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We introduce two general hybrid iterative approximation methods (one implicit and one explicit)
for finding a fixed point of a nonexpansive mapping which solving the variational inequality
generated by two strongly positive bounded linear operators. Strong convergence theorems
of the proposed iterative methods are obtained in a reflexive Banach space which admits a
weakly continuous duality mapping. The results presented in this paper improve and extend the

corresponding results announced by Marino and Xu (2006), Wangkeeree et al. (in press), and Ceng
etal. (2009).

1. Introduction

Let C be a nonempty subset of a normed linear space E. Recall that a mapping T : C — Cis
called nonexpansive if

[Tx-Ty| <|lx-y|, Vxye€E. (1.1)

We use F(T) to denote the set of fixed points of T; thatis, F(T) = {x € E : Tx = x}. A self-
mapping f : E — Eis a contraction on E if there exists a constant a € (0,1) and x, y € E such
that

157G = F @)l < allx =y (1.2)

One classical way to study nonexpansive mappings is to use contractions to
approximate a nonexpansive mapping [1-3]. More precisely, take t € (0,1) and define a
contraction T; : E — E by

Tix=tu+(1-t)Tx, VYx€E, (1.3)
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where u € E is a fixed point. Banach’s contraction mapping principle guarantees that T; has
a unique fixed point x; in E. It is unclear, in general, what is the behavior of x; ast — 0,
even if T has a fixed point. However, in the case of T having a fixed point, Browder [1]
proved that if E is a Hilbert space, then x; converges strongly to a fixed point of T. Reich [2]
extended Browder’s result to the setting of Banach spaces and proved that if E is a uniformly
smooth Banach space, then {x;} converges strongly to a fixed point of T and the limit defines
the (unique) sunny nonexpansive retraction from E onto F(T). Xu [3] proved Reich’s results
hold in reflexive Banach spaces which have a weakly continuous duality mapping.

The iterative methods for nonexpansive mappings have recently been applied to solve
convex minimization problems; see, for example, [4-7] and the references therein. Let H be a
real Hilbert space, whose inner product and norm are denoted by (-,-) and | - ||, respectively.
Let A be a strongly positive bounded linear operator on H: that is, there is a constant y > 0
with property

(Ax,x) >Y||lx|>, VYxeH. (1.4)

A typical problem is to minimize a quadratic function over the set of the fixed points of a
nonexpansive mapping on a real Hilbert space H

1
xlel}:,l(?)§<Ax1x> - <xrb>/ (15)

where T is a nonexpansive mapping on H and b is a given point in H. In 2003, Xu [6] proved
that the sequence {x,} defined by the iterative method below, with the initial guess xy € H
chosen arbitrarily

Xp1 = (I =V A)Tx, +Au, n>0 (1.6)

converges strongly to the unique solution of the minimization problem (1.5) provided
the sequence {.\,} satisfies certain conditions. Using the viscosity approximation method,
Moudafi [8] introduced the following iterative iterative process for nonexpansive mappings
(see [9, 10] for further developments in both Hilbert and Banach spaces). Let f be a
contraction on H. Starting with an arbitrary initial xo € H, define a sequence {x, } recursively

by

Xne1 = (1= X)) Txy + X f (x4), n2>0, (1.7)

where {1, } isasequencein (0, 1). Itis proved [8, 10] that under certain appropriate conditions
imposed on {A,}, the sequence {x,} generated by (1.7) strongly converges to the unique
solution x* in C of the variational inequality

(I-f)x*,x-x*)>0, xe€H. (1.8)
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Recently, Marino and Xu [11] mixed the iterative method (1.6) and the viscosity
approximation method (1.7) and considered the following general iterative method:

Xpe1 = (L = 24 A)Txp + Ayy f(xn), n20, (1.9)

where A is a strongly positive bounded linear operator on H. They proved that if the
sequence {1, } of parameters satisfies the following appropriate conditions: lim,, A, =0,
S Ay = oo, and either > 771 [Ays1 — Ay| < 0o or limy, oo (An/Aps1) = 1, then the sequence
{xn} generated by (1.9) converges strongly to the unique solution x* in H of the variational
inequality

((A-yf)x*,x-x*)y>0, x€H, (1.10)

which is the optimality condition for the minimization problem: minyer(ry(1/2)(Ax, x)—-h(x),
where h is a potential function for yf (i.e., i'(x) = yf(x) for x € H).

