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The purpose of this paper is to give some properties of several q-Bernstein-type polynomials to
express the q-integral on [0, 1] in terms of q-beta and q-gamma functions. Finally, we derive some
identities on the q-integral of the product of several q-Bernstein-type polynomials.

1. Introduction

Let q ∈ R with 0 ≤ q < 1. We assume that q-number is defined by [x]q = (1 − qx)/(1 − q) and
[0]q = 0. Note that limq→ 1[x]q = x. The q-derivative of a map f : R → R at x ∈ R \ {0} is
given by

Dq

(
f
)
=

dqf(x)
dqx

=
f
(
qx
) − f(x)

(
q − 1

)
x

(1.1)

(see [1–6]). For n ∈ N, by (1.1), we getDn
q (x

n) = [n]q[n−1]q · · · [2]q[1]q = [n]1!. The q-binomial
formula is given by

(a + b)nq =
n−1∏

i=0

(
a + bqi

)
=

n∑

l=0

(
n

l

)

q

q

(
l
2

)

an−lbl (1.2)

(see [2, 5, 7–11]), where ( n
k )q = [n]q!/[k]q![n − k]q! = [n]q[n − 1]q · · · [n − k + 1]q/[k]q!.
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For a, b ∈ R, the Jackson q-integral of f : R → R is defined by

∫b

a

f(x)dqx =
(
1 − q

) ∞∑

n=0

qn
(
bf
(
bqn
) − af

(
aqn
))

(1.3)

(see [1, 2, 5, 6, 9, 12, 13]). From (1.2), we note that

(
n + 1

k

)

q

=

(
n

k − 1

)

q

+ qk
(
n

k

)

q

= qn−k
(

n

k − 1

)

q

+

(
n

k

)

q

. (1.4)

By (1.2) and (1.4), we get

(1 − b)nq =
(
b : q

)
n =

n−1∏

i=0

(
1 − qib

)
=

n∑

i=0

(
n

i

)

q

q

(
i
2

)

(−b)i,

1
(1 − b)nq

=
1

(
b : q

)
n

=
1

∏n−1
i=0
(
1 − qib

) =
∞∑

i=0

(
n + i − 1

i

)

q

bi.

(1.5)

Let C[0, 1] denote the set of continuous function on [0, 1]. For f ∈ C[0, 1], Bernstein
introduced the following well-known linear operators (see [1, 4, 9, 11, 14]):

Bn

(
f | x) =

n∑

k=0

f

(
k

n

)(n

k

)

xk(1 − x)n−k =
n∑

k=0

f

(
k

n

)
Bk,n(x). (1.6)

Here Bn(f | x) is called Bernstein operator of order n for f . For k, n ∈ Z+(= N ∪ {0}), the
Bernstein polynomials of degree n are defined by

Bk,n(x) =

(
n

k

)

xk(1 − x)n−k (1.7)

(see [1, 3, 4, 11–14]). By the definition of Bernstein polynomials (see (1.6) and (1.7)), we can
see that Bernstein basis is the probability mass function of binomial distribution. A Bernoulli
trial involves performing an experiment once and notingwhether a particular eventA occurs.
The outcome of Bernoulli trial is said to be “success” if A occurs and a “failure” otherwise.
Let k be the number of successes in n independent Bernoulli trials, the probabilities of k are
given by the binomial probability law:

pn(k) =

(
n

k

)

pk
(
1 − p

)n−k
, for k = 0, 1, . . . , n, (1.8)
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where pn(k) is the probability of k successes in n trials. For example, a communication system
transmits binary information over channel that introduces random bit errors with probability
ξ = 10−3. The transmitter transmits each information bit three times, an a decoder takes a
majority vote of the received bits to decide on what the transmitted bit was. The receiver
can correct a single error, but it will make the wrong decision if the channel introduces
two or more errors. If we view each transmission as a Bernoulli trial in which a “success”
corresponds to the introduction of an error, then the probability of two or more errors in
three Bernoulli trials is

p(k ≥ 2) =

(
3

2

)

(0.001)2(0.999) +

(
3

3

)

(0.001)3 ≈ 3
(
10−6

)
, (1.9)

see [9]. Based on the q-integers Phillips introduced the q-analogue of well-known Bernstein
polynomials (see [4, 5, 9, 11, 15]). For f ∈ C([0, 1]), Phillips introduced the q-extension of
(1.6) as follows:

Bn,q

(
f | x) =

n∑

n=0

f

(
[k]q
[n]q

)(
n

k

)

q

(1 − x)n−kq

=
n∑

n=0

f

(
[k]q
[n]q

)

