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By using a scalarization technique, we extend and sharpen the results in S. Li and X. Li (2011) on
the Hölder continuity of the solution sets of parametric vector equilibrium problems to the case
of parametric vector quasiequilibrium problems in metric spaces. Furthermore, we also give an
example to illustrate that our main results are applicable.

1. Introduction

The vector equilibrium problem has been attracting great interest because it provides a
unified model for several important problems such as vector variational inequalities, vector
complementarity problems, vector optimization problems, vector min-max inequality, and
vector saddle point problems.Many different types of vector equilibrium problems have been
intensively studied for the past years. For the details, we can refer to [1–7] and the reference
therein.

It is well known that stability analysis of solution mapping for parametric vector equi-
librium problems or variational inequalities is another important topic in optimization theory
and applications. Stability may be understood as lower or upper semicontinuity, continuity,
and Lipschitz or Hölder continuity. Recently, the semicontinuity, especially the lower semi-
continuity, of solution mappings to parametric vector variational inequalities and parametric
vector equilibrium problems has been intensively studied in the literature, such as [8–16]. We
observe that rather few works in the literature on the Hölder continuity for parametric vector
equilibriumproblems, and for this direction one can only refer to [17–29]. Most of the research
in the area of stability analysis for parametric variational inequalities and parametric equilib-
rium problems has been performed under assumptions which implied the local uniqueness
of perturbed solutions so that the solution mapping was single valued, see [17–23, 29] and
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the references therein. Yen [17] obtained the Hölder continuity of the unique solution of
a classic perturbed variational inequality by themetric projectionmethod.Mansour and Riahi
[18] proved the Hölder continuity of the unique solution for a parametric vector equilibrium
problem under the concepts of strong monotonicity and Hölder continuity. Bianchi and Pini
[19] introduced the concept of strong pseudomonotonicity and got the Hölder continuity of
the unique solution of a parametric vector equilibrium problem. Bianchi and Pini [20] extend
the results of [19] to vector equilibrium problems. Anh and Khanh [21] generalized the main
results of [19] to the vector case and obtained Hölder continuity of the unique solutions
for two classes of perturbed generalized vector equilibrium problem. Anh and Khanh
[22] further discussed uniqueness and Hölder continuity of the solutions for perturbed
generalized vector equilibrium problems, which improve remarkably the results in [19, 21],
and which become properly stronger than the result of [17], when applied to variational
inequalities. Anh and Khanh [23] extended the results of [22] to the case of perturbed gen-
eralized vector quasiequilibrium problems and obtained the Hölder continuity of the unique
solutions.

For general perturbed vector quasiequilibrium problems, it is well known that a
solu-tion mapping is, in general, a set valued one. There have also been a few papers
to study more general situations where the solution sets of variational inequalities or
equilibrium problems may be set-valued. Under the Hausdorff distance and the strong
quasimonotonicity, Lee et al. [24] first showed that the set-valued solution mapping for
a parametric vector variational inequality is Hölder continuous. Recently, by virtue of the
strong quasimonotonicity, AitMansour andAussel [25] have discussed theHölder continuity
of set-valued solution mappings for a parametric generalized variational inequalities. Li
et al. [26] introduced an assumption, which is weaker than the corresponding ones in the
literature, and established the Hölder continuity of the set-valued solution mappings for two
classes of parametric generalized vector quasiequilibrium problems in general metric spaces.
Li et al. [27] extended the results of [26] to perturbed generalized vector quasiequilibrium
problems, and improved the main results in [27]. Later, S. Li and X. Li [28] use a scalarization
technique to obtain the Hölder continuity of the set-valued solution mappings for a
parametric weak vector equilibrium problems with set-valued mappings in general metric
spaces.

Motivated by the work reported in [24, 26–28], this paper aims at establishing the
Hölder continuity of a solution mapping, which is set valued in general, to a parametric
weak vector quasiequilibrium problems, by using a scalarization technique. Of course, the
main consequences of our results are different from corresponding results in [26, 27] and
overcome the drawback, which requires the knowledge of detailed values of the solution
mapping in a neighborhood of the point under consideration. Our main results also extend
and improve the corresponding ones in [28]. However, in this paper, the main conditions
are quite explicit under which we can verify directly. Moreover, we compare our results
with corresponding ones in [22, 23] and give an example to illustrate the application of our
results.

