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We study the following second-order periodic system: x′′ + V ′(x) + p(t) = 0 where V (x) has a sin-
gularity and p(t) = p(t + 1). Under some assumptions on the V (x) and p(t), by Moser’s twist
theorem we obtain the existence of quasiperiodic solutions and boundedness of all the solutions.

1. Introduction and Main Result

In the early 1960s, Littlewood [1] askedwhether or not the solutions of the Duffing-type equa-
tions

x′′ + g(x) = e(t), where e(t + 1) = e(t) (1.1)

are bounded for all time, that is, whether there are resonances that might cause the amplitude
of the oscillations to increase without bound. Littlewood suggested studying the following
two cases:

(i) superlinear case: g(x)/x → +∞ as x → ±∞,

(ii) sublinear case: sign(x) · x → +∞ and g(x)/x → 0 as x → ±∞.

The first positive result of boundedness of solutions in the superlinear case (i)was due
to Morris [2]. By means of KAM theorem, Morris proved that every solution of the second-
order system (1.1) is bounded if g(x) = 2x3 and e(t) is piecewise continuous and periodic.
This result relies on the fact that the nonlinearity 2x3 can guarantee the twist condition of
KAM theorem. Later, several authors (see [3–5]) improved the Morris’s result and obtained
similar results for a large class of superlinear function g(x).
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In 1999, the first result in the sublinear case was proved by Küpper and You [6] in the
study of

x′′ + |x|α−1x = e(t), (1.2)

where 0 < α < 1 and e(t) ∈ C∞(T). The authors transform (1.2) into a perturbation of an
integrable Hamiltonian system and then prove that the Poincaré map of the transformed sys-
tem is close to a so-called twist map. So, the Moser’s twist theorem guarantees the bound-
edness of all solutions of (1.2). The general sublinear case was considered by Liu [7] under
certain reasonable conditions.

The Littlewood problem for singular potentials is known to be challenging, and there
are only very a few results. Recently, Capietto et al. [8] studied

x′′ + V ′(x) = p(t), (1.3)

with p(t) is a π-periodic function and V = (1/2)x2
+ + (1/(1 − x2

−)
ν)−1, where x+ = max{x, 0},

x− = max{−x, 0} and ν > 2 is a positive integer. Under the Lazer-Leach assumption that

1 +
1
2

∫π

0
p(t0 + θ) sin θ dθ > 0, ∀t0 ∈ R, (1.4)

they prove the boundedness of solutions and the existence of quasiperiodic solution by
Moser’ twist theorem. It is the first time that the equation of the boundedness of all solution is
treated in case of a singular potential.

In this paper, We consider the following sublinearly growing potential:

x′′ + V ′(x) = p(t), (1.5)

where V (x) = xα+1
+ + (1/1 − x2

−) − 1, 0 < α < 1.
Our main result is the following theorem.

Theorem 1.1. If p(t) ∈ C6 is 1-periodic continuous, then all the solutions of (1.5) are bounded.

The idea for proving the boundedness of solutions of (1.5) is as follows. By means of
transformation theory, (1.5) is, outside of a large disc D = {(x, ẋ) ∈ R

2 : x2 + ẋ2 ≤ r2} in
the (x, ẋ)-plane, transformed into a perturbation of an integrable Hamiltonian system. Then,
Poincaré map of the transformed system is close to a so-called twist map in R\D. TheMoser’s
twist theorem [9] guarantees the existence of arbitrarily large invariant curves diffeomorphic
to circles and surrounding the origin in the (x, ẋ)-plane. Every such curves is the base of
a time-periodic and flow-invariant cylinder in the extended phase space (x, ẋ, t) ∈ R

2 × R,
which confines the solutions in the interior and which leads to a bound of these solutions.

The paper is organized as follows. In Sections 2.1 and 2.2, we give action-angle var-
iables and some estimates which is useful for our proof. In Section 2.3, we will give an as-
ymptotic expression of the Poincaré map and prove the main result by Moser’s twist theorem
[9].
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2. Proof of Theorem

2.1. Action-Angle Variables and Some Estimates

Without loss of generality and for brevity of arguments, we assume that the average value of
p(t) vanishes; that is,

∫1
0 p(t)dt = 0. Hence the function P(t) =

∫s
0 p(s)ds is also 1-periodic in t

and is in C6.
System (1.5) is equivalent to the planar Hamiltonian system

x′ = y + P(t), y′ = −V ′(x), (2.1)

where Hamiltonian isH(x, y, t) = (1/2)y2 + V (x) + yP(t).
In order to introduce action and angle variables, we first consider the auxiliary auton-

omous system

x′ = y, y′ = −V ′(x), (2.2)

which is integrable with the Hamiltonian

H0
(
x, y

)
=

1
2
y2 + V (x). (2.3)

The closed curves H0(x, y) = h > 0 are just the integral curves of (2.2). Denote by T0(h) the
time period of the integral curve Γh: H0(x, y) = h and by I0 the area enclosed by the closed
curve Γh. Let

αh =

√
h

h + 1
, βh = h1/(1+α). (2.4)

Then, V (−αh) = V (βh) = h.
It is easy to see that

I0(h) = 2
∫βh

−αh

√
2(h − V (s))ds, ∀h > 0,

T0(h) = I ′0(h) = 2
∫βh

−αh

1√
2(h − V (s))

ds, ∀h > 0.

(2.5)

Denote

I+(h) = 2
∫βh

0

√
2(h − V (s))ds, I−(h) = 2

∫αh

0

√
2(h − V (−s))ds,

T+(h) = 2
∫βh

0

1√
2(h − V (s))

ds, T−(h) = 2
∫αh

0

1√
2(h − V (−s))

ds.

(2.6)
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Then,

I0(h) = I−(h) + I+(h), T0(h) = T−(h) + T+(h). (2.7)

The following estimates on the functions I+, I−, and I0 and T+, T−, and T0 are crucial for
this paper. We first estimate I+ and T+. Since I+ is the area enclosed by the closed curve Γh and
y-axis when x ≥ 0, we can easily prove that

I+(h) = 2
∫βh

0

√
2
(
h − xα+1

)
dx = 2

∫h1/(1+α)

0

√
2
(
h − xα+1

)
dx. (2.8)

Let x = th1/(1+α), then we get

I+(h) = 2
∫1

0

√
2h
(
1 − t1+α

)
h1/(1+α)dt = 2

√
2h(1/2)+1/(1+α)

∫1

0

√
1 − t1+αdt. (2.9)

Since T+(h) = I ′+(h), we have

T+(h) = 2
√
2
(
1
2
+

1
α + 1

)
h−(1/2)+1/(1+α)

∫1

0

√
1 − t1+αdt. (2.10)

We now give the estimates on the function I− and T−.

