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By applying a variant version of Mountain Pass Theorem in critical point theory, we prove the
existence of homoclinic solutions for the following asymptotically p-linear difference system with
p-Laplacian Δ(|Δu(n − 1)|p−2Δu(n − 1)) +∇[−K(n, u(n)) +W(n, u(n))] = 0, where p ∈ (1,+∞), n ∈
Z, u ∈ R

N,K,W : Z ×R
N → R are not periodic in n, and W is asymptotically p-linear at infinity.

1. Introduction

Consider the following p-Laplacian difference system:

Δ
(
|Δu(n − 1)|p−2Δu(n − 1)

)
+∇[−K(n, u(n)) +W(n, u(n))] = 0, n ∈ Z, (1.1)

where Δ is the forward difference operator defined by Δu(n) = u(n + 1) − u(n), Δ2u(n) =
Δ(Δu(n)), p ∈ (1,+∞), n ∈ Z, u ∈ R

N , K, W : Z × R
N → R are not periodic in n, W

is asymptotically p-linear at infinity, and K and W are continuously differentiable in x. As
usual, we say that a solution u(n) of (1.1) is homoclinic (to 0) if u(n) → 0 as n → ±∞. In
addition, if u(n)/≡ 0, then u(n) is called a nontrivial homoclinic solution.

When p = 2, (1.1) can be regarded as a discrete analogue of the following second-order
Hamiltonian system:

ü(t) +∇[−K(t, u(t)) +W(t, u(t))] = 0, t ∈ R. (1.2)
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The existence of homoclinic orbits for Hamiltonian systems is a classical problem and
its importance in the study of the behavior of dynamical systems has been recognized by
Poincaré [1]. If a system has the transversely intersected homoclinic orbits, then it must
be chaotic. If it has the smoothly connected homoclinic orbits, then it cannot stand the
perturbation and its perturbed system probably produces chaotic phenomenon. For the
existence of homoclinic solutions of problem (1.2), one can refer to the papers [2–5].

Difference equations usually describe evolution of certain phenomena over the course
of time. For example, if a certain population has discrete generations, the size of the (n + 1)th
generation x(n + 1) is a function of the nth generation x(n). In fact, difference equations
provide a natural description of many discrete models in real world. Since discrete models
exist in various fields of science and technology such as statistics, computer science, electrical
circuit analysis, biology, neural network, and optimal control, it is of practical importance to
investigate the solutions of difference equations. For more details about difference equations,
we refer the readers to the books [6–8].

In some recent papers [9–20], the authors studied the existence of periodic solutions
and subharmonic solutions of difference equations by applying critical point theory. These
papers show that the critical point theory is an effective method to the study of periodic
solutions for difference equations. Along this direction, several authors [21–28] used critical
point theory to study the existence of homoclinic orbits for difference equations. Motivated
by the above papers, we consider the existence of homoclinic orbits for problem (1.1) by using
the variant version of Mountain Pass Theorem. Our result is new, which seems not to have
been considered in the literature. Here is our main result.

Theorem 1.1. Suppose that K and W satisfy the following conditions.

(K1) There are two positive constants b1 and b2 such that

b1|x|p ≤ K(n, x) ≤ b2|x|p, ∀(n, x) ∈ Z × R
N. (1.3)

(K2) There is a positive constant b3 such that

b3|x|p ≤ (∇K(n, x), x) ≤ |∇K(n, x)||x| ≤ pK(n, x), ∀(n, x) ∈ Z × R
N. (1.4)

(W1) W(n, 0) = 0, ∇W(n, x) = o(|x|p−1) as |x| → 0 uniformly for n ∈ Z.

(W2) There exists a constant R > 0 such that

|∇W(n, x)|
|x|p−1

≤ R, ∀n ∈ Z, x ∈ R
N. (1.5)

(W3) There exists a function V∞ ∈ l∞(Z,R+) such that

lim
|x|→∞

∣∣∣∇W(n, x) − V∞(n)|x|p−2x
∣∣∣

|x|p−1
= 0 uniformly for n ∈ Z,

inf
Z

V∞(n) > max
{
1, pb2

}
.