Bk,n

(
x, q
)
, for k, n ∈ Z+

(1.10)

(see [4, 5, 9, 11, 15]). Here Bn,q(f | x) is called the q-Bernstein operator of order n for f . For
k, n ∈ Z+, the q-Bernstein polynomial of degree n is defined by

Bk,n

(
x, q
)
=

(
n

k

)

q

xk(1 − x)n−kq , where x ∈ [0, 1]. (1.11)

Note that (1.11) is the q-extension of (1.7). That is, limq→ 1Bk,n(x, q) = Bk,n(x). For example,
B0,1(x, q) = 1−x, B1,1(x, q) = x, and B0,2(x, q) = 1−[2]qx+qx2, . . .. Also Bk,n(x, q) = 0 for k > n,
because ( n

k )q = 0. For n, k ∈ Z+, its probabilities are given by

p(x = k) =

(
n

k

)

q

xk(1 − x)n−kq , where x ∈ [0, 1]. (1.12)

This distributions are studied by several authors and they have applications in physics as
well as in approximation theory due to the q-Bernstein polynomials and the q-Bernstein
operators (see [1–16]). By the definition of the q-Bernstein polynomials, we easily see that
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the q-Bernstein basis is the probability mass function of q-binomial distribution. In this paper
we use the two q-analogues of exponential function as follows:

Eq(x) =
((
1 − q

)
x : q

)
∞ =

(
1 +
(
1 − q

)
x
)∞
q =

∞∑

n=0

q(
n
2 ) xn

[n]q!
, (1.13)

eq(x) =
1

((
1 − q

)
x : q

)
∞

=
1

(
1 +
(
1 − q

)
x
)∞
q

=
∞∑

n=0

xn

[n]q!
, (1.14)

(see [2–4, 6, 10]). From (1.3), the improper q-integral is given by

∫∞/A

0
f(x)dqx =

(
1 − q

)∑

n∈Z

qn

A
f

(
qn

A

)
(1.15)

(see [6]), where the improper q-integral depends on A. The purpose of this paper is to give
some properties of several q-Bernstein type polynomials to express the q-integral on [0, 1] in
terms of q-beta and q-gamma functions. Finally, we derive some identities on the q-integral
of the product of several q-Bernstein type polynomials.

2. q-Integral Representation of q-Bernstein Polynomials

The gamma and beta functions are defined as the following definite integrals (α > 0, β > 0):

Γ(α) =
∫∞

0
e−ttα−1dt, (2.1)

(see [1–11, 14–16])

B
(
α, β
)
=
∫1

0
tα−1(1 − t)β−1dt =

∫∞

0

tα−1

(1 + t)α+β
dt. (2.2)

From (2.1) and (2.2), we can derive the following equations:

Γ(α + 1) = αΓ(α), B
(
α, β
)
=

Γ(α)Γ
(
β
)

Γ
(
α + β

) . (2.3)

As the q-extensions of (2.1) and (2.2), the q-gamma and q-beta functions are defined as the
following q-integrals (α > 0, β > 0):

Γq(α) =
∫1/(1−q)

0
xα−1Eq

(−qx)dqx (2.4)
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(see [2–6, 10]),

Bq

(
α, β
)
=
∫1

0
xα−1(1 − qx

)β−1
q dqx (2.5)

(see [2, 4, 6, 10]).
By (2.4) and (2.5), we obtain the following lemma.

Lemma 2.1 (see [2, 6]). (a) Γq can be equivalently expressed as

Γq(α) =

(
1 − q

)α−1
q

(
1 − q

)α−1 , where α > 0. (2.6)

In particular, one has

Γq(α + 1) = [α]qΓq(α), for α > 0, Γq(1) = 1. (2.7)

(b) The q-gamma and q-beta functions are related to each other by the following two equations:

Γq(α) =
Bq(α,∞)
(
1 − q

)α , Bq

(
α, β
)
=

Γq(α)Γq
(
β
)

Γq
(
α + β

) , where α > 0, β > 0. (2.8)

Now one takes the q-integral for one q-Bernstein polynomial as follows: for n, k ∈ Z+,

q−k
∫1

0
Bk,n

(
qx, q

)
dqx =

(
n

k

)

q

∫1

0
xk(1 − qx

)n−k
q dqx

=

(
n

k

)

q

n−k∑

l=0

(
n − k

l

)

q

(−1)lq
(
l+1
2

) ∫1

0
xl+kdqx

=

(
n

k

)

q

n−k∑

l=0

(
n − k

l

)

q

(−1)n−k−lq
(
n−k−l+1

2

) 1
[n − l + 1]q

.