Very recently, Wangkeeree et al. [12] extended Marino and Xu’s result to the setting
of Banach spaces and obtained the strong convergence theorems in a reflexive Banach space
which admits a weakly continuous duality mapping. Let E be a reflexive Banach space which
admits a weakly continuous duality mapping J, with gauge ¢ such that ¢ is invariant on
[0,1]. Let T : E — E be a nonexpansive mapping with F(T)#@, f a contraction with
coefficient 0 < & < 1 and A a strongly positive bounded linear operator with coefficient
Y >0and 0 <y <yp(1)/a. Define the net {x;} by

x=tyf(x) + (I —tA)Tx;. (1.11)

It is proved in [12] that {x;} converges strongly as t — 0 to a fixed point X of T which solves
the variational inequality

((A-yf)x, J,(x-2)) <0, zeF(T). (1.12)

On the other hand, Ceng et al. [13] introduced the iterative approximation method
for solving the variational inequality generated by two strongly positive bounded linear
operators on a real Hilbert space H. Let f : H — H be a contraction with coefficient
0<a<1andlet A,B: H — H be two strongly positive bounded linear operators with
coefficient y € (0,1) and > 0, respectively. Assume that 0 < ya < f, {1,} is a sequence in
(0,1), {pn} is a sequence in (0, min{1, ||B||"!}). Starting with an arbitrary initial x, € H, define
a sequence {x,} recursively by

X1 = (1= My A)Txy + At [T — i (BT, — y f(x4))], 1> 0. (1.13)

It is proved in [13, Theorem 3.1] that if the sequences {\,} and {p,} satisfy the following
conditions:

(C1) lim, o, A, = 0,
(C2) 352 An = o,

(C3) X |)tn+1 — M| < oo or limy oo (A /A1) = 1,

(C4) 1-7)/(B-ya) <lim, . op,=p<2-7)/(B-ya),
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then the sequence {x,} generated by (1.13) converges strongly to the unique solution X in H
of the variational inequality

((A-T+u(B-yf))x,x-z)<0, zeF(). (1.14)

Observe that if B = I and p, = 1 for all n > 1, then algorithm (1.13) reduces to (1.9).
Moreover, the variational inequality (1.14) reduces to (1.10). Furthermore, the applications
of these results to constrained generalized pseudoinverse are studied.

In this paper, motivated by Marino and Xu [11], Wangkeeree et al. [12], and Ceng et
al. [13], we introduce two general iterative approximation methods (one implicit and one
explicit) for finding a fixed point of a nonexpansive mapping which solving the variational
inequality generated by two strongly positive bounded linear operators. Strong convergence
theorems of the proposed iterative methods are obtained in a reflexive Banach space which
admits a weakly continuous duality mapping. The results presented in this paper improve
and extend the corresponding results announced by Marino and Xu [11], Wangkeeree et al.
[12], and Ceng et al. [13], and many others.

2. Preliminaries

Throughout this paper, let E be a real Banach space and E* its dual space. We write x, — x
(resp. x,—*x) to indicate that the sequence {x,} weakly (resp. weak*) converges to x; as
usual, x, — x will symbolize strong convergence. Let Ur = {x € E : ||x|| = 1}. A Banach
space E is said to uniformly convex if, for any € € (0, 2], there exists 6 > 0 such that, for any
x,y € Ug, |[x—y| > e implies [|(x +y)/2|| £ 1-6.Itis known that a uniformly convex Banach
space is reflexive and strictly convex (see also [14]). A Banach space E is said to be smooth if
the limit lim; o (||x + ty|| — [|x||) /¢ exists for all x, y € UE. It is also said to be uniformly smooth
if the limit is attained uniformly for x, y € UE.

By a gauge function ¢, we mean a continuous strictly increasing function ¢ : [0, 0) —
[0, 00) such that ¢(0) = 0 and ¢(t) — oo ast — oo. Let E* be the dual space of E. The duality
mapping J, : E — 2F associated to a gauge function ¢ is defined by

Jp(x) = {f* € E: {x, f*) = llxlloCllxI), [ f*]| = ¢(llx)}, Vx€E. (2.1)

In particular, the duality mapping with the gauge function ¢(t) = t, denoted by ], is
referred to as the normalized duality mapping. Clearly, there holds the relation J,(x) =
(@I /NIx]1)J (x) for all x#0 (see [15]). Browder [15] initiated the study of certain classes
of nonlinear operators by means of the duality mapping J,. Following Browder [15], we say
that a Banach space E has a weakly continuous duality mapping if there exists a gauge ¢ for
which the duality mapping J,(x) is single valued and continuous from the weak topology
to the weak® topology; that is, for any {x,} with x, — x, the sequence {J,(x,)} converges
weakly* to J,(x). It is known that IF has a weakly continuous duality mapping with a gauge
function ¢(t) =t~ forall 1 < p < co. Set

D(t) = f; p(t)dr, V>0, (2.2)
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then

Jo(x) = 0®(||x|]), Vx€E, (2.3)

where 0 denotes the subdifferential in the sense of convex analysis.
Now, we collect some useful lemmas for proving the convergence result of this paper.
The first part of the next lemma is an immediate consequence of the subdifferential
inequality, and the proof of the second part can be found in [16].

