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We construct a new iterative scheme by hybrid methods and prove strong convergence theorem
for approximation of a common fixed point of two countable families of weak relatively
nonexpansive mappings which is also a solution to a system of generalized mixed equilibrium
problems in a uniformly convex real Banach space which is also uniformly smooth using the
properties of generalized f-projection operator. Using this result, we discuss strong convergence
theorem concerning general H-monotone mappings and system of generalized mixed equilibrium
problems in Banach spaces. Our results extend many known recent results in the literature.

1. Introduction

Let E be a real Banach space with dual E*, and let C be nonempty, closed and convex subset
of E. Amapping T : C — C is called nonexpansive if

ITx =Tyl < [lx -y

, Yx,yeC. (1.1)

A point x € Cis called 4 fixed point of T if Tx = x. The set of fixed points of T is denoted by
F(T) ={xeC:Tx =x}.
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We denote by J the normalized duality mapping from E to 2F" defined by
* 2 2
Je) = {f e E: (x ) = =P = | £]}- (1.2)

The following properties of J are well known (the reader can consult [1-3] for more details).
(1) If E is uniformly smooth, then J is norm-to-norm uniformly continuous on each
bounded subset of E.
(2) J(x)#0, x € E.
(3) If E is reflexive, then ] is a mapping from E onto E*.
(4) If E is smooth, then ] is single valued.

Throughout this paper, we denote by ¢, the functional on E x E defined by

$(x,y) = x> -2(x, T () + |v|I*, Vxy€eE. (1.3)

From [4], in uniformly convex and uniformly smooth Banach spaces, we have
(Ixll = Iy < @G y) < ixll + Iyl ¥y € E. (14)

Definition 1.1. Let C be a nonempty subset of E and let {T,};., be a countable family of
mappings from C into E. A point p € C is said to be an asymptotic fixed point of {T,}, if
C contains a sequence {x,},., which converges weakly to p and lim,_ o |x, — Tpxy| = 0.
The set of asymptotic fixed points of T is denoted by F({T,}%,). One says that {T,}%, is
countable family of relatively nonexpansive mappings (see, e.g., [5]) if the following conditions
are satisfied:

(R1) F({Tu};20) #0;
(R2) ¢(p, Tux) < ¢p(p,x), forallx e C, p € F(T,), n>0;
(R3) N2, F(Ty) = F({Tu}5o)-

Definition 1.2. A point p € C is said to be a strong asymptotic fixed point of {T,},~, if C
contains a sequence {x, },., which converges strongly to p and lim,_, ;||x, — TnXn|| = 0. The
set of strong asymptotic fixed points of T is denoted by F({T,}%,). One says that a mapping
{Tu} sy is countable family of weak relatively nonexpansive mappings (see, e.g., [5]) if the following
conditions are satisfied:

R1) F({Tn}320) #9;
(R2) ¢(p, Tux) < Pp(p,x), forallx e C, p € F(T,), n>0;
(R3) N2, F(T) = F({Tu) 20)-

Definition 1.3. Let C be a nonempty subset of E and let T be a mapping from C into E. A
point p € C is said to be an asymptotic fixed point of T if C contains a sequence {xy},-, which
converges weakly to p and lim,, _, || x, — Tx,|| = 0. The set of asymptotic fixed points of T is
denoted by F(T). We say that a mapping T is relatively nonexpansive (see, e.g., [6-11]) if the
following conditions are satisfied:
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(R1) F(T)#0;
(R2) ¢(p,Tx) < P(p,x), forall x e C, p € F(T);
(R3) F(T) = E(T).

Definition 1.4. A point p € C is said to be an strong asymptotic fixed point of T if C contains a
sequence {x, },-, which converges strongly to p and lim,, -, o, ||x, — Tx,|| = 0. The set of strong
asymptotic fixed points of T is denoted by F(T). We say that a mapping T is weak relatively
nonexpansive (see, e.g., [12, 13]) if the following conditions are satisfied:

(R1) F(T) #0;
(R2) ¢(p,Tx) < P(p,x), forallx € C, p € F(T);
(R3) F(T) = F(T).

Definition 1.3 (Definition 1.4) is a special form of Definition 1.1 (Definition 1.2)
as T, = T, for all n > 0. Furthermore, Su et al. [5] gave an example which is a
countable family of weak relatively nonexpansive mappings but not a countable family of
relatively nonexpansive mappings. It is obvious that relatively nonexpansive mapping is
weak relatively nonexpansive mapping. In fact, for any mapping T : C — C, we have F(T) C
F (T) c E(T). Therefore, if T is relatively nonexpansive mapping, then F(T) = F (T) = E(T).
Kang et al. [12] gave an example of a weak relatively nonexpansive mapping which is not
relatively nonexpansive.