(1.6)
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(W4) W̃(n, x) = (∇W(n, x), x) − pW(n, x),

lim
|x|→∞

W̃(n, x) = +∞ uniformly for n ∈ Z, (1.7)

and for any fixed 0 < c1 < c2 < +∞,

inf
n∈Z, c1≤|x|≤c2

W̃(n, x)
|x|p > 0. (1.8)

Then problem (1.1) has at least one nontrivial homoclinic solution.

Remark 1.2. The function W(n, x) in this paper is asymptotically p-linear at infinity. The
behavior of the gradient of W(n, x) at infinity is like that of a function V∞(n)|x|p−2x, where
V∞(n) is a real function but not amatrix function. To the best of our knowledge, similar results
of this kind of p-Laplacian difference systems with asymptotically p-linearW(n, x) at infinity
cannot be found in the literature. From this point, our result is new.

2. Preliminaries

Let

S =
{
{u(n)}n∈Z : u(n) ∈ R

N, n ∈ Z

}
,

E =

{
u ∈ S :

∑
n∈Z

[|Δu(n − 1)|p + |u(n)|p] < +∞
}
,

(2.1)

and for u ∈ E, let

‖u‖ =
{∑

n∈Z

[|Δu(n − 1)|p + |u(n)|p] < +∞
}1/p

. (2.2)

Then E is a uniform convex Banach space with this norm. As usual, for 1 ≤ p < +∞, let

lp
(
Z,RN

)
=

{
u ∈ S :

∑
n∈Z
|u(n)|p < +∞

}
, l∞

(
Z,RN

)
=

{
u ∈ S : sup

n∈Z
|u(n)| < +∞

}
, (2.3)

and their norms are given by

‖u‖lp =
(∑

n∈Z
|u(n)|p

)1/p

, ∀u ∈ lp
(
Z,RN

)
,

‖u‖∞ = sup{|u(n)| : n ∈ Z}, ∀u ∈ l∞
(
Z,RN

)
,

(2.4)

respectively.
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For any u ∈ E, let

ϕ(u) =
1
p

∑
n∈Z
|Δu(n − 1)|p −

∑
n∈Z

[−K(n, u(n)) +W(n, u(n))]. (2.5)

To prove our results, we need the following generalization of Lebesgue’s dominated
convergence theorem.

Lemma 2.1 (see [29]). Let {fk(t)} and {gk(t)} be two sequences of measurable functions on a
measurable set A, and let

∣∣fk(t)
∣∣ ≤ gk(t), ∀a.e. t ∈ A. (2.6)

If

lim
k→∞

fk(t) = f(t), lim
k→∞

gk(t) = g(t), ∀a.e. t ∈ A,

lim
k→∞

∫

A

gk(t)dt =
∫

A

g(t)dt < +∞,
(2.7)

then

lim
k→∞

∫

A

fk(t)dt =
∫

A

f(t)dt. (2.8)

Lemma 2.2. For u ∈ E,

‖u‖∞ ≤ ‖u‖lp ≤ 2‖u‖. (2.9)

Proof. Since u ∈ E, it follows that lim|n|→∞|u(n)| = 0. Hence, there exists n∗ ∈ Z such that

‖u‖∞ = |u(n∗)| = max
n∈Z
|u(n)|. (2.10)

Hence, we have

‖u‖∞ ≤
(∑

n∈Z
|u(n)|p

)1/p

= ‖u‖lp =
(∑

n∈Z
|u(n) − u(n − 1) + u(n − 1)|p

)1/p

≤
(∑

n∈Z
(|u(n) − u(n − 1)| + |u(n − 1)|)p

)1/p

≤
(
2p
∑
n∈Z

(|u(n) − u(n − 1)|p + |u(n − 1)|p)
)1/p



Abstract and Applied Analysis 5

= 2

(∑
n∈Z

(|Δu(n − 1)|p + |u(n − 1)|p)
)1/p

= 2

(∑
n∈Z

(|Δu(n − 1)|p + |u(n)|p)
)1/p

= 2‖u‖.
(2.11)

Lemma 2.3. Suppose that (K1), (K2), and (W2) hold. If uk → u in E, then∇K(n, uk) → ∇K(n, u)
and ∇W(n, uk) → ∇W(n, u) in lp

′
(R,RN), where p′ > 1 satisfies 1/p + 1/p′ = 1.