Lemma 2.1. One has

hn

∣∣∣∣d
nT−(h)
dhn

∣∣∣∣ ≤ Ch−1/2,

hn

∣∣∣∣d
nI−(h)
dhn

∣∣∣∣ ≤ Ch1/2,

(2.11)

where n = 0, 1, . . . , 6, h → +∞. Note that here and below, one always uses C, C0, or C′
0 to indicate

some constants.

Proof. Now, we estimate the first inequality. We choose V (s)/h = η as the new variable of
integration, then we have

T−(h) =
∫0

−αh

1√
2(h − V (s))

ds =
∫1

0

√
h

V ′(s(η, h))
1√

2
(
1 − η

)dη. (2.12)

Since V (s) = (1/(1 − s2)) − 1 and V (s)/h = η, we have s =
√
ηh/(1 + ηh). By direct compu-

tation, we have

V ′(s) =
2s

(1 − s2)2
=

2
√
ηh
(
1 + ηh

)2
√
1 + ηh

, (2.13)
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then we get

T
(n)
− (h) =

(−3/2)!
(−(3/2) − n)!

∫1

0

ηn√
2η
(
1 − η

)(
1 + ηh

)(3/2)+n dη, n = 0, 1, . . . , 6. (2.14)

When 0 ≤ η ≤ h−1 and h sufficient large, there exits C0 such that 1 − η > C0, so we have

∫h−1

0

ηn√
2η
(
1 − η

)(
1 + ηh

)(3/2)+n dη ≤ C

∫h−1

0

ηn√
2η
(
1 − η

)dη

≤ C

C0

∫h−1

0
ηn−(1/2)dη ≤ Ch−(1/2)−n.

(2.15)

Since h−2/3 ≤ η ≤ 1, we have

h1/3 < 1 + h1/3 ≤ 1 + ηh ≤ 1 + h, (2.16)

then

∫1

h−2/3

ηn√
2η
(
1 − η

)(
1 + ηh

)(3/2)+n dη ≤ C

∫1

h−2/3

ηnhn√
2η
(
1 − η

)
hn
(
1 + ηh

)n(1 + ηh
)3/2dη

≤ C

∫1

h−2/3

1√
2η
(
1 − η

)
hn
(
1 + ηh

)3/2dη

≤ C

∫1

h−2/3

1√
2η
(
1 − η

)
hnh1/2

dη

≤ Ch−(1/2)−n
∫1

0

1√
2η
(
1 − η

)dη ≤ Ch−(1/2)−n.

(2.17)

Observing that there is C0 > 0 such that
√
1 − η ≥ C0 when h−1 ≤ η ≤ h−2/3 and h → +∞, we

have

∫h−2/3

h−1

ηn√
2η
(
1 − η

)(
1 + ηh

)(3/2)+n dη ≤ C1h
−(3/2)−n

∫h−2/3

h−1

1√
2η
(
1 − η

)
η3/2

dη

≤ C1

C0
h−(3/2)−n

∫h−2/3

h−1

1
η2

dη =
C1

C0
h−(3/2)−n 1

η
|h−2/3
h−1

=
C1

C0
h−(3/2)−n

(
h − h2/3

)
≤ Ch−(1/2)−n.

(2.18)

By (2.15)–(2.18), we have T (n)
− (h) ≤ Ch−(1/2)−n, n = 0, 1, . . . , 6.
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The proof of the second inequality is similar to the first one, so we only give the brief
proof.

We choose V (s)/h = η as the new variable of integration, so we have

∂s

∂h
=

η

V ′ , s =

√
ηh

1 + ηh
,

V ′(s) =
2s

(1 − s2)2
=

2
√
ηh
(
1 + ηh

)2
√
1 + ηh

.

(2.19)

By direct computation, we have

I−(h) = 2
∫0

−αh

√
2(h − V (s))ds = h

∫1

0

√
2
(
1 − η

)
√
η
(
1 + ηh

)3/2dη. (2.20)

By (2.20), we can easily get

I
(n)
− (h) = I

(n)
−1 (h) + I

(n)
−2 (h) = n

(−3/2)!
(−(3/2) − n + 1)!

∫1

0

√
2
(
1 − η

)
√
η

ηn−1
(
1 + ηh

)(3/2)+n−1dη

+
(−3/2)!

(−(3/2) − n)!
h

∫1

0

√
2
(
1 − η

)
√
η

ηn

(
1 + ηh

)(3/2)+n dη,
(2.21)

where n = 0, 1, . . . , 6.
By the similar way in estimating T

(n)
− (h), we get

I
(n)
−1 (h) ≤ Ch(1/2)−n, I

(n)
−2 (h) ≤ Ch(1/2)−n, (2.22)

which means that

I
(n)
− (h) ≤ Ch(1/2)−n, n = 0, 1, . . . , 6. (2.23)

Thus, we complete the proof of Lemma 2.1.

Remark 2.2. It follows from (2.10) and Lemma 2.1 that

lim
h→+∞

T−(h) = 0, lim
h→+∞

T+(h) = +∞. (2.24)

Thus, the time period T0(h) is dominated by T+(h) when h is sufficiently large. By T0(h) =
I ′0(h), we know I0(h) is dominated by I+(h) when h is sufficiently large.
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Remark 2.3. It also follows from the definition of I0(h), I−(h), I+(h) and Remark 2.2 that

∣∣∣∣hn d
nI0(h)
dhn

∣∣∣∣ ≤ C0I0(h), for n ≥ 1. (2.25)

In particular,

ch(1/2)+1/(1+α) ≤ I0(h) ≤ Ch(1/2)+1/(1+α). (2.26)

Remark 2.4. Note that h = h0(I0) is the inverse function of I0. By Remark 2.3, we have

∣∣∣∣In d
nh(I)
dIn

∣∣∣∣ ≤ C0h(I), for n ≥ 1. (2.27)

We now carry out the standard reduction to the action-angle variables. For this pur-
pose, we define the generating function S(x, I) =

∫
Γ

√
2(h − V (s))ds, where Γ is the part of

the the closed curve Γh connecting the point on the y-axis and point (x, y).
We define the well-known map (θ, I) → (x, y) by

y =
∂S

∂x
(x, I), θ =

∂S

∂I
(x, I). (2.28)

It is well-known that the map is symplectic, since

dx ∧ dy = dx ∧ (Sxxdx + SxIdI) = SxIdx ∧ dI,

dθ ∧ dI = (SIxdx + SIIdI) ∧ dI = SIxd ∧ dI.
(2.29)

From the above discussion, we can easily get

θ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
T0
(
h
(
x, y

))
⎛
⎜⎝
∫x

−αh

1√
2
(
h
(
x, y

) − V (s)
)ds

⎞
⎟⎠, if y > 0,

1 − 1
T0
(
h
(
x, y

))
⎛
⎜⎝
∫x

−αh

1√
2
(
h
(
x, y

) − V (s)
)ds

⎞
⎟⎠, if y < 0.