Let F : CxC — Rbeabifunction, A: C — E*amappingand ¢ : C — Rareal-valued
function. The generalized mixed equilibrium problem is to find x € C (see, e.g., [14-19]) such
that

F(x,y) + (Ax,y —x) +o(y) —p(x) 20, (1.5)
for all y € C. We will denote the solutions set of (1.5) by GMEP(F, ¢). Thus
GMEP(F, A, p) = {x* € C: F(x*,y) + (Ax", y = x") + ¢(y) —(x*) >0, Vy e C}.  (1.6)

If o = 0and A = 0, then problem (1.5) reduces to an equilibrium problem studied by many
authors (see, e.g., [20-28]), which is to find x* € C such that

F(x',y) 20 (1.7)

for all y € C. We shall denote the solutions set of (1.7) by EP(F).

If p = 0 and E = H (a real Hilbert space), then problem (1.5) reduces to a generalized
equilibrium problem studied by many authors (see, e.g., [29-31]), which is to find x* € C
such that

F(x*,y) + (Ax*,y—x*) >0 (1.8)

forall y € C.
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If A = 0and E = H, then problem (1.5) reduces to mixed equilibrium problem
considered by many authors (see, e.g., [32-34]), which is to find x* € C such that

F(x,y) +o(y) —p(x") 20 (1.9)

forally € C.

The mixed equilibrium problems include fixed point problems, optimization prob-
lems, variational inequality problems, Nash equilibrium problems, and equilibrium problems
as special cases (see, e.g., [35]). Some methods have been proposed to solve the mixed
equilibrium problem (see, e.g., [33, 34, 36]). Numerous problems in physics, optimization
and economics reduce to find a solution of problem (1.8).

In [9], Matsushita and Takahashi introduced a hybrid iterative scheme for approxima-
tion of fixed points of relatively nonexpansive mapping in a uniformly convex real Banach
space which is also uniformly smooth: xp € C,

Yn = J! (anJxn + (1 —an)JTxy,),
H,={weC:¢(w,y) < P(w,x,)},
W,={weC:{x,—w,Jxg—Jxu)},

(1.10)

Xni1 = Hg,w,x0, 120

They proved that {x,};., converges strongly to IT(r)xo, where F(T) # 0.
In [37], Plubtieng and Ungchittrakool introduced the following hybrid projection
algorithm for a pair of relatively nonexpansive mappings: xp € C,

zn = J 7 (B T+ B T T+ B TS,
Yn = ]_1(“11]3(0 +(1-an)]za),
Co={z€C:p(zyn) < bz, x0) + an(lxoll + 2w, Jxu = Jxo)) |, (11D

Qn={z€eC:{(xp—2z Jx,— Jxo) <0},

Xn+1 = Pc,n0, X0,

where {a,}, { ,(11) ), ,(12) }, and { ,(13)} are sequences in (0, 1) satisfying ﬁ,(ql) + ﬁ,(f) + [5,(13) =1and

T and S are relatively nonexpansive mappings and ] is the single-valued duality mapping on
E. They proved under the appropriate conditions on the parameters that the sequence {x;}
generated by (1.11) converges strongly to a common fixed point of T and S.

In [10], Takahashi and Zembayashi introduced the following hybrid iterative scheme
for approximation of fixed point of relatively nonexpansive mapping which is also a solution
to an equilibrium problem in a uniformly convex real Banach space which is also uniformly
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smooth: xp € C, C; =C, x1 =Il¢, xp,
Yn = ]71 (anJxn + (1 —ay)JTxy),

1
—{y - - >
F(un,y) + - (y —un, Jun— Jya) 20, VyeC, 112

Cu1 = {w €Cy: ¢(wrun) < ¢(w/ xn)}'

Xne1 =l 41x0, n2>1,

where ] is the duality mapping on E. Then, they proved that {x,};., converges strongly to
Igxo, where Q = EP(F) N F(T) #0.

Recently, Li et al. [38] introduced the following hybrid iterative scheme for
approximation of fixed points of a relatively nonexpansive mapping using the properties
of generalized f-projection operator in a uniformly smooth real Banach space which is also
uniformly convex: xo € C,

Yn = ]71(“n]xn + (1= ay)JTxy,),
Cu1 = {w €Cy: G(w/]yn) < G(w, ]xn)}/ (1.13)

f
Xni =1Ie %0, n21

They proved a strong convergence theorem for finding an element in the fixed points set of
T. We remark here that the results of Li et al. [38] extended and improved on the results of
Matsushita and Takahashi [9].

Quite recently, motivated by the results of Matsushita and Takahashi [9] and Plubtieng
and Ungchittrakool [37], Su et al. [5] proved the following strong convergence theorem by
hybrid iterative scheme for approximation of common fixed point of two countable families
of weak relatively nonexpansive mappings in uniformly convex and uniformly smooth
Banach space.