(2.9)

Therefore, by (2.9), one obtains the following proposition.

Proposition 2.2. For n, k ∈ Z+, one has

∫1

0
Bk,n

(
qx, q

)
dqx = qk

(
n

k

)

q

n−k∑

l=0

(
n − k

l

)

q

(−1)n−k−lq
(
n−k−l+1

2

) 1
[n − l + 1]q

. (2.10)
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The Proposition 2.2 is closely related to the q-beta function which is given by

Bq(n,m) =
∫1

0
xn−1(1 − qx

)m−1
q dqx, (2.11)

Γq(m) =
∫1/(1−q)

0
xn−1Eq

(−qx)dqx, (2.12)

(see (2.5)). From Lemma 2.1, one has

Bq(n,m) =
Γq(m)Γq(n)
Γq(n +m)

, where m,n ∈ N. (2.13)

By (2.9) and (2.13), one gets

q−k
∫1

0
Bk,n

(
qx, q

)
dqx =

(
n

k

)

q

Bq(k + 1, n − k + 1)

=

(
n

k

)

q

Γq(k + 1)Γq(n − k + 1)
Γq(n + 2)

, where k > −1, n > k − 1.

(2.14)

Therefore, by (2.14), one obtains the following theorem.

Theorem 2.3. For n, k ∈ Z+ with k > −1 and n > k − 1, one has

∫1

0
Bk,n

(
qx, q

)
dqx =

(
n

k

)

q

[k]q[n − k]q
((

q − 1
)
[k]q + 1

)Γq(k)Γq(n − k)
Γq(n + 2)

. (2.15)

By comparing the coefficients on the both sides of Proposition 2.2 and Theorem 2.3,
one obtains the following corollary.

Corollary 2.4. For n, k ∈ Z+ with k > −1 and n > k − 1, one has

n−k∑

l=0

(
n − k

l

)

q

(−1)n−k−l q
(
n−k−l+1

2

)

[n − l + 1]q
=

Γq(k + 1)Γq(n − k + 1)
Γq(n + 2)

. (2.16)
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According to this result one can say that the q-integral of q-Bernstein polynomials from
0 to 1 is symmetric. Now one considers the q-integral for the multiplication of two q-Bernstein
polynomials which is given by the following relation:

∫1
0 Bk,n

(
qx, q

)
Bk,m(qn−k+1x,q)dqx

qnk−k2+2k
=

(
n

k

)

q

(
m

k

)

q

∫1

0
x2k
(
1 − qx

)n+m−2k
q dqx

=

(
n

k

)

q

(
m

k

)

q

∫1

0
un+m−2k(1 − qu

)2k
q dqu.

(2.17)

For n, k,m ∈ Z+, one can derive the following equation (2.20) from (2.17):

∫1
0 Bk,n

(
qx, q

)
Bk,m

(
qn−k+1x, q

)
dqx

qnk−k2+2k
=

(
n

k

)

q

(
m

k

)

q

2k∑

l=0

(
2k
l

)
q
(−1)lq

(
l+1
2

)

[n +m + l − 2k + 1]q

=

(
n

k

)

q

(
m

k

)

q

2k∑

l=0

(
2k
l

)
q
(−1)2k−lq

(
2k−l+1

2

)

[n +m − l + 1]q
.

(2.18)

Therefore, one obtains the following theorem.

Theorem 2.5. For m,n, k ∈ Z+, one has

∫1

0
Bk,n

(
qx, q

)
Bk,m

(
qn−k+1x, q

)
dqx = qnk−k

2+2k

(
n

k

)

q

(
m

k

)

q

2k∑

l=0

(
2k
l

)
q
(−1)2k−lq

(
2k−l+1

2

)

[n +m − l + 1]q
.

(2.19)

For m,n, k ∈ Z+, by (2.5) and (2.9), one gets

∫1
0 Bk,n

(
qx, q

)
Bk,m

(
qn−k+1x, q

)
dqx

qnk−k2+2k
=

(
n

k

)

q

(
m

k

)

q

Bq(n +m − 2k + 1, 2k + 1). (2.20)

Therefore, by Theorem 2.5 and (2.20), one obtains the following corollary.