(2.30)

I
(
x, y

)
= I0

(
h
(
x, y

))
= 2

∫βh

−αh

√
2
(
h
(
x, y

) − V (s)
)
ds. (2.31)

In the new variables (θ, I), the system (2.1) becomes

θ′ =
∂H

∂I
, I ′ = −∂H

∂θ
, (2.32)
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where

H(θ, I, t) = h0(I) +H1(I, θ, t), (2.33)

where h0(I) is the inverse function of I0(H) and H1(I, θ, t) = y(I, θ)P(t).
In order to estimate H1(I, θ, t), we need the estimate on the functions x(I, θ) and

y(I, θ). For this purpose, we first give some definitions which are very similar to those in [4].
Define a function L in terms of h and V by

L(x, I) = −hII

hI
+
hI

h

(
W ′ − 1

2

)
, (2.34)

and a linear differential operator acting on functions of x, I, according to

L(f) = hI

h

{(
f
V

Vx

)
x

− 1
2
f

}
+ fI, (2.35)

where f(x, I) is a smooth function, and we denote Ln = L ◦ · · · ◦ L︸ ︷︷ ︸
n

.

The following equality (its proof can be found in [4]) is crucial for the proof of the fol-
lowing lemmas:

d

dI

∫x

−αh

f(s, I)
1√

h − V (s)
ds =

∫x

−αh

L(f) 1√
h − V (s)

ds

+ f(x, I)
∫x

−αh

L(s, I)
1√

h − V (s)
ds.

(2.36)

Before giving the estimates on x(I, θ) and y(I, θ), we now prove some lemmas which
will be used frequently in the following proof.

Lemma 2.5. Suppose that there is a constant C0 such that |g(x, I)| ≤ C0I
−k, then one can find a con-

stant C′
0 and C′

1 such that, for −αh ≤ x ≤ 0,

∣∣∣∣∣V ′(x)
∫x

−αh

g(s, I)√
h − V (s)

ds

∣∣∣∣∣ ≤ C′
0I

−k
√
h − V (x), (2.37)

∣∣∣∣∣
√
h − V (x)

∫x

−αh

g(s, I)√
h − V (x)

∣∣∣∣∣ ≤ C′
1I

−k(αh + x). (2.38)

Proof. We now prove (2.37). Let

G(x, I) = I−k
√
h − V (x)
V ′(x)

, F(x, I) =
∫x

−αh

g(s, I)
1√

h − V (s)
ds, (2.39)
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then

F(−αh, I) = lim
x→−αh

G(x, I) = 0. (2.40)

By direct calculation,

∣∣∣∣∂F(x, I)∂x

∣∣∣∣ =
∣∣∣∣∣g(x, I)

1√
h − V (x)

∣∣∣∣∣ ≤ C0I
−k 1√

h − V (x)
,

∂G(x, I)
∂x

= I−k
(

(V ′(x))2 + (h − V (x))V ′′(x)

(V ′(x))2

)
1√

h − V (x)
.

(2.41)

Since

V ′′(x) =

(
1 − x2)2 + 4x2(1 − x2)

(1 − x2)4
> 0, (2.42)

we have

(V ′(x))2 + (h − V (x))V ′′(x)

(V ′(x))2
> 0. (2.43)

By |g(x, I)| ≤ C0I
−k, there is C′

0 = 2C0 such that

− C′
0I

−k
(

(V ′(x))2 + (h − V (x))V ′′(x)

(V ′(x))2

)
1√

(h − V (x))

≤ ∂F(x, I)/∂x√
2h − V (x)

≤ C′
0I

−k
(

(V ′(x))2 + (h − V (x))V ′′(x)

(V ′(x))2

)
1√

h − V (x)
,

(2.44)

that is

−C′
0
∂G(x, I)

∂x
≤ ∂F(x, I)

∂x
≤ C′

0
∂G(x, I)

∂x
, (2.45)

which means that

−C′
0G(x, I) ≤ F(x, I) ≤ C′

0G(x, I). (2.46)



10 Abstract and Applied Analysis

That is,

∣∣∣∣∣V ′(x)
∫x

−αh

g(s, I)
1√

h − V (x)

∣∣∣∣∣ ≤ CI−k
√
h − V (x). (2.47)

Thus, we complete the proof (2.37).
Now, we prove (2.38). Let

G(x, I) = I−k
(αh + x)√
h − V (x)

, F(x, I) =
∫x

−αh

g(s, I)
1√

h − V (s)
ds. (2.48)

Then, we have

F(−αh, I) = lim
x→−αh

G(x, I) = 0. (2.49)

By direct computation, we have

∣∣∣∣∂F(x, I)∂x

∣∣∣∣ =
∣∣∣∣∣g(x, I)

1√
(h − V (x))

∣∣∣∣∣ ≤ C0I
−k 1√

h − V (x)
,

∂G(x, I)
∂x

= I−k
(
1 +

V ′(x)(αh + x)
2(h − V (x))

)
1√

h − V (x)
.

(2.50)

Since V ′′(x) > 0 and h = V (−αh + x), it follows that for

∣∣∣∣ V ′(x)(αh)
2(h − V (x))

∣∣∣∣ ≤ 1
2
, (2.51)

so for C′
1 > 2C0 + 1, we have

−C′
1
∂G(x, I)

∂x
≤ ∂F(x, I)

∂x
≤ C′

1
∂G(x, I)

∂x
, (2.52)

which means that

−C′
1G(x, I) ≤ F(x, I) ≤ C′

1G(x, I). (2.53)

By the definition of G(x, I), we have

∣∣∣∣
√
h − V (x)F(x, I)

∣∣∣∣ ≤ C′
1I

−k(αh + x). (2.54)

Thus, we complete the proof of (2.38) and Lemma 2.5.