The rest of the paper is organized as follows. In Section 2, we introduce the parametric
vector quasiequilibrium problem and define the solution and ξ-solution to parametric vector
quasiequilibrium problem. Then, we recall some definitions and their properties which are
needed in the sequel. In Section 3, we discuss the Hölder continuity of the solution mapping
for the parametric vector quasiequilibrium problem and compare our main results with the
corresponding ones in the recent literature. We also give an example to illustrate that our
main results are applicable.
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2. Preliminaries

Throughout this paper, if not other specified, ‖·‖ and d(·, ·) denote the norm andmetric in any
metric space, respectively. Let B(0, δ) denote the closed ball with radius δ ≥ 0 and center 0 in
anymetric linear spaces. LetX,Y,Λ,M be three metric linear spaces. Let Y ∗ be the topological
dual space of Y . For any ξ ∈ Y ∗, we introduce the norm ‖ξ‖ = sup{‖〈ξ, x〉‖ : ‖x‖ = 1}, where
〈ξ, x〉 denotes the value of ξ at y. Let C ⊂ Y be a pointed, closed and convex cone with
intC/= ∅, where intC stands for the interior of a subset C. Let C∗ = {ξ ∈ Y ∗ : 〈ξ, y〉 ≥ 0, for all
y ∈ C} be the dual cone of C. Since intC/= ∅, the dual cone C∗ of C has a weak∗ compact base.
Let B∗ := {ξ ∈ C∗ : ‖ξ‖ = 1}, which is a weak∗ compact base of C∗.

Let N(λ0) ⊂ Λ and N(μ0) ⊂ M be neighborhoods of considered points λ0 and μ0,
respectively. Let K : X × Λ ⇒ X be a set-valued mapping and f : X × X × M → Y be
a vector-valued mapping. For each λ ∈ N(λ0) and each μ ∈ N(μ0), consider the following
parameterized vector quasiequilibrium problem of finding x ∈ K(x, λ) such that

f
(
x, y, μ

)
/∈ − intC, ∀y ∈ K(x, λ). (PVQEP)

For each λ ∈ N(λ0) and each μ ∈ N(μ0), let

E(λ) := {x ∈ X | x ∈ K(x, λ)}. (2.1)

Let S(λ, μ) be the solution set of (PVQEP), that is,

S
(
λ, μ
)
:=
{
x ∈ E(λ) | f(x, y, μ) /∈ − int C, ∀y ∈ K(x, λ)

}
. (2.2)

For each ξ ∈ C∗ \ {0}, each λ ∈ N(λ0), and each μ ∈ N(μ0), let Sξ(λ, μ) denote the set
of ξ-solution set to (PVQEP), that is,

Sξ

(
λ, μ
)
:=
{
x ∈ E(λ) : ξ

(
f
(
x, y, μ

)) ≥ 0, ∀y ∈ K(x, λ)
}
. (2.3)

Now we recall some basic definitions and their properties which are needed in this
paper.

Definition 2.1. A vector-valued function g : X → Y is said to be C convex on X if and only if
for any x, y ∈ X and t ∈ [0, 1], tf(x) + (1 − t)f(y) − f(tx + (1 − t)y) ∈ C.

Definition 2.2 (see [11]). A set-valued map G : X × Λ ⇒ Y is said to be (l1 · α1, l2 · α2)-Hölder
continuous at (x0, λ0) if and only if there exist neighborhoods N(x0) of x0 and N(λ0) of λ0
such that, for all x1, x2 ∈ N(x0), for all λ1, λ2 ∈ N(λ0),

G(x1, λ1) ⊆ G(x2, λ2) + (l1dα1(x1, x2) + l2d
α2(λ1, λ2))B(0, 1), (2.4)

where l1, l2 ≥ 0 and α1, α2 > 0.
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Definition 2.3. A set-valued mapping G : X ×X ×M ⇒ Y is said to be l · α-Hölder continuous
at μ0 ∈ M, θ-relative to X if and only if there exists a neighborhoodN(μ0) of μ0 such that, for
all μ1, μ2 ∈ N(μ0), for all x, y ∈ X,

G
(
x, y, μ1

) ⊆ G
(
x, y, μ2

)
+ ldα(μ1, μ2

)
dθ(x, y

)
B(0, 1), (2.5)

where l ≥ 0, θ > 0 and α > 0.

From of [15, Lemma 3.1], we have

Lemma 2.4. If for each μ ∈ N(μ0) and each x ∈ E(N(λ0)), f(x, E(N(λ0)), μ) is a C-convex set,
that is, f(x, E(N(λ0)), μ) + C is a convex set, then

S
(
λ, μ
)
= ∪ξ∈C∗\{0}Sξ

(
λ, μ
)
= ∪ξ∈B∗Sξ

(
λ, μ
)
. (2.6)

Remark 2.5. If for each μ ∈ N(μ0) and each x ∈ E(N(λ0)), f(x, ·, μ) is C convex on E(N(λ0)),
then f(x, E(N(λ0)), μ) is a C-convex set.