Corollary 2.6. For k > −1 and n +m − 2k > −1, one has

2k∑

l=0

(
2k
l

)
q
(−1)2k−lq

(
2k−l+1

2

)

[n +m − l + 1]q
=

Γq(n +m − 2k + 1)Γq(2k + 1)
Γq(n +m + 2)

. (2.21)
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By the same method, the multiplication of three q-Bernstein polynomials is given by
the following relation: for k, n,m, s ∈ Z+,

∫1
0 Bk,n

(
qx, q

)
Bk,m

(
qn−k+1x, q

)
Bk,s

(
qn+m−2k+1x, q

)
dqx

q3k+2nk−3k2+mk

=

(
n

k

)

q

(
m

k

)

q

(
s

k

)

q

∫1

0
x3k(1 − qx

)n+m+s−3k
q dqx

=

(
n

k

)

q

(
m

k

)

q

(
s

k

)

q

∫1

0
un+m+s−3k(1 − qu

)3k
q dqu

=

(
n

k

)

q

(
m

k

)

q

(
s

k

)

q

3k∑

l=0

(
3k

l

)

q

q

(
l+1
2

)

(−1)l
∫1

0
un+m+s−3k+ldqu

=

(
n

k

)

q

(
m

k

)

q

(
s

k

)

q

3k∑

l=0

(
3k

l

)

q

q

(
3k−l+1

2

)

(−1)l+3k 1
[n +m + s − l + 1]q

.

(2.22)

Therefore, by (2.22), one obtains the following theorem.

Theorem 2.7. For n,m, s, k ∈ Z+, one has

∫1

0
Bk,n

(
qx, q

)
Bk,m

(
qn−k+1x, q

)
Bk,s

(
qn+m−2k+1x, q

)
dqx

= q3k+2nk−3k
2+mk

(
n

k

)

q

(
m

k

)

q

(
s

k

)

q

3k∑

l=0

(
3k

l

)

q

q

(
3k−l+1

2

)
(−1)l+3k

[n +m + s − l + 1]q
.

(2.23)

From (2.5) and (2.22), one has

∫1
0 Bk,n

(
qx, q

)
Bk,m

(
qn−k+1x, q

)
Bk,s

(
qn+m−2k+1x, q

)
dqx

q3k+2nk−3k2+mk

=

(
n

k

)

q

(
m

k

)

q

(
s

k

)

q

Bq(n +m + s − 3k + 1, 3k + 1).

(2.24)

Therefore, by Theorem 2.7 and (2.24), one obtains the following corollary.

Corollary 2.8. For k > −1/3 and n +m + s − 3k > −1, one has

3k∑

k=0

(
3k

l

)

q

(−1)l+3kq
(
3k−l+1

2

)

[n +m + s − l + 1]q
=

Γq(n +m + s − 3k + 1)Γq(3k + 1)
Γq(n +m + s + 2)

. (2.25)
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For s ∈ N, let n1, n2, . . . , ns, k ∈ Z+. Then one has

∫1
0 Bk,n1

(
qx, q

)(∏s−1
i=1Bk,ni+1

(
q
∑i

l=1nl−ik+1x, q
)
dqx
)

qsk+k
∑s−1

i=1 ins−i−k2( s2)

=

(
n1

k

)

q

(
n2

k

)

q

· · ·
(
ns

k

)

q

∫1

0
xsk(1 − qx

)n1+···+ns−sk
q dqx

=

(
n1

k

)

q

(
n2

k

)

q

· · ·
(
ns

k

)

q

sk∑

l=0

(
sk

l

)

q

(−1)lq
(
l+1
2

) ∫1

0
xn1+···+ns−sk+ldqx

=

(
n1

k

)

q

(
n2

k

)

q

· · ·
(
ns

k

)

q

sk∑

l=0

(
sk

l

)

q

(−1)l+skq
(
sk−l+1

2

)

[n1 + · · · + ns − l + 1]q
.

(2.26)

Therefore, by (2.26), one obtains the following theorem.

Theorem 2.9. For s ∈ N, let n1, n2, . . . , ns, k ∈ Z+. Then one has

∫1

0
Bk,n1

(
qx, q

)
(

s−1∏

i=1

Bk,ni+1

(
q
∑i

l=1nl−ik+1x, q
))

dqx

= qsk+k
∑s−1

i=1 ins−i−k2( s2)
(
n1

k

)

q

· · ·
(
ns

k

)

q

sk∑

l=0

(
sk
l

)
q
(−1)l+skq

(
sk−l+1

2

)

[n1 + · · · + ns − l + 1]q
.