Abstract and Applied Analysis 11

By Lemma 2.5, we have the following Lemma which is important to our estimation.

Lemma 2.6. One can find a constant C such that, for −αh ≤ x ≤ 0,

∣∣∣∣∣∂kI
(∫x

−αh

L(x, I)√
h − V (s)

ds

)∣∣∣∣∣ ≤
C

V ′(x)
I−(k+1)

√
h − V (x), (2.55)

∣∣∣∣∣∂kI
(∫x

−αh

L(x, I)√
h − V (s)

ds

)∣∣∣∣∣ ≤
C√

h − V (x)
I−(k+1)(αh + x), (2.56)

where 0 ≤ k ≤ 6.

Proof. When k = 1, we have

∂I

(∫x

−αh

L
1√

h − V (s)
ds

)
=
∫x

−αh

L(L)
1√

h − V (s)
ds + L

∫x

−αh

L
1√

h − V (s)
ds. (2.57)

By the definitions of L and L, we have |L| ≤ CI−1 and |L(L)| ≤ CI−2. By (2.37), we obtain

∫x

−αh

L
1√

h − V (s)
ds ≤ C

V ′ I
−2√h − V . (2.58)

Suppose that k = l, we have

∂lI

(∫x

−αh

L
1√

h − V (s)
ds

)
≤ C

V ′ I
−(l+1)√h − V . (2.59)

We now proven that when k = l + 1,

∂l+1I

(∫x

−αh

L
1√

h − V (s)
ds

)
≤ C

V ′ I
−(l+2)√h − V . (2.60)

By direct computation, we have

∂l+1I

(∫x

−αh

L√
h − V (s)

ds

)
=

{
∂nI
(Lm(f))∂l−m−n

I

(∫x

−αh

L√
h − V (s)

ds

)
,

∫x

−αh

Ll+1(L)√
h − V (s)

ds

}
,

(2.61)

where {f1, f2, . . . , fn} denotes linear combination of functions f1, . . . , fn with integer coeffi-
cients and 0 ≤ m + n ≤ l.
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Since |L(L)| ≤ CI−2, we have Ll+1(L) ≤ CI−(l+2). By (2.37), we obtain

∣∣∣∣∣
∫x

−αh

Ll+1(L)√
h − V (s)

ds

∣∣∣∣∣ ≤
C

V ′ I
−(l+2)√h − V . (2.62)

By direct computation, we get

∂n(Lm(L)) ≤ CI−(m+n+1). (2.63)

By assumption (2.59), we have

∣∣∣∣∣∂l−m−n
I

(∫x

−αh

L√
h − V (s)

ds

)∣∣∣∣∣ ≤
C

V ′ I
−(l−m−n+1)√h − V . (2.64)

So, we have

∣∣∣∣∣∂nI
(Lm(f))∂l−m−n

I

(∫x

−αh

L√
h − V (s)

ds

)∣∣∣∣∣ ≤
C

V ′ I
−(l+2)√h − V . (2.65)

By (2.62) and (2.65), we have

∣∣∣∣∣∂l+1I

(∫x

−αh

L√
h − V (s)

ds

)∣∣∣∣∣ ≤
C

V ′ I
−(l+2)√h − V . (2.66)

Thus, we have proved (2.55).
The inequality (2.56) can be proved by (2.38), and the process of proof is similar to

that of (2.55), so we omit it.
Thus, we have proved Lemma 2.6.

Now, we give the estimates of x(I, θ) and y(I, θ).

Lemma 2.7. For I sufficient large and −αh ≤ x < 0, the following estimates hold:

∣∣∣∣In ∂
nx(I, θ)
∂In

∣∣∣∣ ≤ C|x(I, θ) + 1|,
∣∣∣∣In ∂

ny(I, θ)
∂In

∣∣∣∣ ≤ C
∣∣y(I, θ)∣∣, for 0 ≤ n ≤ 6. (2.67)

Proof. We now prove the first inequality. It is sufficient to prove that

In
∂nx(I, θ)

∂In

∣∣∣∣ ≤ C(1 + x). (2.68)
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Case k = 1. Differentiating (2.30) by I and noting 1/T0 = hI , we have

0 = hII

∫x

−αh

1√
2
(
h
(
x, y

) − V (s)
)ds + hI∂I

⎛
⎜⎝
∫x

−αh

1√
2
(
h
(
x, y

) − V (s)
)ds

⎞
⎟⎠. (2.69)

Now, we choose V (s)/h = η as the new variable of integration, so

∂I

⎛
⎜⎝
∫x

−αh

1√
2
(
h
(
x, y

) − V (s)
)ds

⎞
⎟⎠

= ∂I

⎛
⎜⎝
∫V (x)/h

0

√
h

V ′(s(η, t, h))
1√

2
(
1 − η

)dη
⎞
⎟⎠

=
V ′xIh − VhI

h2

h1/2

V ′
1√

2
(
1 − η

) +
∫V (x)/h

0

(1/2)h−1/2V ′hI − h1/2V ′′(∂s/∂I)

(V ′)2
1√

2
(
1 − η

)dη

=
xI√

2(h − V )
− hI

h
√
2(h − V )

V

V ′ +
hI

h

+
∫V (x)/h

0

(1/2)h−1/2V ′hI − h1/2V ′′(∂s/∂I)

(V ′)2

√
h√

2(h − V )

V ′

h
ds.