Proof. From (K1) and (K2), we have

|∇K(n, x)| ≤ pb2|x|p−1, ∀(n, x) ∈ Z × R
N. (2.12)

Hence, from (2.12), we have

|∇K(n, uk(n)) − ∇K(n, u(n))|p′ ≤
[
pb2

(
|uk(n)|p−1 + |u(n)|p−1

)]p′

≤
[
pb22p−1|uk(n) − u(n)|p−1 + pb2

(
1 + 2p−1

)
|u(n)|p−1

]p′

≤ 2pp
′(
pb2

)p′ |uk(n) − u(n)|p + 2p
′(
pb2

)p′(1 + 2p−1
)p′

|u(n)|p

:= gk(n).
(2.13)

Moreover, since uk → u in lp(Z,RN) and uk(n) → u(n) for almost every n ∈ Z, hence,

lim
k→∞

gk(n) = 2p
′(
pb2

)p′(1 + 2p−1
)p′

|u(n)|p := g(n), ∀a.e. n ∈ Z,

lim
k→∞

∑
n∈Z

gk(n) = lim
k→∞

∑
n∈Z

[
2pp

′(
pb2

)p′ |uk(n) − u(n)|p + 2p
′(
pb2

)p′(1 + 2p−1
)p′

|u(n)|p
]

= 2pp
′(
pb2

)p′ lim
k→∞

∑
n∈Z
|uk(n) − u(n)|p + 2p

′(
pb2

)p′(1 + 2p−1
)p′∑

n∈Z
|u(n)|p

= 2p
′(
pb2

)p′(1 + 2p−1
)p′∑

n∈Z
|u(n)|p

=
∑
n∈Z

g(n) < +∞.

(2.14)
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It follows from Lemma 2.1, (2.13), and the previous equations that

lim
k→∞

∑
n∈Z
|∇K(n, uk(n)) − ∇K(n, u(n))|p′ = 0. (2.15)

This shows that ∇K(n, uk) → ∇K(n, u) in lp
′
(Z,RN). By a similar proof, we can prove that

∇W(n, uk) → ∇W(n, u) in lp
′
(Z,RN). The proof is complete.

Lemma 2.4. Under the conditions of Theorem 1.1, one has

〈
ϕ′(u), v

〉
=
∑
n∈Z

[
|Δu(n − 1)|p−2(Δu(n − 1),Δv(n − 1))

+ (∇K(n, u(n)) − ∇W(n, u(n)), v(n))
] (2.16)

for u, v ∈ E, which yields that

〈
ϕ′(u), u

〉
=
∑
n∈Z

[|Δu(n − 1)|p + (∇K(n, u(n)), u(n)) − (∇W(n, u(n)), u(n))
]
. (2.17)

Moreover, ϕ is continuously Fréchet-differential defined on E; that is, ϕ ∈ C1(E,R) and any critical
point u of ϕ on E is classical solution of (1.1) with u(±∞) = 0.

Proof. Firstly, we show that ϕ : E → R. Let u ∈ E, by (2.9) and (K1), we have

∑
n∈Z

K(n, u(n)) ≤
∑
n∈Z

b2|u(n)|p ≤ b22p‖u‖p. (2.18)

By (W2), we get

|W(n, x)| =
∣∣∣∣∣
∫1

0
(∇W(n, sx), x)ds

∣∣∣∣∣ ≤ R|x|p, ∀(n, x) ∈ Z × R
N. (2.19)

Hence, from (2.9) and (2.19), we have

∣∣∣∣∣
∑
n∈Z

W(n, u(n))

∣∣∣∣∣ ≤
∑
n∈Z
|W(n, u(n))| ≤

∑
n∈Z

R|u(n)|p ≤ R2p‖u‖p. (2.20)

It follows from (2.5), (2.18), and (2.20) that ϕ : E → R. Next we prove that ϕ ∈ C1(E,R).
Rewrite ϕ as follows:

ϕ(u) = ϕ1(u) + ϕ2(u) − ϕ3(u), (2.21)
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where

ϕ1(u) :=
1
p

∑
n∈Z
|Δu(n − 1)|p, ϕ2(u) :=

∑
n∈Z

K(n, u(n)), ϕ3(u) :=
∑
n∈Z

W(n, u(n)). (2.22)

It is easy to check that ϕ1 ∈ C1(E,R) and

〈
ϕ′1(u), v

〉
=
∑
n∈Z
|Δu(n − 1)|p−2(Δu(n − 1),Δv(n − 1)), ∀u, v ∈ E. (2.23)

