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We study one-signed periodic solutions of the first-order functional differential equation u′(t) =
−a(t)u(t) + λb(t)f(u(t − τ(t))), t ∈ R by using global bifurcation techniques. Where a, b ∈
C(R, [0,∞)) areω−periodic functions with

∫ω
0 a(t)dt > 0,

∫ω
0 b(t)dt > 0, τ is a continuousω-periodic

function, and λ > 0 is a parameter. f ∈ C(R,R) and there exist two constants s2 < 0 < s1 such that
f(s2) = f(0) = f(s1) = 0, f(s) > 0 for s ∈ (0, s1) ∪ (s1,∞) and f(s) < 0 for s ∈ (−∞, s2) ∪ (s2, 0).

1. Introduction

In recent years, there has been considerable interest in the existence of periodic solutions of
the following equation:

u′(t) = −a(t)u(t) + λb(t)f(u(t − τ(t))), (1.1)

where a, b ∈ C(R, [0,∞)) are ω-periodic functions, and
∫ω
0 a(t)dt > 0,

∫ω
0 b(t)dt > 0, τ is a

continuous ω-periodic function, λ > 0 is a parameter. (1.1) has been proposed as a model
for a variety of physiological processes and conditions including production of blood cells,
respiration, and cardiac arrhythmias; see, for example, [1–12] and the references therein.
Roughly speaking, u(t) represents the number of adult (sexually mature) members in a
population at time t, a(t) is the per capita death rate, and f(u(t−τ(t))) is the rate at which new
members are recruited into the population at time t ( τ is the age at which members mature,
and it is assumed that the birth rate at a given time depends only on the adult population
size). The most famous models of this type are



2 Abstract and Applied Analysis

(i) the Nicholson’s blowflies equation proposed in [1] to explain the oscillatory
population fluctuations observed by A. J. Nicholson in 1957 in his studies of the
sheep blowfly Lucilia cuprina:

u′(t) = −au(t) + p · u(t − h)e−γu(t−h), a, p, γ, h > 0; (1.2)

(ii) the model for blood cell populations proposed by Mackey and Glass in [2]

u′(t) = −au(t) + p
u(t − h)

1 + [u(t − h)]n
, a, p, γ, h > 0, n > 1; (1.3)

(iii) the model for the survival of red blood cells in an animal proposed by Wazewska-
Czyzewska and Lasota in [3]

u′(t) = −au(t) + p · e−γu(t−h), a, p, γ, h > 0. (1.4)

Recently, Cheng and Zhang [7] studied the existence of positive ω-periodic solutions
of the functional equation (1.1) under the assumptions:

(H1) f ∈ C([0,∞), [0,∞)), and f(s) > 0 for s > 0;

(H2) a, b ∈ C(R, [0,∞)) are ω−periodic functions,
∫ω
0 a(t)dt > 0,

∫ω
0 b(t)dt > 0, τ ∈

C(R,R) is a ω-periodic function;

(H3) there exist f0, f∞ ∈ (0,∞) such that

f0 = lim
|s|→ 0

f(s)
s

, f∞ = lim
|s|→∞

f(s)
s

. (1.5)

They proved the following.

Theorem A. Assume (H1)–(H3)hold. Then for each λ satisfying

1
σBf∞

< λ <
1

Af0
, or

1
σAf0

< λ <
1

Bf∞
, (1.6)

equation (1.1) has a positive periodic solution, where

A = max
t∈[0,ω]

∫ω

0
G(t, s)b(s)ds, B = min

t∈[0,ω]

∫ω

0
G(t, s)b(s)ds, σ = e

∫ω
0 a(t)dt. (1.7)

However, the condition used in [7] is not sharp, and the main results in [7] give no
any information about the global structure of the set of positive periodic solutions. Moreover,
f satisfied (H1) in [7], so a natural question is what would happen if f is allowed to have
some zeros in R? The purpose of this work is to study the global behavior of the components
of one-signed solutions of (1.1) under the condition
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(H4) f ∈ C(R,R); there exist two constants s2 < 0 < s1 such that f(s2) = f(0) = f(s1) = 0,
f(s) > 0 for s ∈ (0, s1) ∪ (s1,∞), and f(s) < 0 for s ∈ (−∞, s2) ∪ (s2, 0).