(2.70)

Observing that

∂s

∂I
=

hIη

V ′ , W ′ = 1 − VV ′′

(V ′)2
, (2.71)

and simplifying, we have

(2.70) =
xI√

2(h − V )
− hI

h
√
2(h − V )

V

V ′ +
hI

h

∫x

0

(
W ′ − 1

2

)
ds√

2(h − V )
. (2.72)

By (2.69)–(2.72), we have

xI(θ, I) =
√
2(h − V )

∫x

−αh

L(s, I)
1√

2(h − V (s))
ds +

hI

h
W(x). (2.73)

Since |L| ≤ CI−1, by Lemma 2.6, we have

∣∣∣∣∣
√
(2(h − V ))

∫x

−αh

L(s, I)
1√

2(h − V (s))
ds

∣∣∣∣∣ ≤ CI−1(αh + x). (2.74)
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We observe that

W(x) =
1
2
x(1 − x)(1 + x), (2.75)

where −1 < x < 0, so |W(x)| ≤ C(1 + x), which means that

∣∣∣∣hI

h
W(x)

∣∣∣∣ ≤ CI−1(1 + x). (2.76)

By (2.74) and (2.76), we have |xI | ≤ I−1(1 + x).
We suppose that

∣∣∣∂k−1I x
∣∣∣ ≤ I−(k−1)(1 + x), (2.77)

where 1 ≤ k ≤ 6. We will prove |∂kI x| ≤ I−k(1 + x).
For this purpose, we firstly estimate

√
2(h − V (x)). We differentiate

√
2(h − V (x)) in

(2.73) and using (2.73), then we obtain

d

dI

√
2(h − V (x)) =

hI

h

√
2(h − V (x)) − V ′(x)

2

∫x

−αh

L(s, I)
1√

2(h − V (s))
ds. (2.78)

Since |hI/h| ≤ CI−1, we have

∣∣∣∣hI

h

√
2(h − V (x))

∣∣∣∣ ≤ CI−1
√
2(h − V (x)). (2.79)

By (2.37), we have

∣∣∣∣∣
V ′(x)
2

∫x

−αh

L(s, I)
1√

2(h − V (s))
ds

∣∣∣∣∣ ≤ CI−1
√
2(h − V (x)). (2.80)

By (2.78)–(2.80), we have

∣∣∣∣∂I
(√

2(h − V (x))
)∣∣∣∣ ≤ CI−1

√
2(h − V (x)). (2.81)

We suppose that when n ≤ k − 1,

∣∣∣∣∂nI
(√

2(h − V (x))
)∣∣∣∣ ≤ CI−n

√
2(h − V (x)). (2.82)
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We will prove that when n = k,

∣∣∣∣∂nI
(√

2(h − V (x))
)∣∣∣∣ ≤ CI−n

√
2(h − V (x)). (2.83)

By direct computation, we have

∂kI

(√
2(h − V (x))

)
=

{
V (k1)∂l1I x · · · ∂lk1−1I x∂k3I

(∫x

−αh

L(s, I)
1√

2(h − V (s))
ds

)
,

∂mI

(
hI

h

)
∂k−m−1
I

(√
2(h − V (x))

)}
,

(2.84)

where l1 + · · · + lk1−1 = k2, k2 + k3 = k − 1 and k2 < k1 < k, k3 < k.
By the assume (2.77), we have

∣∣∣∂l1I x · · · ∂lk1−1I x
∣∣∣ ≤ (1 + x)k1−1I−k2 . (2.85)

By (2.55), we get

∣∣∣∣∣∂k3I
(∫x

−αh

L(s, I)
1√

2(h − V (s))
ds

)∣∣∣∣∣ ≤
C

V ′ I
−k3
√
2(h − V (x)) (2.86)

By (2.85), (2.86) and noting the fact that

(1 + x)k−1∂kI (V ) ≤ C
(∣∣V ′∣∣ + (1 + x)k1+1

)
, −1 < x < 0, (2.87)

we obtain

∣∣∣∣∣
∑

V (k1)∂l1I x · · · ∂lk1−1I x∂k3I

(∫x

−αh

L(s, I)
1√

2(h − V (s))
ds

)∣∣∣∣∣
≤
∑ C

V ′V
(k1)(1 + x)k1−1I−(k2+k3+1)

√
2(h − V (x))

≤
∑
[
|V ′| + (1 + x)k1+1

]
V ′ I−(k)

√
2(h − V (x))

≤ CI−(k)
√
2(h − V (x)).

(2.88)

By assumption (2.82), we have

∣∣∣∣∂k−m−1
I

(√
2(h − V (x))

)∣∣∣∣ ≤ CIk−m−1
(√

2(h − V (x))
)
. (2.89)
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By (2.89) and the fact that |∂mI (hI/h)| ≤ CI−(m+1), we have

∣∣∣∣
∑

∂mI

(
hI

h

)
∂k−m−1
I

(√
2(h − V (x))

)∣∣∣∣ ≤ CI−k
√
2(h − V (x)). (2.90)

So, by (2.88) and (2.90), we have proved (2.83).
By (2.56), we have

∣∣∣∣∣∂mI
(∫x

−αh

L(x, I)√
2(h − V (s))

ds

)∣∣∣∣∣ ≤
C√

2(h − V (x))
I−(m+1)(αh + x). (2.91)

By (2.83) and (2.91), we have

∣∣∣∣∣∂n
(√

2(h − V (x))
)
∂m
(∫x

−αh

L(s, I)
1√

2(h − V (s))
ds

)∣∣∣∣∣ ≤ CI−(m+n+1)(αh + x)

≤ CI−(k+1)(αh + x).

(2.92)

By the assumption (2.77), the fact that ∂m3
I (hI/h) ≤ CI−(m3+1), and noting that

∂I

(
hI

h
W

)
=

k∑
W (m1)∂l1I x · · · ∂lm1

I x∂m3
I

(
hI

h

)
, (2.93)

where m2 < m1, l1 + · · · + lm1 = m2, m2 +m3 = k, we have

∂I

(
hI

h
W

)
≤

k∑
W (m1)I−(l1+···+lm1 )(1 + x)m1I−(m3+1)

≤ C
k∑
W (m1)(1 + x)m1I−(m2+m3+1)

≤ C(1 + x)I−(k+1).

(2.94)

By (2.92) and (2.94), we have

∂kI xI =
k∑
∂n
(√

2(h − V (x))
)
∂m
(∫x

−αh

L(s, I)
1√

2(h − V (s))
ds

)
+ ∂k

(
hI

h
W(x)

)

≤ CI−(k+1)(1 + x) ≤ CI−(k+1)(1 + x),

(2.95)

which means

∂kI x ≤ CI−k(1 + x). (2.96)
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We now prove

∣∣∣∣In ∂
ny(I, θ)
∂In

∣∣∣∣ ≤ c
√
I. (2.97)

Since

h(I) =
1
2
y2 + V (x), (2.98)

we have

y = ±
√
2(h(I) − V (x)). (2.99)

we have proved (2.83), so we have

∣∣∣∣In ∂
ny(I, θ)
∂In

∣∣∣∣ ≤ C · I−ny, (2.100)

which means that

∣∣∣∣In ∂
ny(I, θ)
∂In

∣∣∣∣ ≤ C · h0(I). (2.101)

The proof of Lemma 2.7 is complete.