Next, we prove that ϕi ∈ C1(E,R), i = 2, 3, and

〈
ϕ′2(u), v

〉
=
∑
n∈Z

(∇K(n, u(n)), v(n)), ∀u, v ∈ E, (2.24)

〈
ϕ′3(u), v

〉
=
∑
n∈Z

(∇W(n, u(n)), v(n)), ∀u, v ∈ E. (2.25)

For any u, v ∈ E and for any function θ : R → (0, 1), by (K2), we have

∑
n∈Z

max
h∈[0,1]

|(∇K(n, u(n) + θ(t)hv(n)), v(n))| ≤ pb2
∑
n∈Z

max
h∈[0,1]

|u(n) + θ(t)hv(n)|p−1|v(n)|

≤ 2p−1pb2
∑
n∈Z

(
|u(n)|p−1 + |v(n)|p−1

)
|v(n)|

≤ 2p−1pb2
[
‖u‖p−1lp ‖v‖lp + ‖v‖

p

lp

]

< +∞.

(2.26)

Then by the previous equations and Lebesgue’s dominated convergence theorem, we have

〈
ϕ′2(u), v

〉
= lim

h→ 0+

ϕ2(u + hv) − ϕ2(u)
h

= lim
h→ 0+

1
h

∑
n∈Z

[K(n, u(n) + hv(n)) −K(n, u(n))]

= lim
h→ 0+

∑
n∈Z

(∇K(t, u(n) + θ(t)hv(n)), v(n))

=
∑
n∈Z

(∇K(n, u(n)), v(n)), ∀u, v ∈ E.

(2.27)
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Similarly, we can prove that (2.25) holds by using (W2) instead of (K2). Finally, we prove that
ϕi ∈ C1(E,R), i = 2, 3. Let uk → u in E; then by Lemma 2.3, we have

∣∣〈ϕ′2(uk) − ϕ′2(u), v
〉∣∣

=

∣∣∣∣∣
∑
n∈Z

(∇K(n, uk(n)) − ∇K(n, u(n)), v(n))

∣∣∣∣∣

≤
∑
n∈Z
|∇K(n, uk(n)) − ∇K(n, u(n))‖v(n)|

≤ ‖v‖
[∑
n∈Z
|∇K(n, uk(n)) − ∇K(n, u(n))|p′

]1/p′

−→ 0, k −→ ∞, ∀v ∈ E.

(2.28)

This shows that ϕ2 ∈ C1(E,R). Similarly, we can prove that ϕ3 ∈ C1(E,R). Furthermore, by a
standard argument, it is easy to show that the critical points of ϕ in E are classical solutions
of (1.1)with u(±∞) = 0. The proof is complete.

Lemma 2.5 (see [30]). Let E be a real Banach space with its dual space E∗ and suppose that ϕ ∈
C1(E,R) satisfies

max
{
ϕ(0), ϕ(e)

} ≤ η0 < η ≤ inf
‖u‖=ρ

ϕ(u), (2.29)

for some η0 < η, ρ > 0, and e ∈ E with ‖e‖ > ρ. Let c ≥ η be characterized by

c = inf
Υ∈Γ

max
0≤τ≤1

ϕ(Υ(τ)), (2.30)

where Γ = {Υ ∈ C([0, 1], E) : Υ(0) = 0,Υ(1) = e} is the set of continuous paths joining 0 to e; then
there exists {uk}k∈N ⊂ E such that

ϕ(uk) −→ c, (1 + ‖uk‖)
∥∥ϕ′(uk)

∥∥
E∗ −→ 0 as k −→ ∞. (2.31)

3. Proof of Theorem 1.1

Proof of Theorem 1.1. We divide the proof of Theorem 1.1 into three steps.

Step 1. From (W1), there exists ρ0 > 0 such that

∇W(n, x) ≤ C1

2p
|x|p−1, ∀n ∈ Z, |x| ≤ ρ0, (3.1)
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where C1 = min{1/p, b1}. From (3.1), we have

W(n, x) =
∫1

0
(∇W(n, sx), x)ds

≤
∫1

0

C1

2p
|x|psp−1ds =

C1

p2p
|x|p, ∀n ∈ Z, |x| ≤ ρ0.