Lemma 2.1 (see [16]). Assume that a Banach space E has a weakly continuous duality mapping J,
with gauge ¢.

(i) Forall x,y € E, the following inequality holds:
D([|lx+ yl) < @(llxl) + (y, Jo (x +))- (2.4)

In particular, for all x,y € E,

lx+yl> < lxl? +2(y, T (x + v)). (2.5)

(ii) Assume that a sequence {x,} in E converges weakly to a point x € E.
Then, the following identity holds:

lim sup @(||x, — y||) = limsup @(||x, - x||) + ©(||y - x||), Vx,y €E. (2.6)

Lemma 2.2 (see [7]). Assume that {a,} is a sequence of nonnegative real numbers such that

An+1 < (1 - an)an + bn/ (27)

where {a,} is a sequence in (0,1) and {b,} is a sequence such that

() X2 an = oo,

(b) limsup,, , _by/a, <0o0r 372, |by| < co.
Then, lim,, -, wa,, = 0.

In a Banach space E having a weakly continuous duality mapping J, with a gauge
function ¢, an operator A is said to be strongly positive [12] if there exists a constant y > 0
with the property

(Ax, Jp(x)) 2 ¥llxllp(llxID), (2.8)

It ~pA] = sup |{(al ~pA)x ()], =€ pElLIL )
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where [ is the identity mapping. If E := H is a real Hilbert space, then (2.8) reduces to (1.4).
The next valuable lemma can be found in [12].

Lemma 2.3 (see [12, Lemma 3.1]). Assume that a Banach space E has a weakly continuous duality
mapping J, with gauge ¢. Let A be a strongly positive bounded linear operator on E with coefficient
¥>0and 0<p <@)||A|™ Then, |I - pA|l < (1)1 - pY).

3. Main Results

Now, we are a position to state and prove our main results.

Lemma 3.1. Let E be a Banach space which admits a weakly continuous duality mapping ], with
gauge ¢ such that ¢ is invariant on [0, 1]; that is, T([0,1]) C [0,1]. Let T : E — E be a nonexpansive
mapping and f : E — E a contraction with coefficient a € (0,1). Let A and B be two strongly positive
bounded linear operators with coefficients y > 0 and f > 0, respectively. Let y and p be two constants
satisfying the condition (C*)

. Po(1) (1) —p(l)y
(C):0<yr<=4 p(1)-ya

1+o(1) -y
<ps min{l,q’(l)IIBll_lr W} '

(3.1)

Then, for any A € (0, min{1,¢(1)||Al|}), the mapping S, : E — E defined by

Si(x) = (I = XA)Tx + A[Tx - u(BTx - yf(x))], Vx€E (3.2)

is a contraction with coefficient 1 — A7, where T := p(1)y — (1) + u(p(1)p - ya).

Proof. Observe that

1+ (1) - p(1)F _
p< W = p(epp -ya) <1+¢(1) - 1)y
= o)y —o) +p(p()p —ya) <1,

(3.3)

1) - ()7 _

% <p=o1) -1y < u(p(1)p - ya)

= 0<91)y - 1) +pu(p1)p - ya).
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This shows that 7 := ¢(1)y — ¢(1) + u(p(1)p - ya) € (0,1]. Using Lemma 2.3, we obtain

[|S1(x) = Sa(w) ||
= ||(I = AA)Tx + A[Tx — u(BTx - yf(x))] = (I =AA)Ty - A [Ty - u(BTy - vf (y))] |

<@ =AA)Tx = (I - XA)Ty|| + M| Tx = p(BTx - yf(x)) - [Ty - u(BTy - vf(v))] |l
<= AAJ||[Tx = Ty + A[|| (I = uB)Tx = (I = uB) Ty || +ypu|l f(x) - f(w)]]]

<= AAJ||Tx = Tyl + AT = uB|||[Tx = Ty || + yul £ (x) = £ (w)I]

<o) (1= A7) [lx =yl + A p) (1 = pp)||x = y]| + ypallx - yl[]

= [p(1)(1 = A7) + M) (1~ pp) +ypal]|lx -yl

= [p() (1= 147) + A1) = p(p(1)B - ya)]] ||x - v

= [p(1) = Ap()Y = (1) + p (D) = ya) ] |x - |

= (p(1) = A7) [|x -y

<@A-An)||lx-y]-
(3.4)
Hence, S, is a contraction with coefficient 1 — A. O

Applying the Banach contraction principle to Lemma 3.1, there exists a unique fixed
point x; of Sy in E; that is,

xy = (I =AA)Txy + A[Txy — u(BTxy - yf(x1))], VA€ (0,1). (3.5)

Remark 3.2. For each 1 < p < oo, I” space has a weakly continuous duality mapping with a
gauge function ¢(t) = P! which is invariant on [0, 1].