Remark 2.8. Lemma 2.7 also holds when x ≥ 0. Since the idea and the process of the proof is
more easily than that of Lemma 2.7, we omit the details.

Now, we give the estimate of H1(I, θ, t).

Lemma 2.9.

Ik
∣∣∣∣∣
∂kI ∂

l
t∂

i
θH1(I, θ, t)

∂Ik∂tl∂θi

∣∣∣∣∣ ≤ C ·
√
h0(I), k + i ≤ 7, i = 0, 1. (2.102)

Proof. This lemma can be proved easily form the definition ofH1 and |y(θ, I)| ≤
√
2h0(I).

2.2. New Action and Angle Variables

Now, we are concerned with the Hamiltonian system (2.32) with Hamiltonian function
H(θ, I, t) given by (2.33). Note that

Idθ −Hdt = −(Hdt − Idθ). (2.103)
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This means that if one can solve I form (2.32) as a function ofH (θ and t as parameters), then

dH

dθ
= −∂I

∂t
(t,H, θ),

dt

dθ
= − ∂I

∂H
(t,H, θ) (2.104)

is also a Hamiltonian system with Hamiltonian function I, and now, the action, angle, and
time variables areH, t, and θ.

Form Remarks 2.3 and 2.4, we have

∂H

∂I
−→ 1, as I −→ +∞. (2.105)

Hence, by the implicit function theorem, there is a function I(t,H, θ) such that

H(θ, I(t,H, θ), t) = H. (2.106)

By Lemma 2.9, we have

H1(θ, I, t)
H0(I)

−→ 0, as I → +∞. (2.107)

So, there is a function R(t,H, θ) with |R| ≤ (1/2)H such that

I(t,H, θ) = I0(H − R(t,H, θ)), for H −→ +∞. (2.108)

Let

I1(t,H, θ) = I0(H − R(t,H, θ)) − I0(H) =
∫π

0
I ′0(H − sR(t,H, θ))R(t,H, θ)dθ. (2.109)

Then,

I(t,H, θ) = I0(H) + I1(t,H, θ). (2.110)

From Remark 2.3, we have known the estimate of I0(H), so we need to give the estimate of
I1(t,H, θ). For this propose, we need firstly the following Lemma on the estimate ofR(t,H, θ).

Lemma 2.10. The function R(t,H, θ) possesses the following estimates:

Hk

∣∣∣∣∣
∂k+lR(H, t, θ)

∂kH∂lt

∣∣∣∣∣ ≤ H1/2, (2.111)

for k + l ≤ 6.
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Proof. From (2.108) and (2.110), it follows that

R(t,H, θ) = H1(θ, I0(H − R), t). (2.112)

When k + l = 0, by Lemma 2.9, we have

|R(t,H, θ)| = |H1(θ, I0(H − R), t)|

≤ C ·
√
h0(I0(H − R))

≤ C ·
√
H − R

≤ C ·
√
H.

(2.113)

When k + l = 1, we first denote

Δ =
∂H1

∂I
(θ, I0(H − R), t)I ′0(H − R). (2.114)

By Remark 2.3, we observe that I0 is increasing and

I0

(
1
2
H

)
≤ I0(H) ≤ I0

(
3
2
H

)
≤ C · I0

(
1
2
H

)
. (2.115)

By Lemma 2.9 and (2.115), we have

|Δ| =
∣∣∣∣∂H1

∂I
(θ, I0(H − R), t) · I ′0(H − R)

∣∣∣∣

≤ C · 1
I0(H − R)

·
√
h0(I0(H − R)) · I ′0(H − R)

≤ C · 1
I0(H/2)

·
√

3
2
H · 1

(3/2)H
· I0
(
3
2
H

)

≤ C ·H−1/2

≤ 1
2
.

(2.116)

So,

1 + Δ ≥ 1
2
. (2.117)
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By direct computation, we have

∣∣∣∣ ∂R∂H
∣∣∣∣ =

∣∣∣∣∣
(∂H1/∂I)(θ, I0(H − R), t)I ′0(H − R)

1 + Δ

∣∣∣∣∣

≤ C ·
∣∣∣∣∂H1

∂I
(θ, I0(H − R), t)I ′0(H − R)

∣∣∣∣
≤ C ·H−1/2,

∣∣∣∣∂R∂t
∣∣∣∣ =

∣∣∣∣ (∂H1/∂t)(I0(H − R))
1 + Δ

∣∣∣∣

≤ C ·
∣∣∣∣∂H1

∂t
(I0(H − R))

∣∣∣∣
≤ C ·H1/2.

(2.118)

By (2.118), we can easily get

Hk

∣∣∣∣∣
∂k+lR(H, t, θ)

∂kH∂lt

∣∣∣∣∣ ≤ H1/2. (2.119)

When k + l ≥ 2, one may get

∂k+lR(H, t, θ)
∂kH∂lt

=
∑

cn,j1···jn
∂nH1

∂nI
j1
0

∂j1I0(H − R)
∂Hj1

· · · ∂
jnI0(H − R)

∂Hjn
, (2.120)

where 1 ≤ n ≤ k, j1 + · · · + jn < k. It is easy to verify

∣∣∣∣∣
∂k+lR(H, t, θ)

∂kH∂lt

∣∣∣∣∣ ≤ C ·H(1/2)−k, (2.121)

for k + l ≥ 2. This complete the proof.

Now, we give the estimates of I1(t,H, θ).

Lemma 2.11. The function I1(t,H, θ) possesses the following estimates:

Hk

∣∣∣∣∣
∂k+lI1(H, t, θ)

∂kH∂lt

∣∣∣∣∣ ≤ H1/(1+α), (2.122)

for k + l ≤ 6.
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Proof. When k = l = 0. By Remark 2.3 and |R| ≤ (1/2)H, we have

I ′0(H − sR(t,H, θ)) ≤ C · (H − sR)1/(1+α)

(H − sR)1/2
≤ C · ((3/2)H)1/(1+α)

((1/2)H)1/2
≤ C ·H1/(1+α)−(1/2). (2.123)

By Lemma 2.10, we know

|R| ≤ C ·H1/2. (2.124)

Since

I1(t,H, θ) =
∫π

0
I ′0(H − sR(t,H, θ))R(t,H, θ)dθ, (2.125)

it is easy to get that |I1| ≤ C ·H1/(1+α).
When k + l ≥ 1. By direct computation, we have