(3.2)

Let ρ = ρ0/2 and S = {u ∈ E | ‖u‖ = ρ}; then from (2.9), we obtain

‖u‖∞ ≤ ρ0, ‖u‖lp ≤ 2ρ, ∀u ∈ S, (3.3)

which together with (2.9), (3.2), and (K1) implies that

ϕ(u) =
1
p

∑
n∈Z
|Δu(n − 1)|p −

∑
n∈Z

[−K(n, u(n)) +W(n, u(n))]

≥ 1
p

∑
n∈Z
|Δu(n − 1)|p + b1

∑
n∈Z
|u(n)|p −

∑
n∈Z

C1

p2p
|u(n)|p

≥ min
{
1
p
, b1

}
‖u‖p − C1

p2p
‖u‖plp

≥ C1‖u‖p − C1

p
‖u‖p =

(
p − 1)C1

p
‖u‖p = α1 > 0, u ∈ S.

(3.4)

Step 2. From (K1), we have

ϕ(u) =
1
p

∑
n∈Z
|Δu(n − 1)|p −

∑
n∈Z

[−K(n, u(n)) +W(n, u(n))]

≤ 1
p

∑
n∈Z
|Δu(n − 1)|p + b2

∑
n∈Z
|u(n)|p −

∑
n∈Z

W(n, u(n))

≤ max
{
1
p
, b2

}
‖u‖p −

∑
n∈Z

W(n, u(n))

≡ C2‖u‖p −
∑
n∈Z

W(n, u(n)).

(3.5)

By (W2) and (W3), we get

lim
|x|→∞

pW(n, x)
|x|p = V∞(n) uniformly for n ∈ Z. (3.6)
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Let W(n, x) = pW(n, x) − V∞(n)|x|p; it follows from (W2), (W3), (2.19), and (3.6) that

W(n, x) ≤
(
pR + sup

Z

V∞(n)

)
|x|p, ∀x ∈ R

N, lim
|x|→∞

W(n, x)
|x|p = 0. (3.7)

Define E1 := {u(n) = xe−|n| : x ∈ R
N, n ∈ Z} ⊂ E with

inf
Z

V∞(n) > max
{
1, pb2

}(
1 +

∣∣∣1 − e|n|−|n−1|
∣∣∣
p)

. (3.8)

By an easy calculation, we have

‖u‖p =
(
1 +

∣∣∣1 − e|n|−|n−1|
∣∣∣
p)
‖u‖plp . (3.9)

In what follows, we prove that for some u ∈ E1 with ‖u‖ = 1, ϕ(su) → −∞ as s → ∞.
Otherwise, there exist a sequence {sk} with sk → ∞ as k → ∞ and a positive constant C3

such that ϕ(sku) ≥ −C3 for all k. From (3.5), we obtain

−C3

s
p

k

≤ ϕ(sku)

s
p

k

≤ C2 − 1
p

∑
n∈Z

W(n, sku(n))

s
p

k

− 1
p

∑
n∈Z

V∞(n)|u(n)|p

≤ C2 − 1
p

∑
n∈Z

W(n, sku(n))

s
p

k

− 1
p
inf
Z

V∞(n)‖u‖plp .
(3.10)

It follows from (3.7) that

W(n, sku(n))

s
p

k

≤
(
pR + sup

Z

V∞(n)

)
|u(n)|p, W(n, sku(n))

|sk|p
−→ 0 as k −→ ∞. (3.11)

Hence, from Lebesgue’s dominated theorem and (3.11), we have

∑
n∈Z

W(n, snu(n))
|sk|p

−→ 0 as k −→ ∞. (3.12)

It follows from (3.8), (3.9), (3.10), and (3.12) that

0←− −C3

s
p

k

≤ C2 − 1
p
(
1 +

∣∣1 − e|n|−|n−1|∣∣p) infZ

V∞(n) < 0 as k −→ ∞, (3.13)

which is a contradiction. Hence, there exists e ∈ E with ‖e‖ > ρ such that ϕ(e) ≤ 0.
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Step 3. From Step 1, Step 2, and Lemma 2.5, we know that there is a sequence {uk}k∈N ⊂ E
such that

ϕ(uk) −→ c, (1 + ‖uk‖)
∥∥ϕ′(uk)