The rest of this paper is organized as follows. In Section 2, we give some notations and
the main results. Section 3 is devoted to proving the main results.

2. Statement of the Main Results

Let Y = {u ∈ C(R,R) : u(t) = u(t +ω)}with the norm

‖u‖∞ = max
t∈[0,ω]

|u(t)|. (2.1)

Then (Y, ‖ · ‖∞) is a Banach space. Let

E =
{
u ∈ C1(R,R) : u(t) = u(t +ω)

}
(2.2)

be the Banach space with the norm ‖u‖ = max{‖u‖∞, ‖u′‖∞}.
It is well known that (1.1) is equivalent to

u(t) = λ

∫ t+ω

t

G(t, s)b(s)f(u(s − τ(s)))ds := (Au)(t), (2.3)

where

G(t, s) =
e
∫s
t a(θ)dθ

e
∫ω
0 a(θ)dθ − 1

, s ∈ [t, t +ω]. (2.4)

Notice that
∫w
0 a(t)dt > 0, we have

1
σ − 1

≤ G(t, s) ≤ σ

σ − 1
, (2.5)

where σ = e
∫ω
0 a(t)dt, and 0 < 1/σ < 1.

Define that K is a cone in Y by

K =
{
u ∈ Y : u(t) ≥ 0, u(t) ≥ 1

σ
‖u‖

}
. (2.6)

It is not difficult to prove that A(K) ⊂ K and A : K → K is completely continuous.
Let us consider the spectrum of the linear eigenvalue problem

u′(t) = −a(t)u(t) + λb(t)u(t − τ(t)), t ∈ R. (2.7)

Lemma 2.1. Assume that (H2) holds. Then the linear problem (2.7) has a unique eigenvalue λ1,
which is positive and simple, and the corresponding eigenfunction ϕ is of one sign.
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Proof. It is a direct consequence of the Krein-Rutman Theorem [13, Theorem 19.3].

In the rest of the paper, we always assume that

∥
∥ϕ

∥
∥ = 1, ϕ(t) > 0, t ∈ R. (2.8)

Define L : E → Y by setting

Lu := u′(t) + a(t)u(t), u ∈ E. (2.9)

Then L−1 : Y → E is completely continuous.
Let ζ, ξ ∈ C(R,R) be such that

f(s) = f0s + ζ(s), f(s) = f∞s + ξ(s). (2.10)

Clearly,

lim
|s|→ 0

ζ(s)
s

= 0, lim
|s|→∞

ξ(s)
s

= 0. (2.11)

Let us consider

Lu(t) − λb(t)f0u(t − τ(t)) = λb(t)ζ(u(t − τ(t))) (2.12)

as a bifurcation problem from the trivial solution u ≡ 0 and

Lu(t) − λb(t)f∞u(t − τ(t)) = λb(t)ξ(u(t − τ(t))) (2.13)

as a bifurcation problem from infinity. We note that (2.12) and (2.13) are the same and each
of them is equivalent to (1.1).

Let E = R × E under the product topology. We add the points {(λ,∞) | λ ∈ R} to our
space E. Let S+ denote the set of positive functions in E and S− = −S+, and S = S− ∪ S+. They
are disjoint and open in E. Finally, let Φ± = R × S± and Φ = R × S.

Remark 2.2. It is worth remaking that if u is a nontrivial solution of (1.1) and a, b, and f satisfy
(H2)–(H4), then u ∈ Sν for some ν = {+,−}. To see this, define

q(t) =

⎧
⎪⎨

⎪⎩

f(u(t))
u(t)

, u(t)/= 0,

f0, u(t) = 0.
(2.14)

Thus (1.1) is equivalent to

u′(t) = −a(t)u(t) + λb(t)q(t − τ(t))u(t − τ(t)), t ∈ R. (2.15)
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Obviously, b(·)q(· − τ(·)) satisfies (H2). From Lemma 2.1, the nontrivial solution u ∈ Sν for
some ν ∈ {+,−}.