In this paper, we use the following notation, for any A,B ⊂ X,

ρ(A,B) := sup{d(a, b) : a ∈ A, b ∈ B}. (2.7)

If A or B is unbounded, then ρ(A,B) = +∞. It is known [30] that solution sets of
quasicomplementarity problems are in general unbounded. Hence, so are solution sets of
quasiequilibrium problems, which are more general problems.

3. Main Results

In this section, we mainly discuss the Hölder continuity of the solution sets to (PVQEP).

Lemma 3.1. Suppose thatN(λ0) andN(μ0) are the given neighborhoods of λ0 and μ0, respectively.

(a) If f(·, ·, ·) is m1 · γ1-Hölder continuous at μ0 ∈ M, θ-relative to E(N(λ0)), then for each
ξ ∈ B∗,ξ(f(·, ·, ·)) is alsom1 · γ1-Hölder continuous at μ0 ∈ M, θ-relative to E(N(λ0)).

(b) If for each x ∈ E(N(λ0)) and μ ∈ N(μ0), f(x, ·, μ) is m2 · γ2-Hölder continuous in
E(N(λ0)), then for each ξ ∈ B∗,ξ(f(x, ·, μ)) is alsom2 ·γ2-Hölder continuous in E(N(λ0)).

Proof. (a) By assumption, there exits a neighborhood of μ0, denoted without loss of
generality byN(μ0), such that, for all μ1, μ2 ∈ N(μ0), for all x, y ∈ E(N(λ0)) : x /=y,

f
(
x, y, μ1

) ∈ f
(
x, y, μ2

)
+m1d

γ1
(
μ1, μ2

)
dθ(x, y

)
B(0, 1). (3.1)

Then, for each ξ ∈ B∗, we obtain that

∣∣ξ
(
f
(
x, y, μ1

)) − ξ
(
f
(
x, y, μ2

))∣∣ ≤ m1d
γ1
(
μ1, μ2

)
dθ(x, y

)
sup{ξ(b) : b ∈ B(0, 1)}

= m1d
γ1
(
μ1, μ2

)
dθ(x, y

)
.

(3.2)

(b) As the proof of (b) is similar to (a), we omit it. Then the proof is complete.
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Theorem 3.2. Assume that for each ξ ∈ B∗, the ξ-solution set for (PVQEP) exists in a neighborhood
N(λ0)×N(μ0) of the considered point (λ0, μ0) ∈ Λ×M. Assume further that the following conditions
hold

(i) K(·, ·) is (l1 · α1, l2 · α2)-Hölder continuous in E(N(λ0)) ×N(λ0);

(ii) for all ξ ∈ B∗, for all μ ∈ N(μ0), for all x, y ∈ E(N(λ0)) : x /=y, there exist two constants
h > 0 and β > 0 such that

hdβ(x, y
) ≤ d

(
ξ
(
f
(
x, y, μ

))
,R+
)
+ d
(
ξ
(
f
(
y, x, μ

))
,R+
)
; (3.3)

(iii) f is m1 · γ1-Hölder continuous at μ0 ∈ M, θ-relative to E(N(λ0)), and for all x ∈
E(N(λ0)), for all μ ∈ N(μ0), f(x, ·, μ) ism2 · γ2-Hölder continuous in E(N(λ0));

(iv) α1γ2 = β > θ and h > 2m2l
γ2
1 .

Then, for any ξ ∈ B∗, there exist open neighborhoods N ′(ξ) of ξ,N ′
ξ
(λ0) of λ0 and N ′

ξ
(μ0) of μ0, such

that, the ξ-solution set S(·, ·) on N ′(ξ) × N ′
ξ
(λ0) × N ′

ξ
(μ0) is a singleton and satisfies the following

Hölder condition: for all ξ ∈ N ′(ξ), for all (λ1, μ1), (λ2, μ2) ∈ N ′
ξ
(λ0) ×N ′

ξ
(μ0),

d
(
xξ

(
λ1, μ1

)
, xξ

(
λ2, μ2

)) ≤
(

m1

h − 2m2l
γ2
1

)1/(β−θ)
dγ1/(β−θ)(μ1, μ2

)

+

(
2m2l

γ2
2

h − 2m2l
γ2
1

)1/β

dα2γ2/β(λ1, λ2),

(3.4)

where xξ(λi, μi) ∈ Sξ(λi, μi), i = 1, 2.