∥∥
E∗ −→ 0 as k −→ ∞, (3.14)

where E∗ is the dual space of E. In the following, we will prove that {uk}k∈N is bounded in E.
Otherwise, assume that ‖uk‖ → ∞ as k → ∞. Let zk = uk/‖uk‖; we have ‖zk‖ = 1. It follows
from (2.5), (2.16), (3.14), and (K2) that

C4 ≥ pϕ(uk) −
〈
ϕ′(uk), uk

〉

=
∑
n∈Z

[
(∇W(n, uk(n)), uk(n)) − pW(n, uk(n))

]

+
∑
n∈Z

[
pK(n, uk(n)) − (∇K(n, uk(n)), uk(n))

]

≥
∑
n∈Z

[
(∇W(n, uk(n)), uk(n)) − pW(t, uk(n))

]
:=

∑
n∈Z

W̃(n, uk(n)).

(3.15)

Set Ωk(α, β) = {n ∈ Z : α ≤ |uk(n)| ≤ β} for 0 < α < β. Then from (3.15), we have

C4 ≥
∑

n∈Ωk(0,α)

W̃(n, uk(n)) +
∑

n∈Ωk(α,β)

W̃(n, uk(n)) +
∑

n∈Ωk(β,+∞)

W̃(n, uk(n)). (3.16)

From (K1), (K2), and (3.14), we get

o(1) =
〈
ϕ′(uk), uk

〉

=
∑
n∈Z

[|Δuk(n − 1)|p + (∇K(n, uk(n)) − ∇W(n, uk(n)), uk(n))
]

≥
∑
n∈Z

[|Δuk(n − 1)|p + b3|uk(n)|p − (∇W(n, uk(n)), uk(n))
]

≥ min{1, b3}‖uk‖p −
∑
n∈Z

(∇W(n, uk(n)), uk(n))

:= C5‖uk‖p −
∑
n∈Z

(∇W(n, uk(n)), uk(n))

= ‖uk‖p
(
C5 −

∑
n∈Z

(∇W(n, uk(n)), uk(n))
‖uk‖p

)
,

(3.17)

which implies that

lim sup
k→∞

∑
n∈Z

(∇W(n, uk(n)), uk(n))
|uk(n)|p

|zk(n)|p = lim sup
k→∞

∑
n∈Z

(∇W(n, uk(n)), uk(n))
‖uk‖p

≥ C5. (3.18)
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Let 0 < ε < C5/3. From (W1), there exists αε > 0 such that

|∇W(n, x)| ≤ ε

2p
|x|p−1 for |x| ≤ αε uniformly for n ∈ Z. (3.19)

Since ‖zk‖ = 1, it follows from (2.9) and (3.19) that

∑
n∈Ωk(0,αε)

|∇W(n, uk(n))|
|uk(n)|p−1

|zk(n)|p ≤
∑

n∈Ωk(0,αε)

ε

2p
|zk(n)|p ≤ ε, ∀k ∈ N. (3.20)

For s > 0, let

h(s) := inf
{
W̃(n, x) | n ∈ Z, x ∈ R

N with |x| ≥ s
}
. (3.21)

Thus, from (W4), we have h(s) → +∞ as s → +∞, which together with (3.16) implies that

meas
(
Ωk

(
β,+∞)) ≤ C6

h
(
β
) −→ 0, as β −→ +∞. (3.22)

Hence, we can take βε sufficiently large such that

∑

n∈Ωk(βε,+∞)
|zk(n)|p <

ε

R
. (3.23)

The previous inequality and (W2) imply that

∑

n∈Ωk(βε,+∞)

|∇W(n, uk(n))|
|uk(n)|p−1

|zk(n)|p ≤ R
∑

n∈Ωk(βε,+∞)
|zk(n)|p < ε, ∀k ∈ N. (3.24)

Next, for the previous 0 < αε < βε, let

cε := inf

{
W̃(n, x)
|x|p : n ∈ Z, x ∈ R

N with αε ≤ |x| ≤ βε

}
,

dε := max

{
|∇W(n, x)|
|x|p−1

: n ∈ Z, x ∈ R
N with αε ≤ |x| ≤ βε

}
.