Theorem 3.3. Let E be a reflexive Banach space which admits a weakly continuous duality mapping
J, with gauge ¢ such that ¢ is invariant on [0,1]. Let T : E — E be a nonexpansive mapping with
F(T)#0, f : E — E acontraction with coefficient a € (0,1), and A, B two strongly positive bounded
linear operators with coefficients y > 0 and > 0, respectively. Let y and p be two constants satisfying
the condition (C*). Then, the net {x,} defined by (3.5) converges strongly as A — 0 to a fixed point
X of T which solves the variational inequality

(A-T+u(B-yf)X, Jp(X-2)) <0, zeF(T). (3.6)

Proof. We first show that the uniqueness of a solution of the variational inequality (3.6).
Suppose that both X € F(T') and x* € F(T) are solutions to (3.6), then

((A-T+u(B-yf))X Jp(¥-x")) <0,
(3.7)
((A=T+pu(B-yf))x", Jo(x" - %)) <0.

Adding (3.7), we obtain

((A=T+uB-yf))x—(A-T+u(B-yf))x*, J,(x - x*)) <O0. (3.8)
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On the other hand, we observe that

@ - My o i

o —ya ~H e —e)F <plp(Df-ya)
<:>1—7<,4(p—%> (3.9)
SRR D)

It then follows that for any x,y € E,

((A-T+puB-yf))x—(A-T+uB-yf))y Jp(x-y))

=(A(x-y) - (x-y) +pu[(B-yf)x = (B-yfyl. Jy(x - y))

=(A(x-y) Jo(x=y)) = (x~y. Jo(x —y))
+ w((B=yf)x=(B-yf)y Jo(x-y))

>¥llx = yllellx =yl = llx = yllelx - yl) + w(B(x - y), Jp(x - y))
=y (f ) = f (W), Jo(x )

2¥[lx = yllellx=yll) - llx = yllollx =yl + upllx = ylle(lx -yl
=yl f ) = F T (x =)

>Y0(||x - y) = @(llx - yl) + up@(||x - y||) — pya®(||x - y||)

= (¥ =1+ pp - pya)y@(||lx - yl)

=(r=1+p(f-ya)ye(llx-v|)

> (7-14(p- 05 ) 7l -yl =0

(3.10)

Applying (3.10) to (3.8), we obtain that X = x* and the uniqueness is proved. Below, we use
X to denote the unique solution of (3.6). Next, we will prove that {x,} is bounded. Take a
p € F(T), and denote the mapping S, by

Syi=(I-AA)T + AT - u(BT -yf)], VAe(0,1). (3.11)
From Lemma 3.1, we have

|22 = pll < |Saxx = Sapl| + [|Sip -l
< (=) |Jxx = p|| + [[(I =LA Tp + A[Tp - u(BTp - yfp)] - |l
=1 -A7)|lxa - pll + Al-Ap + p - u(Bp -y fP) ||
< (1 =A7)[lxa = pll + A1 = Allllpll + w1 Bp - v frll].

(3.12)
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where 7 := ¢(1)y — (1) + u(p(1)p - ya) € (0,1]. It follows that

1
e =pll < —[IT = Alllpll + I Bp = v fpll]-

(3.13)

Hence, {x,} is bounded, so are {f(xy,)}, {AT(xy)} and {BT(xy,)}. The definition of {x,}

implies that

2y = Txal| = A||Toa — (BT xy =y f(x2)) — ATxy || — 0, as A — 0.

(3.14)

If follows from reflexivity of E and the boundedness of sequence {x,} that there exists {x,, }
which is a subsequence of {x,} converging weakly to w € E asn — oo. Since J, is weakly

sequentially continuous, we have by Lemma 2.1 that

lim sup @(||xy, — x||) = lim sup ®(||x), — w||) + @(||x —w]||), Vx€E.

n—oo n—oo

Let

H (x) = limsup @(||x), - x||), Vx€E.

n—aoo
It follows that

H(x) = H(w) + ©(||x —w||), Vx€E.

Since

llxy, = Txy, || = Au||Txa, — (BT x), = yf(x),)) — ATx), || — 0, as n— oo.

We obtain

H(Tw) = limsup @(||x,, - Tw||) = limsup ®(||Tx,, — Tw||)

n—oo n— oo

< limsup @(||xy, — w||) = H(w).