∂k+lI1(t,H, θ)
∂Hk∂tl

=
∑∫π

0

∂k1+l1I ′0(t,H, θ)

∂Hk1∂tl1
∂k2+l2R(t,H, θ)

∂Hk2∂tl2
ds, (2.126)

where k1 + k2 = k, l1 + l2 = l. Now, we need to estimate the first term of the integrand. The fol-
lowing equality is important:

∂k1+l1I ′0(t,H, θ)

∂Hk1∂tl1
=
∑

I
(p+q+1)
0 (H − sR)

∂m1u

∂Hm1
· · · ∂

mpu

∂Hmp
· ∂j1+n1u

∂Hj1∂tn1
· · · ∂jq+nqu

∂Hjq∂tnq
, (2.127)

where u = H − sR, p ≤ m, q ≤ n, n1, . . . , nq > 0, m1, . . . , mp > 0, n1 + · · · + nq = n, m1 + · · · +
mp+ j1+ · · ·+ jq = m. Assume that there are β(≤ p)members:m1, . . . , mβ in {m1, . . . , mp}which
equal to 1. Noting that

∣∣∣∣ ∂u∂H
∣∣∣∣ =

∣∣∣∣1 + s
∂R

∂H

∣∣∣∣ ≤ C,

∣∣∣∣∣
∂ku

∂Hk

∣∣∣∣∣ ≤
∣∣∣∣∣
∂kR

∂Hk

∣∣∣∣∣ ≤ C ·H(1/2)−k, k > 1,

∣∣∣∣∣
∂k+lu

∂Hk∂tl

∣∣∣∣∣ ≤
∣∣∣∣∣
∂k+lR

∂Hk∂tl

∣∣∣∣∣ ≤ C ·H(1/2)−k, l > 0.

(2.128)
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By the above discussions, we have

∣∣∣∣∣
∂k1+l1I ′0(t,H, θ)

∂Hk1∂tl1

∣∣∣∣∣ ≤ C · (H − sR)1/(1+α)+(1/2)

(H − sR)p+q+1
·H(1/2)(p−β)−(mβ+1+···+mp) ·H(1/2)q−(j1+···+jq)

≤ C
H(1/2)+1/(1+α)

Hp+q+1
·H(1/2)(p+q−β)H−(m−β)

≤ CH−(1/2)+1/(1+α)−m ·H(p+q−β)((1/2)−1)

≤ CH−(1/2)+1/(1+α)−m.

(2.129)

By Lemma 2.10, we have known

Hk

∣∣∣∣∣
∂k+lR(H, t, θ)

∂kH∂lt

∣∣∣∣∣ ≤ H1/2, (2.130)

then we have

Hk

∣∣∣∣∣
∂k+lI1(H, t, θ)

∂kH∂lt

∣∣∣∣∣ ≤ CH1/(1+α). (2.131)

2.3. Proof of the Main Result

Up to now, we have given an equivalent form of (1.5), that is, the system (2.32), which is
expressed in the action and angle variables (H, t). In this section, we first introduce some
transformations such that in the transformed system, the perturbation terms of (2.32) de-
pending on the new angle variable are very small if the new action variable is sufficiently
large and then prove, by Moser’s twist theorem, the statement of Theorem 1.1.

Lemma 2.12. There is a canonical transformation Ψ : (λ, τ) → (H, t) of the form

Ψ : H = λ +U(τ, λ, θ), t = τ + V (τ, λ, θ), (2.132)

where the functionsU and V are 1-periodic in θ and satisty

U(τ, λ, θ)
λ

, V (τ, λ, θ) −→ 0 as λ −→ ∞, (2.133)

uniformly for (τ, θ) ∈ T2 such that under this mapping, the system and the Hamiltonian function I in
(2.110) is changed into the form

dλ

dθ
= −∂K

∂τ
(τ, λ, θ),

dτ

dθ
=

∂K
∂H

(τ, λ, θ), (2.134)
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where

K(τ, λ, θ) = I0(λ) + [I1](λ, θ) +M(τ, λ, θ), (2.135)

with

[I1](λ, θ) =
∫1

0
I1(t, λ, θ)dt. (2.136)

Moreover, the new perturbationM possesses the estimate
∣∣∣∣∣

∂k+l

∂λk∂τl
M(τ, λ, θ)

∣∣∣∣∣ ≤ C · λ−k+(1/2). (2.137)

Proof. Wewill look for the required transformationΨ by a generating functionF(t, λ, θ) in the
following way:

H = λ +
∂F
∂t

(t, λ, θ), τ = t +
∂F
∂λ

(t, λ, θ), (2.138)

where the function F will be given later. Under Ψ, the transformed system of (2.104) is of the
form

dλ

dθ
= −∂K

∂τ
(τ, λ, θ),

dτ

dθ
= −∂K

∂λ
(τ, λ, θ), (2.139)

where

K(τ, λ, θ) = I0

(
λ +

∂F
∂t

)
+ I1

(
t, λ +

∂F
∂t

, θ

)
+
∂F
∂θ

. (2.140)

By Taylor’s formula, one can write

K(τ, λ, θ) = I0(λ) + I ′0(λ)
∂F
∂t

+ I1(t, λ, θ) +M(τ, λ, θ), (2.141)

where

M(τ, λ, θ) =
∂F
∂θ

+
∫1

0
(1 − s)I ′′0

(
λ + s

∂F
∂t

)
·
(
∂F
∂θ

)2

ds +
∫1

0

∂I1
∂H

(
t, λ + s

∂F
∂t

, θ

)
· ∂F
∂t

ds.

