that all of the three first-order advanced
equations (E1), (E3), and (E4) are oscillatory, then (E) is oscillatory.

Theorem 2.27. Let (1.2) hold and γ ≥ 1. Assume that both of the first-order advanced equations (E2)
and (E4) are oscillatory, then (E) has property (B).

Theorem 2.28. Let (1.2) hold and γ ≥ 1. Assume that all of the three first-order advanced equations
(E2), (E3), and (E4) are oscillatory, then (E) is oscillatory.

3. Summary

In this paper, we have presented new comparison theorems for deducing the property
(B)/oscillation of (E) from the oscillation of a set of the suitable first-order delay/advanced
differential equation. We were able to present such criteria for studied properties that employ
all coefficients and functions included in studied equations. Ourmethod essentially simplifies
the examination of the third-order equations, and, what is more, it supports backward the
research on the first-order delay/advanced differential equations. Our results here extend
and complement latest ones of Grace et al. [10], Agarwal et al. [1–3], Cecchi et al. [6], Parhi
and Pardi [15], and the present authors [4, 8]. The suitable illustrative examples are also
provided.
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[17] A. Tiryaki and M. F. Aktaş, “Oscillation criteria of a certain class of third order nonlinear delay
differential equations with damping,” Journal of Mathematical Analysis and Applications, vol. 325, no. 1,
pp. 54–68, 2007.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