The result of Rabinowitz [14] for (2.12) can be stated as follows: for each ν ∈ {+,−},
there exists a continuum Cν of solutions of (2.12) joining (λ1/f0, 0) to infinity, and Cν \
{(λ1/f0, 0)} ⊂ Φν.

The result of Rabinowitz [15] for (2.13) can be stated as follows: for each ν ∈
{+,−}, there exists a continuum Dν of solutions of (2.13) meeting (λ1/f∞,∞), and Dν \
{(λ1/f∞,∞)} ⊂ Φν.

Our main result is the following.

Theorem 2.3. Assume (H2)–(H4) hold. Moreover, suppose that

(H5) f satisfies the Lipschitz condition in [s2, s1].

Then

(i) for (λ, u) ∈ C+ ∪ C−,

s2 < u(t) < s1, t ∈ [0, ω]; (2.16)

(ii) for (λ, u) ∈ D+ ∪ D−, we have that either

max
t∈[0,ω]

u(t) > s1 (2.17)

or

min
t∈[0,ω]

u(t) < s2. (2.18)

Corollary 2.4. Let (H2)–(H5) hold. Then

(i) if λ ∈ (λ1/f∞, λ1/f0], then (1.1) has at least two solutions u+
∞ and u−

∞, such that u+
∞ is

positive on [0, ω] and u−
∞ is negative on [0, ω];

(ii) if λ ∈ (λ1/f0,∞), then (1.1) has at least four solutions u+
∞, u

−
∞, u

+
0 , and u−

0 , such that u
+
∞,

u+
0 are positive on [0, ω] and u−

∞, u
−
0 are negative on [0, ω].

Corollary 2.5. Let (H2)–(H5) hold. Then

(i) if λ ∈ (λ1/f0, λ1/f∞], then (1.1) has at least two solutions u+
0 and u−

0 , such that u+
0 is

positive on [0, ω] and u−
0 is negative on [0, ω];

(ii) if λ ∈ (λ1/f∞,∞), then (1.1) has at least four solutions u+
∞, u

−
∞, u

+
0 , and u

−
0 , such that u

+
∞,

u+
0 are positive on [0, ω] and u−

∞, u
−
0 are negative on [0, ω].
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3. Proof of the Main Results

To prove Theorem 2.3, we give a Proposition.

Proposition 3.1. (i) The first-order boundary value problem

u′(t) + a(t)u(t) = h(t), u(0) = u(ω) (3.1)

has a unique solution for all h ∈ L1[0, ω] if and only if
∫ω
0 a(s)ds/= 0.

(ii) Assume that u is a solution of (3.1). If h ≥ 0 and h(·)/≡ 0 on any subinterval of [0, ω],
then u(t)

∫ω
0 a(s)ds > 0 on [0, ω].

Proof. (i) The equation u′(t) + a(t)u(t) = 0 has a solution u(t) = Ce−
∫ t
0 a(s)ds, where C is a

constant. If u(t) is a nontrivial solution, then by u(0) = C, u(ω) = Ce−
∫ω
0 a(s)ds, we can get that∫ω

0 a(s)ds = 0.
On the other hand, from

∫ω
0 a(s)ds = 0, we can get that u′(t) + a(t)u(t) = 0 has a

nontrivial solution u(t) = Ce−
∫ t
0 a(s)ds, where C ∈ R \ {0}.

(ii) We claim that u(t)/= 0, t ∈ [0, ω]. Suppose on the contrary that there exists t0 ∈
[0, ω], such that u(t0) = 0; it is not difficult to compute that

u′(t) + a(t)u(t) = h(t), u(t0) = u0 (3.2)

has a solution

u(t) =
∫ t

t0

h(s)e
∫s
t a(τ)dτds. (3.3)

Since h ≥ 0, we have

u(0) ≤ u(t0) ≤ u(ω). (3.4)

If h(t̂) > 0, t̂ ∈ [0, t0), then there exists a neighborhood U(t̂) ⊂ [0, t0) of t̂, such that
h(t) > 0 on U(t̂). Thus, u(0) =

∫0
t0
h(s)e

∫s
0 a(τ)dτds < 0; this contradicts with u(0) = u(ω).