(2.142)

We choose F

F(t, λ, θ) = −
∫ t

0

1

I ′0(λ)
· (I1(t, λ, θ) − [I1](λ, θ)). (2.143)

Then, K is of the form (2.135).
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We now show that M satisfies (2.137). From Remark 2.3 and Lemma 2.11, it follows
that

∣∣∣∣∣
∂k+k+i

∂λk∂tl∂θi
F(t, λ, θ)

∣∣∣∣∣ ≤ C · λ−k+(1/2), (2.144)

for k + i + l ≤ 6 and i = 0, 1. In particular

∣∣∣∣∣
∂2

∂λ∂t
F(t, λ, θ)

∣∣∣∣∣ ≤ Cλ−1/2 ≤ 1
2
, (2.145)

if λ � 1. So we can solve the second equation of (2.138) for t,

t = τ + V (τ, λ, θ), (2.146)

where the function V satisfies

V (τ, λ, θ) = −∂F
∂λ

(τ + V, λ, θ). (2.147)

Set

U(τ, λ, θ) =
∂F
∂t

(τ + V, λ, θ). (2.148)

Then, the canonical transformation Ψ is of the form (2.132). Moreover, similar to the proof of
[5, Lemma 2], we can verify that

∣∣∣∣∣
∂k+l

∂λk∂τl
U(τ, λ, θ)

∣∣∣∣∣ ≤ C · λ−k+(1/2),
∣∣∣∣∣

∂k+l

∂λk∂τl
V (τ, λ, θ)

∣∣∣∣∣ ≤ C · λ−k−(1/2), (2.149)

for k + l ≤ 5 andU/λ, V → 0 as λ → +∞. Let

φ1(τ, λ, θ) =
∂F
∂θ

(τ + V, λ, θ),

φ2(τ, λ, θ) =
∫1

0
(1 − s)I ′′0(λ + sU) ·U2ds,

φ3(τ, λ, θ) =
∫1

0

∂I1
∂H

(τ + V, λ + sU, θ) ·Uds.

(2.150)
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It is not difficult to prove that

∣∣∣∣∣
∂k+l

∂λk∂τl
φ1(τ, λ, θ)

∣∣∣∣∣ ≤ C · λ−k+(1/2),

∣∣∣∣∣
∂k+l

∂λk∂τl
φ1(τ, λ, θ)

∣∣∣∣∣ ≤ C · λ−k+(1/(1+α))−(1/2),

∣∣∣∣∣
∂k+l

∂λk∂τl
φ1(τ, λ, θ)

∣∣∣∣∣ ≤ C · λ−k+(1/(1+α))−(1/2),

(2.151)

for k + l ≤ 5. Note that 0 < α < 1, we have 1/(1 + α) − 1/2 < 1/2.
Hence, we have

∣∣∣∣∣
∂k+l

∂λk∂τl
M(τ, λ, θ)

∣∣∣∣∣ ≤ λ−k+(1/2). (2.152)

The proof of Lemma 2.12 is complete.
For λ0 > 0, we denote by Aλ0 the domain

Aλ0 =
{
(λ, τ, θ) | λ ≥ λ0, (τ, θ) ∈ T2

}
. (2.153)

Lemma 2.13. The Poincaré mapping P of (2.134) has the intersection property onAH0 ; that is, if Γ is
an embedded circle in AH0 homotopic to a circle λ = const. in AH0 , then P(Γ)

⋂
Γ/= ∅.

Proof. The proof can be found in [5].
Definite a diffeomorphism Ψ1 : AH0 × S

1 → AH0 × S
1

ν = I ′0(H), τ = τ, θ = θ. (2.154)

Then, the system (2.134) under the transformation Ψ1 becomes

dν

dθ
= f1(λ, t, θ),

dt

dθ
= ν + f2(λ, t, θ), (2.155)

where

f1(τ, ν, θ) = −I ′′0(λ)
∂M
∂τ

(τ, λ, θ), f2(τ, ν, θ) =
∂[I1]
∂λ

(λ, θ) +
∂M
∂λ

(τ, λ, θ), (2.156)

with λ = λ(ν) defined through the transformation Ψ1.
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Now, we estimate f1 and f2. Since

c · λ1/(1+α)−(1/2) ≤ I ′0(λ) ≤ C · λ1/(1+α)−(1/2),
∣∣∣∣∂[I1]∂λ

∣∣∣∣ ≤ C · λ1/(1+α)−1, (2.157)

we have

c · λ2(1+α)/(1−α) ≤ λ(ν) ≤ C · λ2(1+α)/(1−α), (2.158)

then

λ � 1 ⇐⇒ ν � 1. (2.159)

Moreover, we have

∣∣∣∣∣
∂k

∂νk
λ(ν)

∣∣∣∣∣ ≤ C · ν−kλ(ν). (2.160)

When 0 < α < 1, we have
∣∣∣∣∣

∂k+l

∂λk∂τl
M(τ, λ, θ)

∣∣∣∣∣ ≤ C · λ−k+(1/2),

1
2
<

1
1 + α

< 1,

(2.161)

so
∣∣∣∣∣

∂k+l

∂νk∂τl
f1(τ, ν, θ)

∣∣∣∣∣ ≤ C · ν−k · λ−2 · ν−kI0(λ) · λ1/2

≤ C · ν−kλ−α/(1+α)

≤ C · ν−k+(−4α/(1−α))

≤ C · ν−k−σ,
∣∣∣∣∣

∂k+l

∂νk∂τl
f2(τ, ν, θ)

∣∣∣∣∣ ≤ C · ν−k ·
(
λ−1/2 + λ1/(1+α)−1

)

≤ C · ν−k · λ1/(1+α)−1

≤ C · ν−k−(2α/(1−α))

≤ C · ν−k−σ,
(2.162)

for all k + l ≤ 4, where σ = min{4α/(1 − α), 2α/(1 − α)} = 2α/(1 − α) > 0.
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Since f1 and f2 are sufficiently small as ν � 1, all solution of (2.155) exist for 0 ≤ θ ≤ 1
when the initial values ν(0) = λ are sufficiently large. Hence, the Poincaré map Φ associated
to (2.155) is well defined on Aλ0 as λ0 � 1. In fact, by integrating (2.155) from θ = 0 to θ = π ,
we see that Φ has the form

Φ : τ1 = τ0 + μ0 + Ξ1(t0, λ0), ν1 = ν0 + Ξ2(t0, λ0), (2.163)

where Ξ1 and Ξ2 satisfy the same estimates as those of f1 and f2; that is,

∂kν∂
l
τΞi ≤ ν−σ, (2.164)

where i = 1, 2, 0 ≤ k + l ≤ 4.
SinceΦ satisfies all the assumptions of Moser’s twist theorem [9], from which we con-

clude that for any ω � 1 satisfying

∣∣∣∣ω − p

q

∣∣∣∣ ≥ c0
∣∣q∣∣−5/2, p

q
∈ Q. (2.165)

There is an invariant curve Γω of Φ which is conjugated to pure rotation of the circle with
rotation number ω. Tracing back to the system (2.32), Γω gives rise to an invariant closed
curve of the Poincaré map Φ of (2.32) with rotation number 1/ω which surrounds and is
arbitrarily far away form the origin. Hence, all solutions of (1.5) are bounded. This completes
the proof of the Theorem.
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