On the other hand, however,
H(Tw) = H(w) + ®(||T (w) - w])).
It follows from (3.19) and (3.20) that

O(||T(w) - wll) = H(Tw) - H(w) <0,

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)
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which gives us, Tw = w. Next, we show that x,, — w asn — oo. In fact, since ®(t) =
féq)(’r)d’r, Vt>0and ¢ : [0,00) — [0,00) is a gauge function, then for 1 > k > 0, p(kx) <
¢(x) and

D(kt) = f ! o(r)dr = k f t p(kx)dx < k f t p(x)dx = kd(t). (3.22)
0 0 0
Following Lemma 2.1, we have
O([|x, —wl))
= O([|(I = 1uA)Txy, + A [T, = p(BTxs, = vf (x1,))] = (I - WnA)w - Ay Aw|))
SO = 1nA)Txy, — (I - XnA)wl|)
+ Au(Txy, = p(BTxy, = vf(x1,)) = Aw, Jp(x1, —w))
< @(p(1) (1 - Ay) lIxa, —wll)
+ (I = uB)Txy, + py f(x1,) = Aw, Jy(x1, — w))
<o) (1= 1)) @([lxa, - wl))
+ (I = uB)Txy, = (I = uB)w + py f (x1,) = py f (w), J (2, = w))
+ (I = pB)w + py f(w) = Aw, Jo(x1, - w))
<) (1= 17)D(llxn, = wll) + 1n{(I = uB)Txy, = (I - uB)w, Jp(xs, - w))
+ by (f(x0,) = f (@), Jp(x1, = 0)) + 4u((I = pB)w + py f (w) = Aw, J (x), — w))
<op)(1 = 17)D(llxx, = wll) + An|| (I = uB) T, = (I = uB)w||[| Ty (xa, — )|
+ Ay || f (ea,) = f @) [Ty (ea, =) || + Xn{(I = uB)w + py f(w) = Aw, J(x1, = w))
<o) (1= L) @(llx, = wl) + Lup(1) (1 = pp) 12, = wll[| o (x1, = )|
+ Anpyallxy, = wll||Jp(xr, = w) || + X ((I = uB)w + py f (w) = Aw, J,(x1, - w))
= [p(1) (1= y) + X (1) (1 = pp) + pya) | O([lxy, - wl))
+ (I = uB)w + py f (w) = Aw, Jp(x), -~ w))
= [p(1) = Lu (W)Y = (1) + (@) = ya)) | D(||x, - wl))
+ da((I = uB)w + py f (w) = Aw, J(x3, - w))
< 1= (oY = 9(1) + p(pW)f - ya)) | O([lxy, - wl))

+ Lo ((I - uB)w + py f (w) - Aw, J,(x), — w)).
(3.23)
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Thus,

1
p(1)Y = (1) + u(p(1)p - ya)

D(||xy, —wl|) < ((I-puB)w + py f(w) — Aw, J,(x, —w)).

(3.24)

Now, observing that x), — w implies J,(x), —w) — 0, we conclude from the last inequality
that

O(||xy, —wl|]) — 0, asn— oo. (3.25)

Hence, x;, — wasn — oo. Next, we prove that w solves the variational inequality (3.6).
For any z € F(T), we observe that

(I=T)xy - (I =Tz, Jp(x1 - 2)) = (x1 = 2, Jp(x2 - 2)) + (T, = Tz, J, (x2 - 2))
= D(|lxy ~ 2[) ~ (Tz~ T, Jy (1 2)
> @(|lxy - zll) = 1Tz = Txell][ Ty (x1 = 2) | (3.26)
> D([lxa = zl) = 1z = x| | Ty (er = 2) |
= ®(|lxx = z|[) = D([Jxx - 2[|) = 0.
Since

xy = (I =X A)Txy, + Ay [Txy, — p(BTxy, —yf(x1,))], (3.27)

we can derive that

An[Axy, = (I-pB)x,,]
(3.28)
= (I -1, A)Tx), — (I - A A)xy, + Ay (I = uB)Txy, — Ay (I — uB)xy, + Auy f(x1,).