If h(t) > 0, t ∈ (t0, ω], then there exists a neighborhood U(t) ⊂ (t0, ω] of t, such that
h(t) > 0 on U(t̂). By using a similar way, we can prove that u(ω) > 0, which also contradicts
with u(0) = u(ω).

Hence u(t)/= 0 on [0, ω]. Moreover, it follows that

∫ω

0

u′(t)
u(t)

dt +
∫ω

0
a(t)dt =

∫ω

0

h(t)
u(t)

dt, (3.5)
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that is,

(lnu(t))|ω0 +
∫ω

0
a(t)dt =

∫ω

0

h(t)
u(t)

dt. (3.6)

Thus
∫ω
0 a(t)dt =

∫ω
0 h(t)/u(t)dt, that is u

∫ω
0 a(s)ds > 0.

Next, we prove Theorem 2.3 and Corollaries 2.4 and 2.5.

Proof of Theorem 2.3. Suppose on the contrary that there exists (λ, u) ∈ C+ ∪ C− ∪D+ ∪D− such
that either

max{u(t) | t ∈ [0, ω]} = s1 (3.7)

or

min{u(t) | t ∈ [0, ω]} = s2. (3.8)

We divide the proof into two cases.

Case 1 (max{u(t) | t ∈ [0, ω]} = s1). In this case, we know that

0 ≤ u(t) ≤ s1, 0 ≤ u(t − τ(t)) ≤ s1, t ∈ [0, ω]. (3.9)

Let us consider the functional differential equation

u′(t) + a(t)u(t) = λb(t)f(u(t − τ(t))), t ∈ R. (3.10)

By (H2), (H4) and (H5), there exists m ≥ 0 such that b(t)f(s) +ms is strictly increasing on s
for s ∈ [s2, s1]. Then (3.10) can be rewritten to the form

Lu + λmu(t − τ(t)) = λ
[
b(t)f(u(t − τ(t))) +mu(t − τ(t))

]
, (3.11)

and since Ls1 − a(t)s1 = 0 = f(s1),

Ls1 − a(t)s1 + λms1 = λ
[
b(t)f(s1) +ms1

]
. (3.12)

Subtracting, we get

L(s1 − u) + λm(s1 − u(t − τ(t))) − a(t)s1 ≥ 0. (3.13)

That is,

L(s1 − u) + λms1 ≥ 0, t ∈ [0, ω],

s1 − u(0) = s1 − u(ω) > 0.
(3.14)
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From Proposition 3.1, we deduce that s1 > u(t), t ∈ [0, ω], which contradicts with that
max{u(t) | t ∈ [0, ω]} = s1. Hence,

u(t) < s1, t ∈ [0, ω]. (3.15)

Case 2 (min{u(t) | t ∈ [0, ω]} = s2). In this case, we know that

s2 ≤ u(t) ≤ 0, s2 ≤ u(t − τ(t)) ≤ 0, t ∈ [0, ω]. (3.16)

Let us consider (3.10); by (H2), (H4), and (H5), there exists m ≥ 0 such that b(t)f(s) +ms is
strictly increasing in s for s ∈ [s2, s1]. Then

Lu + λmu(t − τ(t)) = λ
[
b(t)f(u(t − τ(t))) +mu(t − τ(t))

]
(3.17)

and since Ls2 − a(t)s2 = 0 = f(s2),

Ls2 − a(t)s2 + λms2 = λ
[
b(t)f(s2) +ms2

]
. (3.18)

Subtracting, we get

L(s2 − u) + λm(s2 − u(t − τ(t))) − a(t)s2 ≤ 0. (3.19)

That is

L(s2 − u) + λms2 ≤ 0, t ∈ [0, ω],

s2 − u(0) = s2 − u(ω) < 0.
(3.20)