Proof. For any ξ ∈ B∗, let N ′(ξ) × N ′
ξ
(λ0) × N ′

ξ
(μ0) ⊂ B∗ × N(λ0) × N(μ0) be open (where

N ′
ξ
(λ0),N ′

ξ
(μ0) depend on ξ). Obviously, Sξ(λ, μ) is nonempty for each (ξ, λ, μ) ∈ N ′(ξ) ×

N ′
ξ
(λ0)×N ′

ξ
(μ0). Let (λ1, μ1), (λ2, μ2) ∈ N ′

ξ
(λ0)×N ′

ξ
(μ0) and ξ ∈ N ′(ξ) be fixed. For any ξ ∈ B∗,

x, y ∈ X, and μ ∈ M, we set gξ(x, y, μ) := ξ(f(x, y, μ)) for the sake of convenient statement in
the sequel. We shall divide the proof of (3.4) into three steps.

Step 1. We first show that, for all xξ(λ1, μ1) ∈ Sξ(λ1, μ1), for all xξ(λ1, μ2) ∈ Sξ(λ1, μ2),

d
(
xξ

(
λ1, μ1

)
, xξ

(
λ1, μ2

)) ≤
(

m1

h − 2m2l
γ2
1

)1/(β−θ)
dγ1/(β−θ)(μ1, μ2

)
. (3.5)
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Obviously, the conclusion (3.5) is trivial when xξ(λ1, μ1) = xξ(λ1, μ2). So we suppose that
xξ(λ1, μ1)/=xξ(λ1, μ2). Since xξ(λ1, μ1) ∈ K(xξ(λ1, μ1), λ1), xξ(λ1, μ2) ∈ K(xξ(λ1, μ2), λ1) and
by the Hölder continuity of K(·, λ1), there exist x1 ∈ K(xξ(λ1, μ1), λ1) and x2 ∈ K(xξ(λ1,
μ2), λ1) such that

d
(
xξ

(
λ1, μ1

)
, x2
) ≤ l1d

α1
(
xξ

(
λ1, μ1

)
, xξ

(
λ1, μ2

))
,

d
(
xξ

(
λ1, μ2

)
, x1
) ≤ l1d

α1
(
xξ

(
λ1, μ1

)
, xξ

(
λ1, μ2

))
.

(3.6)

Noting that xξ(λ1, μ1), xξ(λ1, μ2) are the ξ-solution to (PVQEP) at parameters (λ1, μ1), (λ1, μ2),
respectively, we obtain

gξ(xξ

(
λ1, μ1

)
, x1, μ1

) ≥ 0,

gξ(xξ

(
λ1, μ2

)
, x2, μ2

) ≥ 0.
(3.7)

By (ii), we have

hdβ(xξ

(
λ1, μ1

)
, xξ

(
λ1, μ2

))

≤ d
(
gξ(xξ

(
λ1, μ2

)
, xξ

(
λ1, μ1

)
, μ1
))

,R+ + d
(
gξ(xξ

(
λ1, μ1

)
, xξ

(
λ1, μ2

)
, μ1
))

,R+,
(3.8)

which together with (3.7) yield that

hdβ(xξ

(
λ1, μ1

)
, xξ

(
λ1, μ2

))

≤
∣∣∣gξ(xξ

(
λ1, μ2

)
, xξ

(
λ1, μ1

)
, μ1
) − gξ(xξ

(
λ1, μ2

)
, x2, μ2

)∣∣∣

+
∣∣∣gξ(xξ

(
λ1, μ1

)
, xξ

(
λ1, μ2

)
, μ1
) − gξ(xξ

(
λ1, μ1

)
, x1, μ1

)∣∣∣

≤
∣∣
∣gξ(xξ

(
λ1, μ2

)
, xξ

(
λ1, μ1

)
, μ1
) − gξ(xξ

(
λ1, μ2

)
, xξ

(
λ1, μ1

)
, μ2
)∣∣∣

+
∣∣∣gξ(x

(
λ1, μ2

)
, xξ

(
λ1, μ1

)
, μ2
) − gξ(xξ

(
λ1, μ2

)
, x2, μ2

)∣∣∣

+
∣∣∣gξ(xξ

(
λ1, μ1

)
, xξ

(
λ1, μ2

)
, μ1
) − gξ(xξ

(
λ1, μ1

)
, x1, μ1

)∣∣∣.

(3.9)

Therefore, it follows from Lemma 3.1, (3.6) that

hdβ(xξ

(
λ1, μ1

)
, xξ

(
λ1, μ2

))

≤ m1d
θ(xξ

(
λ1, μ1

)
, xξ

(
λ1, μ2

))
dγ1
(
μ1, μ2

)
+m2d

γ2
(
xξ

(
λ1, μ1

)
, x2
)
+m2d

γ2
(
xξ

(
λ1, μ2

)
, x1
)

≤ m1d
θ(xξ

(
λ1, μ1

)
, xξ

(
λ1, μ2

))
dγ1
(
μ1, μ2

)
+ 2m2l1

γ2dα1γ2
(
xξ

(
λ1, μ1

)
, xξ

(
λ1, μ2

))
.