(3.25)

From (W4), we have cε > 0 and

W̃(n, uk(n)) ≥ cε|uk(n)|p, ∀n ∈ Ωk

(
αε, βε

)
. (3.26)
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From (3.15) and (3.26), we get

∑
n∈Ωk(αε,βε)

|zk(n)|p =
1

‖uk‖p
∑

n∈Ωk(αε,βε)

|uk(n)|p

≤ 1
‖uk‖p

∑

n∈Ωk(αε,βε)

1
cε
W̃(n, uk(n))

≤ C4

cε‖uk‖p
−→ 0 as k −→ ∞,

(3.27)

which implies that

∑

n∈Ωk(αε,βε)

|∇W(n, uk(n))|
|uk(n)|p−1

|zk(n)|p ≤ dε

∑

n∈Ωk(αε,βε)
|zk(n)|p −→ 0 as k −→ ∞. (3.28)

Therefore, there exists k0 > 0 such that

∑

n∈Ωk(αε,βε)

|∇W(n, uk(n))|
|uk(n)|p−1

|zk(n)|p ≤ ε, ∀k ≥ k0. (3.29)

It follows from (3.20), (3.24), and (3.29) that

∑
n∈Z

(∇W(n, uk(n)), uk(n))
|uk(n)|p

|zk(n)|p ≤
∑
n∈Z

|∇W(t, uk(n))|
|uk(n)|p−1

|zk(n)|p < 3ε < C5, ∀k ≥ k0, (3.30)

which implies that

lim sup
n→∞

∑
n∈Z

(∇W(n, uk(n)), uk(n))
|uk(n)|p

|zk(n)|p < C5, (3.31)

but this contradicts to (3.18). Hence, ‖uk‖ is bounded in E.
Going to a subsequence if necessary, we may assume that there exists u ∈ E such that

uk ⇀ u as k → ∞. In order to prove our theorem, it is sufficient to show that ϕ′(u) = 0. For
any a ∈ Z with a > 0, let χa(t) = 1 for t ∈ Z[−a, a] and let χa(t) = 0 for t ∈ Z(−∞,−a)∪Z(a,∞).
Then from (2.16), we have

〈
ϕ′(uk) − ϕ′(u), χa(uk − u)

〉

=
∑

n∈Z[−a,a]
|Δuk(n − 1)|p−2(Δuk(n − 1),Δuk(n − 1) −Δu(n − 1))

−
∑

n∈Z[−a,a]
|Δu(n − 1)|p−2(Δu(n − 1),Δuk(n − 1) −Δu(n − 1))

+
∑

n∈Z[−a,a]
(∇K(n, uk(n)) − ∇K(n, u(n)), uk(n) − u(n))
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−
∑

n∈Z[−a,a]
(∇W(n, uk(n)) − ∇W(n, u(n)), uk(n) − u(n))

≥ ‖Δuk‖plpZ[−a,a] + ‖Δu‖plpZ[−a,a] −
∑

n∈Z[−a,a]
|Δuk(n − 1)|p−1|Δu(n − 1)|

−
∑

n∈Z[−a,a]
|Δu(n − 1)|p−1|Δuk(n − 1)|

+
∑

n∈Z[−a,a]
(∇K(n, uk(n)) − ∇K(n, u(n)), uk(n) − u(n))

−
∑

n∈Z[−a,a]
(∇W(n, uk(n)) − ∇W(n, u(n)), uk(n) − u(n))

≥ ‖Δuk‖plpZ[−a,a] + ‖Δu‖p
lpZ[−a,a] − ‖Δu‖lpZ[−a,a]‖Δuk‖p−1lpZ[−a,a] − ‖Δuk‖lpZ[−a,a]‖Δu‖p−1

lpZ[−a,a]

+
∑

n∈Z[−a,a]
(∇K(n, uk(n)) − ∇K(n, u(n)), uk(n) − u(n))

−
∑

n∈Z[−a,a]
(∇W(n, uk(n)) − ∇W(n, u(n)), uk(n) − u(n))

=
(
‖Δuk‖p−1lpZ[−a,a] − ‖Δu‖p−1lpZ[−a,a]

)(
‖Δuk‖lpZ[−a,a] − ‖Δu‖lpZ[−a,a]

)

+
∑

n∈Z[−a,a]
(∇K(n, uk(n)) − ∇K(n, u(n)), uk(n) − u(n))

−
∑

n∈Z[−a,a]
(∇W(n, uk(n)) − ∇W(n, u(n)), uk(n) − u(n)).