From Proposition 3.1, we deduce that s2 − u(t) < 0, t ∈ [0, ω], this contradicts with that
min{u(t) | t ∈ [0, ω]} = s2. Therefore,

s2 < u(t), t ∈ [0, ω]. (3.21)

Proof of Corollaries 2.4 and 2.5. Since boundary value problem

u′(t) + a(t)u(t) = 0, u(0) = u(ω) (3.22)

has a unique solution u ≡ 0, we get

(C+ ∪ C− ∪ D+ ∪ D−) ⊂ {(λ, u) ∈ R × E | λ ≥ 0}. (3.23)
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Take Λ ∈ R as an interval such that Λ ∩ {λ1/f∞} = {λ1/f∞} and M as a neighborhood of
(λ1/f∞,∞)whose projection on R lies inΛ and whose projection on E is bounded away from
0. Then by [15, Theorem 1.6, and Corollary 1.8], we have that for each ν ∈ {+,−}, either

(1) Dν \M is bounded in R × E in which case Dν \M meets {(λ, 0) | λ ∈ R}, or
(2) Dν \M is unbounded.

Moreover, if (1) occurs and Dν \M has a bounded projection on R, then Dν \Mmeets
(λk/f∞,∞), where λk /=λ1 is another eigenvalue of (2.7).

Obviously, Theorem 2.3 (ii) implies that (1) does not occur. So D+ \M is unbounded.
Remark 2.2 guarantees thatD+ is a component of solutions of (2.12) in S+ which meets

(λ1/f∞,∞), and consequently Proj
R
(D+ \M) is unbounded. Thus

Proj
R
(D+) ⊃

(
λ1
f∞

,+∞
)
. (3.24)

Similarly, we get

Proj
R

(D−) ⊃
(

λ1
f∞

,+∞
)
. (3.25)

By Theorem 2.3, for any (λ, u) ∈ (C+ ∪ C−),

‖u‖∞ < max{s1, |s2|} := s∗. (3.26)

(3.26) and (2.12) imply that

‖u‖ < max
{
s∗, ‖a‖∞s∗ + λ‖b‖∞max

|s|≤s∗
∣∣f(s)

∣∣
}
, (3.27)

whichmeans that the sets {(λ, u) ∈ C+ | λ ∈ [0, d]} and {(λ, u) ∈ C− | λ ∈ [0, d]} are bounded
for any fixed d ∈ (0,∞). This together with the fact that C+ and C− join (λ1/f0, 0) to infinity
yields, respectively, that

Proj
R
(C+) ⊃

(
λ1
f0

,+∞
)
,

Proj
R

(C−) ⊃
(
λ1
f0

,+∞
)
.

(3.28)

Combining (3.24), (3.25), and (3.28), we conclude the desired results.

Remark 3.2. The methods used in the proof of Theorem 2.3, Corollaries 2.4, and 2.5 have been
used in the study of other kinds of boundary value problems; see [16–18] and the references
therein.
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Remark 3.3. The conditions in Corollaries 2.4 and 2.5 are sharp. Let us take

a(t) ≡ a > 0, λ = a, b(t) = 1, f(s) = s + h(s), τ(t) ≡ 0. (3.29)

Let

h(s) =

⎧
⎪⎪⎨

⎪⎪⎩

− 2s
s2 + 1

, s ∈ (−∞,−1) ∪ (1,+∞),

− 2s3

s2 + 1
, s ∈ [−1, 1],

(3.30)

and consider problem

u′(t) = −a(t)u(t) + a[u(t) + h(u(t))], t ∈ [0, ω], u(0) = u(ω). (3.31)

It is easy to see that λ1 = a, f0 = f∞ = 1. Since

λ1
f∞

= a =
λ1
f0

, (3.32)

the conditions of Corollaries 2.4 and 2.5 are not valid. In this case, (3.31) has no nontrivial
solution. In fact, if u is a nontrivial solution of (3.31), then

0 =
∫ω

0
u′(t)dt = a

∫ω

0
h(u(t))dt /= 0, (3.33)

which is a contradiction.
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