Theorem 1.5. Let E be a uniformly convex real Banach space which is also uniformly smooth. Let C be
a nonempty, closed and convex subset of E. Suppose {Ty },—, and {S, },—; are two countable families of
weak relatively nonexpansive mappings of C into itself such that Q := (N2, F(T,))N (N2, F(Sy)) #0.
Suppose that {x,},., is iteratively generated by xy € C,

Zp = ]71 (ﬂi(il)]xn + ﬂ;(12)]Tnxn + ﬁ;S)]Snxn>/

Yn = ]71 (anJxn+ (1 —an)]zn),
Cp = {w €Cr1NQp: ¢(wz yn) < ¢(w/ xn)}/

Co={weC:p(w,yo) < p(w,x0)}, (1.14)
Qu={w € Cr1NQui:(xy—w,Jxo~ Jxn) >0},
Q=C

Xn+1 = chﬂanO/ n Z ]-/
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with the conditions

(i) liminf, B B > 0;

N M 26) _ Q.

(ii) iminf, B, ' Br” > 0;

(iii) 0 < a, < a < 1 for some a € (0,1).

Then, {x,},., converges strongly to ITgx.

Motivated by the above-mentioned results and the ongoing research, it is our purpose
in this paper to prove a strong convergence theorem for two countable families of weak
relatively nonexpansive mappings in a uniformly convex real Banach space which is also
uniformly smooth using the properties of generalized f-projection operator. Our results

extend the results of Li et al. [38], Su et al. [5] and many other recent known results in the
literature.

2. Preliminaries

Let E be a real Banach space. The modulus of smoothness of E is the function pg : [0,00) —
[0, 00) defined by

1
pr(H) = sup{§(||x+y|| -yl -1 <1yl < t}. 2.1)
E is uniformly smooth if and only if
tim PZEE) _ o, 2.2)
t—0 t

Let dim E > 2. The modulus of convexity of E is the function 6 : (0,2] — [0, 1] defined by

X+
2| = il = e = =il . @3

Or(e) := inf{l -

E is uniformly convex if for any e € (0, 2], there exists a 6 = 6(e) > 0 such that if x, y € E with
lx|l <1, |lyll £1, and ||x — y|| > ¢, then ||(1/2)(x + y)|| £ 1 - 6. Equivalently, E is uniformly
convex if and only if 6g(e) > 0 for all € € (0,2]. A normed space E is called strictly convex if
forallx,y € E, x#y, ||x|| = lyll =1, we have |[Ax + (1 - 1)y|| <1, forall A € (0,1).

Let E be a smooth, strictly convex and reflexive real Banach space and let C be a
nonempty, closed and convex subset of E. Following Alber [39], the generalized projection
¢ from E onto C is defined by

[cx = arg 1’;161(1:14)(}/, x), VxeE. (2.4)

The existence and uniqueness of Il¢ follows from the property of the functional ¢(x, y) and
strict monotonicity of the mapping | (see, e.g., [3, 4, 39-41]). If E is a Hilbert space, then I'lc
is the metric projection of H onto C.



Abstract and Applied Analysis 7

Next, we recall the concept of generalized f-projector operator, together with its
properties. Let G : C x E* — R U {+o0} be a functional defined as follows:

G ¢) = 11217 -2, ¢) + l¢|* +20£ @), (2.5)

where { € C, ¢ € E*, p is a positive number and f : C — R U {+o0} is proper, convex
and lower semi-continuous. From the definitions of G and f, it is easy to see the following
properties:

(i) G(¢, ¢) is convex and continuous with respect to ¢ when ¢ is fixed;

(ii) G(¢, ¢) is convex and lower semi-continuous with respect to ¢ when ¢ is fixed.

Definition 2.1 (Wu and Huang [42]). Let E be a real Banach space with its dual E*. Let C be

a nonempty, closed and convex subset of E. One says that Hé : E* — 2C is a generalized
f-projection operator if

My = {uGC:G(u,qf) =§n£G(§,(p)}, Vs € E*. (2.6)
S

For the generalized f-projection operator, Wu and Huang [42] proved the following
theorem basic properties.

Lemma 2.2 (Wu and Huang [42]). Let E be a real reflexive Banach space with its dual E*. Let C be
a nonempty, closed, and convex subset of E. Then the following statements hold:

(1) Hé is a nonempty closed convex subset of C for all ¢ € E*;
(ii) if E is smooth, then for all ¢ € E*, x € H{: if and only if

(x=y,¢-Jx)+pf(y) —pf(x) 20, VyeC; (2.7)

(iii) if E is strictly convex and f : C — RU {+oo} is positive homogeneous (i.e., f (tx) = tf(x)
forall t > 0 such that tx € C where x € C), then I_I{: is a single valued mapping.

Fan et al. [43] showed that the condition f is positive homogeneous which appeared
in Lemma 2.2 and can be removed.