That is

[A-T+u(B-yf)]x), = —%[(I -1 A)I =T)xy, + Ay (I = uB)(I - T)xy,]. (3.29)
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Using (3.26), for each p € F(T), we have

([A=T+pu(B-yf)lxn, Jp(x1, —p))

= —%ﬂ [((I = L A)I =T)xa,, Jp (2, = p)) + 4al{(I = uB)(I = T)xs,, Jp (2, = P))]

= —%(U =D, = I=T)p, Jp (2, =p)) + (AT =T)xs,, Jy(x1, = P))

n

(3.30)
(I =-T)xy, =T =T)p, Jp(x1, = p)) + p(BUI =T)x1,, Jo (x1, = P))

< (AU =T)xy,, Jp(x1, =p)) + (BU =T)x,, Jp(x1, = P))

7o (2, =) |

< IAfllxx, = Txa, |l

[To (xa, = p)|| + pllBllllxa, = Txa, |

< lxw, = Txy, || M,

where M is a constant satisfying M > sup .., {I| [l (xs, - p) Il kllBlllJy (xs, - p) ). Noticing
that

xy, —Txy, mw-T(w)=w-w=0. (3.31)
It follows from (3.30) that

((A=T+pu(B-yf))w,Jy(w-p)) <0. (332)

So, w € F(T) is a solution of the variational inequality (3.6), and hence, w = X by the
uniqueness. In a summary, we have shown that each cluster point of {x)}(at A — 0) equals
X. Therefore, xy — X as A\ — 0. This completes the proof. O

According to the definition of strongly positive operator A in a Banach space E having
a weakly continuous duality mapping ], with a gauge function ¢, an operator A is said to be
strongly positive [12] if there exists a constant y > 0 with the property

(Ax, J,(x)) > VllxllolIx[l),

(3.33)
”0{I—ﬁA” = I‘Slﬁle(“I_ﬁA)xf](P(x»l’ ae [Orl]/ ﬁ € [_1/ 1]/

where [ is the identity mapping. We may assume, without loss of generality, that y < 1.
Therefore, if 0 < y < y¢(1)/a, then we have the Corollary 3.4 immediately. Indeed, putting
B=1TIandp =1, wehave

0() -~ MY _ ¢ -9 _| _1+9M)-pMF _1+p(1) -p()

p(L)f-vya p(1) —ya (1) —ya p(1)p -ya

(3.34)

Taking p = 1 in Theorem 3.3, we obtain the following result.
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Corollary 3.4 (see [12, Lemma 3.3]). Let E be a reflexive Banach space which admits a weakly
continuous duality mapping J, with gauge ¢ such that ¢ is invariant on [0,1]. Let T : E — E bea
nonexpansive mapping with F(T)#@, f : E — E a contraction with coefficient a € (0,1), and A a
strongly positive bounded linear operator with coefficient ¥y > 0 and 0 < y < yp(1)/a. Then, the net
{x)} defined by

Xy = =XA)Txy + Ay f(xy), (3.35)

converges strongly as A — 0 to a fixed point X of T which solves the variational inequality:
((A-yf)X,J,(X-2)) <0, zeF(T). (3.36)

Corollary 3.5 (see [11, Theorem 3.6]). Let H be a real Hilbert space. Let T : H — H be a
nonexpansive mapping with F(T) #0, f : H — H a contraction with coefficient a € (0,1), and A a
strongly positive bounded linear operator with coefficient y > 0 and 0 < y < y/a. Then, the net {x,}
defined by

xy= I =XA)Txy + Ay f(xy), (3.37)

converges strongly as A — 0 to a fixed point X of T which solves the variational inequality
((A-yf)X,X-2z)<0, zeF(). (3.38)

Theorem 3.6. Let E be a reflexive Banach space which admits a weakly continuous duality mapping
J, with gauge ¢ such that ¢ is invariant on [0,1]. Let T : E — E be a nonexpansive mapping with
F(T)#0, f : E — E a contraction with coefficient a € (0,1), and A and B two strongly positive
bounded linear operators with coefficients y > 0 and p > O, respectively. Let xo € E be arbitrary and
the sequence {x,} generated by the following iterative scheme:

X1 = (I = My A)Txy + Ay [Ty — u(BTx, — y f(x4))], Vm >0, (3.39)
where y and p are two constants satisfying the condition (C*) and {\,} is a real sequence in (0, 1)
satisfying the following conditions:

(C1) limy o by =0and 3771 Ay = o0,
(C2) 372 |Ans1 — A < o0 o7 limy s oo (A / A1) = 1

Then, the sequence {x,} defined by (3.39) converges strongly to a fixed point X of T that is obtained
by Theorem 3.3.