(3.10)
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This, by (iv), implies that

dβ−θ(xξ

(
λ1, μ1

)
, xξ

(
λ1, μ2

)) ≤
(

m1

h − 2m2l
γ2
1

)

dγ1
(
μ1, μ2

)
, (3.11)

and hence (3.5) holds.

Step 2. Now we show that, for all xξ(λ1, μ2) ∈ Sξ(λ1, μ2), for all xξ(λ2, μ2) ∈ Sξ(λ2, μ2),

d
(
xξ

(
λ1, μ2

)
, xξ

(
λ2, μ2

)) ≤
(

2m2l
γ2
2

h − 2m2l
γ2
1

)1/β

dα2γ2/β(λ1, λ2). (3.12)

Without loss of generality, we assume that xξ(λ1, μ2)/=xξ(λ2, μ2). Thanks to (i), there exist
x′
1 ∈ K(xξ(λ2, μ2), λ1) and x′

2 ∈ K(xξ(λ1, μ2), λ2) such that

d
(
xξ

(
λ1, μ2

)
, x′

2
) ≤ l2d

α2(λ1, λ2),

d
(
xξ

(
λ2, μ2

)
, x′

1

) ≤ l2d
α2(λ1, λ2).

(3.13)

By the Hölder continuity ofK(·, ·), there exist x′′
1 ∈ K(xξ(λ1, μ2), λ1) and x′′

2 ∈ K(xξ(λ2, μ2), λ2)
such that

d
(
x′
1, x

′′
1

) ≤ l1d
α1
(
xξ

(
λ1, μ2

)
, xξ

(
λ2, μ2

))
,

d
(
x′
1, x

′′
2
) ≤ l1d

α1
(
xξ

(
λ1, μ2

)
, xξ

(
λ2, μ2

))
.

(3.14)

From the definition of ξ-solution for (PVQEP), we have

gξ(xξ

(
λ1, μ2

)
, x′′

1, μ2
) ≥ 0,

gξ(xξ

(
λ2, μ2

)
, x′′

2, μ2
) ≥ 0.

(3.15)
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It follows from (ii), (3.15) that

hdβ(xξ

(
λ1, μ2

)
, xξ

(
λ2, μ2

))

≤ d
(
gξ(xξ

(
λ1, μ2

)
, xξ

(
λ2, μ2

)
, μ2
)
,R+

)
+ d
(
gξ(xξ

(
λ2, μ2

)
, xξ

(
λ1, μ2

)
, μ2
)
,R+

)

≤
∣
∣
∣gξ(xξ

(
λ1, μ2

)
, xξ

(
λ2, μ2

)
, μ2
) − gξ(xξ

(
λ1, μ2

)
, x′′

1, μ2
)∣∣
∣

+
∣
∣
∣gξ(xξ

(
λ2, μ2

)
, xξ

(
λ1, μ2

)
, μ2
) − gξ(xξ

(
λ2, μ2

)
, x′′

2, μ2
)∣∣
∣

≤
∣
∣
∣gξ(xξ

(
λ1, μ2

)
, xξ

(
λ2, μ2

)
, μ2
) − gξ(xξ

(
λ1, μ2

)
, x′

1, μ2
)∣∣
∣

+
∣
∣
∣gξ(xξ

(
λ1, μ2

)
, x′

1, μ2
) − gξ(xξ

(
λ1, μ2

)
, x′′

1, μ2
)∣∣
∣

+
∣∣∣gξ(xξ

(
λ2, μ2

)
, xξ

(
λ1, μ2

)
, μ2
) − gξ(xξ

(
λ2, μ2

)
, x′

2, μ2
)∣∣∣

+
∣∣∣gξ(xξ

(
λ2, μ2

)
, x′

2, μ2
) − gξ(xξ

(
λ2, μ2

)
, x′′

2, μ2
)∣∣∣,

(3.16)

which together with (ii) and Lemma 3.1 yields that

hdβ(xξ

(
λ1, μ2

)
, x
(
λ2, μ2

)) ≤ m2d
γ2
(
xξ

(
λ2, μ2

)
, x′

1
)
+m2d

γ2
(
x′
1, x

′′
1

)

+m2d
γ2
(
xξ

(
λ1, μ2

)
, x′

2
)
+m2d

γ2
(
x′
2, x

′′
2
)
.

(3.17)

From (3.13), (3.14), and (3.17), we have

hdβ(xξ

(
λ1, μ2

)
, xξ

(
λ2, μ2

)) ≤ m2l
γ2
2 d

α2γ2(λ1, λ2) +m2l
γ2
1 d

α1γ2
(
xξ

(
λ1, μ2

)
, xξ

(
λ2, μ2

))

+m2l
γ2
2 d

α2γ2(λ1, λ2) +m2l
γ2
1 d

α1γ2
(
xξ

(
λ1, μ2

)
, xξ

(
λ2, μ2

))
.