(3.32)

Since ϕ′(uk) → 0 as k → +∞ and uk ⇀ u in E, it follows from (3.14) that

〈
ϕ′(uk) − ϕ′(u), χa(uk − u)

〉 −→ 0 as k −→ ∞,

∑
n∈Z[−a,a]

(∇K(n, uk(n)) − ∇K(n, u(n)), uk(n) − u(n)) −→ 0 as k −→ ∞,

∑
n∈Z[−a,a]

(∇W(n, uk(n)) − ∇W(n, u(n)), uk(n) − u(n)) −→ 0 as k −→ ∞.

(3.33)

It follows from (3.32) and (3.33) that ‖Δuk‖lpZ[−a,a] → ‖Δu‖lpZ[−a,a] as k → +∞.
For any w ∈ C∞0 (R,RN), and assume that for some A ∈ Z with A > 0, supp(w) ⊂

Z[−A,A]. Since

lim
k→∞

Δuk(n − 1) = Δu(n − 1), ∀a.e. n ∈ Z,

∣∣∣
(
|Δuk(n − 1)|p−2Δuk(n − 1),Δw(n − 1)

)∣∣∣
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≤ p − 1
p
|Δuk(n − 1)|p + 1

p
|Δw(n − 1)|p, ∀n ∈ Z, k = 1, 2, . . . ,

lim
k→∞

∑
n∈Z[−A,A]

[
p − 1
p
|Δuk(n − 1)|p + 1

p
|Δw(n − 1)|p

]

=
p − 1
p

lim
k→∞

‖Δuk‖plpZ[−A,A] +
1
p
‖Δw‖plpZ[−A,A]

=
p − 1
p
‖Δu‖plpZ[−A,A] +

1
p
‖Δw‖plpZ[−A,A]

=
∑

n∈Z[−A,A]

[
p − 1
p
|Δu(n − 1)|p + 1

p
|Δw(n − 1)|p

]
< +∞,

(3.34)

then, we have
∑

n∈Z[−A,A]

(
|Δuk(n − 1)|p−2Δuk(n − 1),Δw(n − 1)

)

−→
∑

n∈Z[−A,A]

(
|Δu(n − 1)|p−2Δu(n − 1),Δw(n − 1)

) (3.35)

as k → ∞. Noting that
∑

n∈Z[−A,A]

(∇K(n, uk(n)), w(n)) −→
∑

n∈Z[−A,A]

(∇K(n, u(n)), w(n)) as k −→ ∞,

∑
n∈Z[−A,A]

(∇W(n, uk(n)), w(n)) −→
∑

n∈Z[−A,A]

(∇W(n, u(n)), w(n)) as k −→ ∞.

(3.36)

Hence, we have
〈
ϕ′(u), w

〉
= lim

k→∞
〈
ϕ′(uk), w

〉
= 0, (3.37)

which implies that ϕ′(u) = 0; that is, u is a critical point of ϕ. From (K1) and (W1), we know
that u/= 0. In fact, if u = 0, we have from (2.5), (K1), and (W1) that ϕ(u) = 0. On the other
hand, from Step 1, Step 2, and Lemma 2.5, we know that ϕ(u) = c > 0. This is a contradiction.
The proof of Theorem 1.1 is complete.

4. An Example

Example 4.1. In problem (1.1), let p = 3/2, and

K(n, x) =

(
1 +

1

|x|3/2 + 1

)
|x|3/2, W(n, x) = a(n)|x|3/2

(
1 − 1

(ln(e + |x|))1/2
)
, (4.1)
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where a ∈ l∞(Z,R+) with infZa(n) > 3. One can easily check that K satisfies conditions (K1)
and (K2)with b1 = 1, b2 = 2, and b3 = 3/2. An easy computation shows that

∇W(n, x) =
3
2
a(n)|x|−1/2x

(
1 − 1

(ln(e + |x|))1/2
)

+
a(n)|x|1/2x

2(e + |x|)(ln(e + |x|))3/2
,

(∇W(n, x), x) − 3
2
W(n, x) =

a(n)|x|5/2
2(e + |x|)(ln(e + |x|))3/2

.

(4.2)

Then it is easy to check that W satisfies (W1)–(W4). Hence, K(n, x) and W(n, x) satisfy all
the conditions of Theorem 1.1 and then problem (1.1) has at least one nontrivial homoclinic
solution.
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