Proof. We first prove that {x,} is bounded. Take a p € F(T), and denote

Si, == (I = A, A)T + 1, [T - (BT —yf)]. (3.40)
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Using Lemma 3.1, we have

|+ ISuLp -l

< (1= 47|20 = pl| + | (T = 4, A)Tp + 1 [Tp = u(BTp ~ y fp)] - p|

= (1= Lu7)||xn = pl| + Aul|-Ap +p - (Bp - v fp) ||

< (1= 1) |20 = pll + Xa [ = Allllp]l + pl|Bp = v fPlI] (341)

(1T = Allllp|| + pl|Bp - vfpl|]
T

(|1 - Allllp|| + #l|Bp - yfpl|] }

||xn+1 —P|| < ||5Anxn -S.p

= (1= Au7)||xn = p|| + Aut

< max{ - -

where 7 := ¢(1)y — (1) + u(p(1)B - ya) € (0, 1]. By induction, it is easy to see that

T[IlT - Allljp|| +#||BP—YfP||]} Vi > 0. (3.42)

=l < max{ s '

Thus, {x,} is bounded, and hence so are {y,}, {ATx,}, {BTx,}, and { f(x,)}. Now, we show
that

Jim [lxps1 = x| = 0. (3.43)

From the definition of {x,}, it is easily seen that

StpaXn = Si,%n = (I = Ap1 A)Txy + Ayt [Ty — (BT xn — ¥ f (2xn)) ]
= (I = Ay A)Txy — Ay [Ty — p(BTxy — y f (x1))]

(3.44)
= (M = L) AT x + (M1 = X)) Ty + /’l()‘n = A1) (BTxn - Yf(xn)>
=W =) - A)Tx, + ‘u()tn = A1) (BTxn - Yf(xn)).
It follows that
||xn+2 - xn+l|| = ||S}.,,+1xn+1 - S)L,,xn”
SISa Xn1 = Sy Xl + 150,00 %0 — Sa, Xl
< (1= A7) [|xna1 = Xull + [Anse1 = An[[(T = A) T x|
(3.45)

+ Ay = A ||| BTx = v f (20) ||
< (1= a1 7) [lxns1 = x| + (1 + #)Mnﬁ-l =AM

|-)Ln+1 - -)‘n| M

= (1= A7) [ xne1 = xnll + (T + p) AT 1 ,
n+1T
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where M is a constant satisfying M > sup{||(I — A)Tx,l|, ||[BTx, — yf(x,)|l}. From condition
(C2), we deduce that either X377, [Ays1 — Ly|M < oo or limy o0 (Aps1 — L) /Ay )M = 0.
Therefore, it follows from Lemma 2.2 that lim,, _, o || x,+1 — x,|| = 0. It then follows that

llxn = Taxull < [l2cn = Xpaa |l + 1201 = Toxn||

(3.46)
= [|xn = Xpa1|l + A || Txn = (BT — y f (x4)) = AT x| — 0.

Next, we prove that

limsup(-(A-I+u(B-yf))%, J,(x, - %)) <0. (3.47)

Let {x,, } be a subsequence of {x,} such that

Jim (=(A =T+ p(B=yf))X, Jy(xn = %)) = limsup(=(A =T+ u(B-yf))X, J(xu - X))-
(3.48)

If follows from reflexivity of E and the boundedness of a sequence {x,, } that there exists
{xn, } which is a subsequence of {x;,} converging weakly to w € E asi — oo. Since ], is
weakly continuous, we have by Lemma 2.1 that

lim sup ¢>( X, - x||> = limsup qn(| X, w||> +®@(|x-wl|), VxeE.
(3.49)
Let
H(x) = limsup (I)<| X, x”) Vx € E. (3.50)
Tt follows that
H(x) = H(w) + ®(|x - w]), Vx€E. (3.51)
From (3.46), we obtain
701 <im0, ] g, -]
(3.52)

Slimsup(D<|

i— oo

Xny, = w”) = H(w).
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On the other hand, however,

H(Tw) = H(w) + ©(||T(w) — w|)). (3.53)
It follows from (3.52) and (3.53) that

O(||T(w) - wll) = H(Tw) - H(w) <0. (3.54)

This implies that Tw = w. Since the duality map J, is single valued and weakly continuous,
we get that

limsup(=(A ~T+ (B ~yf))% Jp(xn = %)) = lim (=(A =T+ pu(B-yf))%, Jp(xn ~ %))

n—oo

- i1L1£10<—(A— L+ pu(B=yf)E Jy (xn, %))

= (~(A-T+u(B-7yf))X Jp(w - %))