(3.18)

Therefore, it follows from (iv) and (3.18) that

dβ(xξ

(
λ1, μ2

)
, xξ

(
λ2, μ2

)) ≤
(

2m2l
γ2
2

h − 2m2l
γ2
1

)

dα2γ2(λ1, λ2), (3.19)

and the conclusion (3.12) holds.
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Step 3. Finally, we easily see from (3.5) and (3.12) that for all xξ(λ1, μ1) ∈ Sξ(λ1, μ1), for all
xξ(λ2, μ2) ∈ Sξ(λ2, μ2),

d
(
xξ

(
λ1, μ1

)
, xξ

(
λ2, μ2

)) ≤ d
(
xξ

(
λ1, μ1

)
, xξ

(
λ1, μ2

))
+ d
(
xξ

(
λ1, μ2

)
, xξ

(
λ2, μ2

))

≤
(

m1

h − 2m2l
γ2
1

)1/(β−θ)
dγ1/(β−θ)(μ1, μ2

)

+

(
2m2l

γ2
2

h − 2m2l
γ2
1

)1/β

dα2γ2/β(λ1, λ2),

(3.20)

and the conclusion (3.4) holds. This implies that

ρ
(
Sξ

(
λ1, μ1

)
, Sξ

(
λ2, μ2

)) ≤
(

m1

h − 2m2l
γ2
1

)1/(β−θ)
dγ1/(β−θ)(μ1, μ2

)

+

(
2m2l

γ2
2

h − 2m2l
γ2
1

)1/β

dα2γ2/β(λ1, λ2).

(3.21)

Taking λ2 = λ1 and μ2 = μ1 in (3.21), we can get the diameter of Sξ(λ1, μ1) is 0, that is, this
set is singleton {xξ(λ1, μ1)}. Sξ(λ2, μ2) is similar. Therefore, the uniqueness of ξ-solution for
(PVQEP) has been demonstrated, and the proof is complete.

Remark 3.3. If E(N(λ0)) in (iii) of Theorem 3.2 is bounded, then we can take θ = 0 in (iii),
since d(x, y) ≤ M for some M > 0, for all x, y ∈ E(N(λ0)). Thus, the condition β > θ in
Theorem 3.2 can be omitted.

Assumption (ii) of Theorem 3.2 look seemingly complicated. Now, we give a sufficient
condition for (ii) of Theorem 3.2. Namely, we have the following result.

Corollary 3.4. Theorem 3.2 is still valid if assumption (ii) is replaced with

(ii’) for all μ ∈ N(μ0), f(·, ·, μ) is h · β-Hölder strongly monotone in E(N(λ0)), that is, there
exist two constants h > 0 and β > 0 such that, for all x, y ∈ E(N(λ0)) : x /=y,

f
(
x, y, μ

)
+ f
(
y, x, μ

)
+ hdβ(x, y

)
B(0, 1) ⊂ −C. (3.22)

Proof. We only need to prove that assumption (ii) of Theorem 3.2 holds. Indeed, it follows
from (ii’) that for all ξ ∈ B∗,

ξ
(
f
(
x, y, μ

)
+ f
(
y, x, μ

)
+ hdβ(x, y

)
b
)
≤ 0, ∀b ∈ B(0, 1). (3.23)
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Noting that linearity of ξ, we have

ξ
(
f
(
x, y, μ

))
+ ξ
(
f
(
y, x, μ

))
+ hdβ(x, y

)
sup

b∈B(0,1)
ξ(b) ≤ 0, (3.24)

which together with ‖ξ‖ = 1 implies that

ξ
(
f
(
x, y, μ

))
+ ξ
(
f
(
y, x, μ

))
+ hdβ(x, y

) ≤ 0. (3.25)

Therefore,

hdβ(x, y
) ≤ −ξ(f(x, y, μ)) − ξ

(
f
(
y, x, μ

))

≤ d
(
ξ
(
f
(
x, y, μ

))
,R+
)
+ d
(
ξ
(
f
(
y, x, μ

))
,R+
)
,

(3.26)

and the proof is complete.

Remark 3.5. When f : X × X ×M → R, (PVQEP) collapses to the quasiequilibrium problem
(QEP) considered by Anh and Khanh [29]. In this case, Corollary 3.4 is same as the Theorem
2.1 of [29]. From Proposition 1.1 of [22] or Corollary 3.4, we can easily see that Theorem 3.2
improves the Theorem 2.1 of [29].