(2.27)

By (2.5) and (2.26), we get

∫1
0 Bk,n1

(
qx, q

)(∏s−1
i=1Bk,ni+1

(
q
∑i

l=1nl−ik+1x, q
)
dqx
)

qsk+k
∑s−1

i=1 ins−i−k2( s2)

=

(
n1

k

)

q

(
n2

k

)

q

· · ·
(
ns

k

)

q

Bq(sk + 1, n1 + · · · + ns − sk + 1)

=

(
n1

k

)

q

(
n2

k

)

q

· · ·
(
ns

k

)

q

Γq(sk + 1)Γq(n1 + · · · + ns − sk + 1)
Γq(n1 + · · · + ns + 2)

.

(2.28)

By comparing the coefficients on the both sides of Theorem 2.9 and (2.28), one obtains the
following corollary.

Corollary 2.10. For s ∈ N, let k > −1/s and n1 + · · · + ns − sk > −1. Then one has

sk∑

l=0

(
sk
l

)
q
(−1)l+skq

(
sk−l+1

2

)

[n1 + · · · + ns − l + 1]q
=

Γq(sk + 1)Γq(n1 + · · · + ns − sk + 1)
Γq(n1 + · · · + ns + 2)

. (2.29)
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For n ∈ Z+, one gets

∫1
0 B0,n

(
qx, q

)
(
∏n

l=1Bl,n

(
q
nl−
(
l
2

)
+1
x, q

))
dqx

q
∑n

l=1(nl−
(
l
2

)
+1)l

=

⎛

⎝
n∏

i=0

(
n

i

)

q

⎞

⎠
∫1

0
x

(
n+1
2

)(
1 − qx

)
(
n+1
2

)

q dqx

=

⎛

⎝
n∏

i=0

(
n

i

)

q

⎞

⎠Bq

((
n + 1

2

)

+ 1,

(
n + 1

2

)

+ 1

)

=

⎛

⎝
(
Γq(n + 1)

)n+1

(∏n
i=1Γq(i + 1)

)2

⎞

⎠
((

Γq(n(n + 1)/2 + 1)
)2

Γq(n(n + 1) + 2)

)

.

(2.30)

Therefore, by (2.30), one obtains the following theorem.

Theorem 2.11. For n ∈ Z+, one has

∫1

0
B0,n
(
qx, q

)
(

n∏

l=1

Bl,n

(
q
nl−
(
l
2

)
+1
x, q

))

dqx

= q
∑n

l=1(nl−
(
l
2

)
+1)l

⎛

⎝
(
Γq(n + 1)

)n+1

(∏n
i=1Γq(i + 1)

)2

⎞

⎠
((

Γq(n(n + 1)/2 + 1)
)2

Γq(n(n + 1) + 2)

)

.

(2.31)

From (2.30), one can also derive the following equation:

∫1
0 B0,n

(
qx, q

)
(
∏n

l=1Bl,n

(
q
nl−
(
l
2

)
+1
x, q

))
dqx

q
∑n

l=1(nl−
(
l
2

)
+1)l

=

⎛

⎝
n∏

i=0

(
n

i

)

q

⎞

⎠
(n+12 )∑

l=0

⎛

⎜
⎝

(
n + 1

2

)

l

⎞

⎟
⎠

q

(−1)lq
(
l+1
2

) ∫1

0
x

(
n+1
2

)
+l
dqx

=

⎛

⎝
n∏

i=0

(
n

i

)

q

⎞

⎠
(n+12 )∑

l=0

⎛

⎜
⎝

(
n + 1

2

)

l

⎞

⎟
⎠

q

(−1)lq
(
l+1
2

) 1
[n(n + 1)/2 + l + 1]q

.

(2.32)
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By comparing the coefficients on the both sides of Theorem 2.11 and (2.30), one can see that

n(n+1)/2∑

l=0

(
n(n+1)/2

l

)

q
(−1)lq

(
l+1
2

)

[n(n + 1)/2 + l + 1]q
= Bq

(
n(n + 1)

2
+ 1,

n(n + 1)
2

+ 1
)
. (2.33)

Therefore, by (2.33), one obtains the following corollary.

Corollary 2.12. For n ∈ Z+, one has

n(n+1)/2∑

l=0

(
n(n+1)/2

l

)

q
(−1)lq

(
l+1
2

)

[n(n + 1)/2 + l + 1]q
=

((
Γq(n(n + 1)/2 + 1)

)2

Γq(n(n + 1) + 2)

)

. (2.34)
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