=((A-T+u(B-yf)x J,(¥-w)) <0
(3.55)

as required. Finally, we show that x, — ¥asn — oo
O([|l2cn1 — XI[)
= O(||(T = Ay A)Tx, + Ay [Txp — (BT 3 — Y f(xn))] = (I = 1, A)X - 1, AZ]|)
SO = 1nA)Txn — (I - Xy A)X]|)
+ An(Txy = (BT, — Y £ (x0)) = AZ, J (X1 — X))
<) (1= 14a7)Dllxn = X)) + An((I = puB) Tty + ypf (xn) — AX, Jp(Xns1 = X))
= (1) (1= LaY) @([lxn - X[))
+ A [((T = pB) Tty + ypuf (x0) = (I = uB) Txtns1 = Ypif (Xni1), Jp (Xni1 — X))
+ ((I = pB)Txnar + Ypuf (xni1) = (I = pB)X = ypuf (%), J (Xni1 = X))
+((I = uB)X + ypf (%) = A®), Jp (Xns1 — X))]
= (1) (1= LaY) @([lxn - X))
+ A [((T = uB) (Txy = Txns1), Jp (Xns1 = X)) + yu(f (xn) = £ (Xns1), Jop(¥n1 = X))
+ (I = uB) (Txni1 = %), Jp (Xns1 = X)) + yp( f (1) = f (%), Jp (Xni1 = X))

HI = A-p(B-yf)X, Jy(xn1 - X))]
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= (1) (1 = AuY) @(llxn — X11)
+ L [9(1) (1= )10 = xna |1 (enr = F)|| + ypalitn = Xia ||| T (nsr = D) |
+ (1) (1 = pP)lxnir = XN || Jp (xtner = X)|| + yuatlxna = X[ T (xne1 = X)||
+H{I = A= pu(B-yf)X, Jp(xni1 - X))]
<o) (1= 1Y) @(llxn — X11)
+ L [0(1) (1 = ) 130 = 2 [| M+ ypar|| X, = 2 | M
(I = A= p(B-yf)X, Jp(xn1 — X))]

+An[o(1) = (9D = ya) | D(llxner — X,

(3.56)
where M’ is a constant satisfying M’ > sup, .|| Jy(xn+1 — X)||. It then follows that
O(||l2cne1 = X))
()0(1)(1 _)‘n?) ~
@ (||x, -
T L lp) - rpmp—ya] e =D
(1) (1 - pp) ,
)‘n n = An+ M
' [1 e - ulpmpyay
YHa )
n - An+t M
T a e - p(pp—yay]
1 ~ ~
I-A-pu(B- , n+l =

i (1 ey - (o) — p(p(DB — ya))]
1= o) - u(p)p - ya)]

1 [ (1) (1 - pp)
1= afo(1) - p(p(D)p - yar)]

>(D(|Ixn - X|)

||xn _xn+1||M,

yHa

n = An+ M,
T o — ulgp—yay] el

1
T L) - w(p(Dp - ya)]

(A= 1B 10 o )|
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Put

_ Loy - (o) - p(p(W)f — ya))]
T = M) - p(p(Dp - ya)]

1= La[p(1) = u(p(1)p - ya)]
oY - (¢(1) - p(p(1)B - yar))]

. [ (1) (1 - pp)
1= A [p(1) = u(p(1)p - ya)]

. ypa
1= X [p(1) = u(p(1)B ~ya)]

% = Xpaa [|M' (3.58)

”xn - xn+1||Ml

1
T L p@) - ulp(Dp - ya)]

(A-T+u(B=yf)X Jp(xn = 55))] :
It follows that from condition (C1), limy, —, oo ||Xps1 — x»|| = 0 and (3.47) that

limy, =0, Zyn = oo, limsup 6, <0. (3.59)
n— oo o

The inequality (3.57) reduces to the following:
O (001 — FI) < (1= 1) Dl — F) + yubi- (3.60)

Applying Lemma 2.2, we conclude that @(||x,41 — X||) — Oasn — oo; thatis, x, — X as
n — oo. This completes the proof. O

Remark 3.7. In comparison to the results in [13, Theorem 3.1], the strong convergence in a real
Hilbert space is extended to the strong convergence in a reflexive Banach space which admits
a weakly continuous duality mapping.

Setting B = I, and p = 1 in Theorem 3.6, we obtain the following result.

Corollary 3.8. Let E be a reflexive Banach space which admits a weakly continuous duality mapping
J, with gauge ¢ such that ¢ is invariant on [0,1]. Let T : E — E be a nonexpansive mapping with
F(T)#0, f : E — E a contraction with coefficient a € (0,1) and A a strongly positive bounded
linear operator with coefficient y > 0 and 0 < y < yp(1)/a. Let xg € E be arbitrary, and let the
sequence {x,} be generated by the following iterative scheme:

Xne1 = (I = A A)Txp + Ly f(xy), Vn 20, (3.61)
where {\,} is a real sequence in (0,1) satisfying the following conditions:

(C1) limy o by =0and 371 Ay = o0,
(C2) 3q A1 = Ayl < 00 07 limyy oo (A /Aps1) = 1.
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Then, the sequence {x,} converges strongly to a fixed point X of T which solves the variational
inequality

((A-y)X, Jp(Xx-2)) <0, zeF(T). (3.62)
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