Theorem 3.6. Assume that for each ξ ∈ B∗, the ξ-solution set for the problem (PVQEP) exists in
a neighborhood N(λ0) × N(μ0) of the considered point (λ0, μ0) ∈ Λ × M. Assume further that the
following conditions hold:

(i) K(·, ·) is (l1 · α1, l2 · α2)-Hölder continuous in E(N(λ0)) ×N(λ0);

(ii) for all ξ ∈ B∗, for all μ ∈ N(μ0), for all x, y ∈ E(N(λ0)) : x /=y, there exist two constants
h > 0 and β > 0 such that

hdβ(x, y
) ≤ d

(
ξ
(
f
(
x, y, μ

))
,R+
)
+ d
(
ξ
(
f
(
y, x, μ

))
,R+
)
; (3.27)

(iii) f is m1 · γ1-Hölder continuous at μ0 ∈ M, θ-relative to E(N(λ0)), and for all x ∈
E(N(λ0)), for all μ ∈ N(μ0), f(x, ·, μ) ism2 · γ2-Hölder continuous in E(N(λ0));

(iv) α1γ2 = β > θ and h > 2m2l
γ2
1 ;

(v) for all x ∈ E(N(λ0)), for all μ ∈ N(μ0), f(x, ·, μ) is C convex on E(N(λ0)).

Then there exist neighborhoods Ñ(λ0) of λ0 and Ñ(μ0) of μ0, such that, the solution set S(·, ·)
on Ñ(λ0) × Ñ(μ0) is nonempty and satisfies the following Hölder continuous condition, for all
(λ1, μ1), (λ2, μ2) ∈ Ñ(λ0) × Ñ(μ0):

S
(
λ1, μ1

) ⊂ S
(
λ2, μ2

)

+

⎛

⎝
(

m1

h − 2m2l
γ2
1

)1/β−θ
dγ1/β−θ(μ1, μ2

)
+

(
2m2l

γ2
2

h − 2m2l
γ2
1

)1/β

dα2γ2/β(λ1, λ2)

⎞

⎠B(0, 1).

(3.28)
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Proof. Since the system of {N ′(ξ)}ξ∈B∗ , which are given by Theorem 3.2, is an open covering
of the weak∗ compact set B∗, there exist a finite number of points (ξi) (i = 1, 2, . . . , n) from B∗

such that

B∗ ⊂ ∪n
i=1N

′(ξi). (3.29)

Hence, let Ñ(λ0) = ∩n
i=1N

′
ξi
(λ0) and Ñ(μ0) = ∩n

i=1N
′
ξi
(μ0). Then Ñ(λ0) and Ñ(μ0) are desired

neighborhoods of λ0 and μ0, respectively. Indeed, let (λ, μ) ∈ Ñ(λ0) × Ñ(μ0) be given
arbitrarily. For any ξ ∈ B∗, by virtue of (3.29), there exists i0 ∈ {1, 2, . . . , n} such that ξ ∈ N ′(ξi0).
From the construction of the neighborhoods Ñ(λ0) and Ñ(μ0), one has

(
λ, μ
) ∈ N ′

ξi0
(λ0) ×N ′

ξi0

(
μ0
)
. (3.30)

Then, according to Theorem 3.2, the ξ-solution Sξ(λ, μ) is a nonempty singleton. Hence, in
view of Lemma 2.4, S(λ, μ) = ∪ξ∈B∗S(ξ, λ, μ) is nonempty.

Now, we show that (3.28) holds. Indeed, taking any (λ1, μ1), (λ2, μ2) ∈ Ñ(λ0) × Ñ(μ0),
we need to show that for any x1 ∈ S(λ1, μ1), there exists x2 ∈ S(λ2, μ2) satisfying

d(x1, x2) ≤
(

m1

h − 2m2l
γ2
1

)1/(β−θ)
dγ1/(β−θ)(μ1, μ2

)

+

(
2m2l

γ2
2

h − 2m2l
γ2
1

)1/β

dα2γ2/β(λ1, λ2).

(3.31)

Since x1 ∈ S(λ1, μ1) = ∪ξ∈B∗Sξ(λ1, μ1), there exists ξ̂ ∈ B∗ such that

x1 = xξ̂

(
λ1, μ1

) ∈ Sξ̂

(
λ1, μ1

)
. (3.32)

Thanks to (3.29), there exists i0 ∈ {1, 2, . . . , n} such that ξ̂ ∈ N ′(ξi0). Thus, by the construction
of the neighborhoods Ñ(λ0) and Ñ(μ0), we have

(
λ1, μ1

)
,
(
λ2, μ2

) ∈ Nξi0
(λ0) ×Nξi0

(
μ0
)
. (3.33)

Then, it follows from Theorem 3.2 that

d
(
xξ̂

(
λ1, μ1

)
, xξ̂

(
λ2, μ2

)) ≤
(

m1

h − 2m2l
γ2
1

)1/(β−θ)
dγ1/(β−θ)(μ1, μ2

)

+

(
2m2l

γ2
2

h − 2m2l
γ2
1

)1/β

dα2γ2/β(λ1, λ2).

(3.34)

Let x2 = xξ̂(λ2, μ2). Then, (3.31) holds and the proof is complete.
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From Corollary 3.4, Theorems 3.2 and 3.6, we can easily obtain the following result.

Corollary 3.7. Assume that for each ξ ∈ B∗, the ξ-solution set for the problem (PVQEP) exists in
a neighborhood N(λ0) × N(μ0) of the considered point (λ0, μ0) ∈ Λ × M. Assume further that the
conditions (i), (iii), (iv), and (v) in Theorem 3.6 hold and the condition (ii) in Theorem 3.6 is replaced
with

(ii’) for all μ ∈ N(μ0), f(·, ·, μ) is h · β-Hölder strongly monotone in E(N(λ0)), that is, there
exist two constants h > 0 and β > 0 such that, for all x, y ∈ E(N(λ0)) : x /=y,

f
(
x, y, μ

)
+ f
(
y, x, μ

)
+ hdβ(x, y

)
B(0, 1) ⊂ −C. (3.35)

Then, there exist neighborhoods Ñ(λ0) of λ0 and Ñ(μ0) of μ0, such that, the weak solution set
S(·, ·) on Ñ(λ0) × Ñ(μ0) is nonempty and satisfies the following Hölder continuous condition: for
all (λ1, μ1), (λ2, μ2) ∈ Ñ(λ0) × Ñ(μ0),

S
(
λ1, μ1

) ⊂ S
(
λ2, μ2

)

+

⎛

⎝
(

m1

h − 2m2l
γ2
1

)1/(β−θ)
dγ1/(β−θ)(μ1, μ2

)
+

(
2m2l

γ2
2

h − 2m2l
γ2
1

)1/β

dα2γ2/β(λ1, λ2)

⎞

⎠B(0, 1).

(3.36)

Remark 3.8. Theorem 3.6 and Corollary 3.7 generalize and improve the corresponding results
of S. Li and X. Li [28] in the following three aspects.

(i) The assumption (H4) of Theorem 3.1 in S. Li and X. Li [28] is removed.

(ii) TheHölder degree of the solution set is remarkably sharpened since the assumption
(H3) of Theorem 3.1 in S. Li and X. Li [28] is replaced with (iii) of Theorem 3.6 and
Corollary 3.7.

(iii) We extend the result of S. Li and X. Li [28] on the Hölder continuity of the
solution set of parametric vector equilibrium problems to parametric vector
quasiequilibrium problems in metric spaces.

Moreover, it is easy to see that the assumption (H1) of Theorem 3.1 in S. Li and X. Li [28]
implies the assumption (ii) of Theorem 3.6. However, the converse may not hold. Therefore,
Theorem 3.2 generalizes and improves Theorem 3.1 of S. Li and X. Li [28] by weakening the
corresponding Hölder-related assumptions.

Now, we give an example to illustrate Theorem 3.6, or Corollary 3.7 is applicable when
the solution mapping is set valued.

Example 3.9. Let X = R, Y = R
2, Λ = M = [0, 1], and C = R

2
+. Let K : X ×M ⇒ Y be defined

by

K(x, λ) = K(λ) =
[
λ2, 1

]
(3.37)
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and f : X ×X ×M → Y defined by

f
(
x, y, λ

)
=
(
(1 + λ)y

(
x − y

)
, (1 + λ)x

(
y − x

))
. (3.38)

Consider that λ0 = 0.5 and N(λ0) = Λ. Obviously, E(Λ) = E(N(λ0)) = [0, 1]; K(·, ·) is (0 ·
α1, 1 · 1)-Hölder continuous in E(Λ); f(x, y, ·) is √2.1-Hölder continuous 1-relative to E(Λ);
for all λ ∈ Λ and x ∈ E(λ), f(x, ·, λ) is 2√2.1-Hölder continuous; for all λ ∈ Λ, f(·, ·, λ) is 2.2-
Hölder strongly monotone in E(Λ). Here, l1 = 0, α1 is arbitrary, l2 = α2 = θ = 1, m1 =

√
2, m2 =

2
√
2, γ1 = γ2 = 1 and h = β = 2. Hence, we take α1 = 2 to see (iv) is satisfied. Therefore,

Theorem 3.6 (or Corollary 3.7) derives the Holder continuity of the solution around λ0 (in
fact, S(λ) = [λ2, 1], for all λ ∈ Λ).
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