Lemma 2.3 (Fan et al. [43]). Let E be a real reflexive Banach space with its dual E* and C a

nonempty, closed and convex subset of E. Then if E is strictly convex, then H{: is a single-valued

mapping.

Recall that ] is a single valued mapping when E is a smooth Banach space. There exists
a unique element ¢ € E* such that ¢ = Jx for each x € E. This substitution in (4.3) gives

G(&, Jx) = I17 = 2(&, Jx) +IIx]1* + 20 £ (&) (2.8)

Now, we consider the second generalized f-projection operator in a Banach space.
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Definition 2.4. Let E be a real Banach space and C a nonempty, closed, and convex subset of
E. One says that H{: : E — 2C€ is a generalized f-projection operator if

x = {u €C: G, Jx) = inf (3, ]x)}, Vx e E. (2.9)

Obviously, the definition of {T,},2, is a countably family of weak relatively
nonexpansive mappings is equivalent to

(R'1) F({Tn};20) #0;
(R'2) G(p, JTux) < G(p, Jx), forallx € C, p € F(T,), n > 0;
(R'3) N2 F(To) = F({Tulio)-

Lemma 2.5 (Lietal. [38]). Let E be a Banach spaceand f : E — RU{+oo} a lower semi-continuous
convex functional. Then there exists x* € E* and a € R such that

f(x)>(x,x")+a, VxeE. (2.10)

We know that the following lemmas hold for operator H{:.

Lemma 2.6 (Lietal. [38]). Let C be a nonempty, closed, and convex subset of a smooth and reflexive
Banach space E. Then the following statements hold:

(1) Héx is a nonempty closed and convex subset of C for all x € E;

(ii) for all x € E, % € T-x if and only if

(X-y, Jx=Jx+pf(y) -pf(x)) 20, VyeC; (2.11)

(iii) if E is strictly convex, then Héx is a single-valued mapping.

Lemma 2.7 (Liet al. [38]). Let C be a nonempty, closed, and convex subset of a smooth and reflexive
Banach space E. Let x € E and X € Hé. Then

$(y,%) +G(, Jx) <G(y,Jx), VyeC. (2.12)

Lemma 2.8 (Su et al. [5]). Let C be a nonempty, closed, and convex subset of a smooth, strictly
convex Banach space E. Let T be a weak relatively nonexpansive mapping of C into itself. Then F(T)
is closed and convex.

Also, this following lemma will be used in the sequel.

Lemma 2.9 (Kamimura and Takahashi [4]). Let C be a nonempty, closed, and convex subset of a
smooth, uniformly convex Banach space E. Let {x, }eq and {1y, }5q be sequences in E such that either
{xn Yo 07 {Yn Yo s bounded. If limy, — o P (X4, Yn) = 0, then imy, _, oo || X — yul| = 0.
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Lemma 2.10 (Cho et al. [44]). Let E be a uniformly convex real Banach space. For arbitrary r > 0,

let B,(0) := {x € E : ||x|| < r}and A, u,y € [0,1] such that A + p +y = 1. Then, there exists a
continuous strictly increasing convex function

g:[0,2r] - R, g(0)=0 (2.13)
such that for every x,y, z € B,(0), the following inequality holds:

1+ py + yz[|* < Al + plly 1 = 2ug (lx - yl)- (2.14)
For solving the equilibrium problem for a bifunction F : C x C — R, let us assume
that F satisfies the following conditions:

(A1) F(x,x) =0forall x € C;
(A2) F is monotone, thatis, F(x,y) + F(y,x) <0forall x,y € C;
(A3) foreach x, y, z € C, limsup, | F(tz + (1 - t)x,y) < F(x,y);

(A4) for each x € C,y — F(x, y) is convex and lower semicontinuous.
Lemma 2.11 (Liu et al. [14] and Zhang [19]). Let C be a nonempty, closed, and convex subset of
a smooth, strictly convex and reflexive Banach space E. Assume that F : C x C — R satisfies (A1)-

(A4), A : C — E* a continuous and monotone mapping, and ¢ : C — R a lower semicontinuous
and convex functional. For v > 0 and x € E, there exists z € C such that

Q(Z/y)+%<y—z,]z—]x>zo, vy G, (2.15)

where Q(z,y) = F(z,y) + (Az,y — z) + 9(y) — ¢(2),z,y € C. Furthermore, define a mapping
T, : E — Cas follows:

Ty (x) = {z €C:Q(zy)+ %(y—z,]z—]x) >0, Vy e C}. (2.16)

Then, the following hold:

(i) T, is single-valued;

(ii) for any x,y € E,

(Tyx - Ty, JT,x — JT,y) < (Trx - Ty, Jx - Jy); (2.17)

(iv) GMEP(F, A, p) is closed and convex.
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Lemma 2.12 (Zhang [19]). Let C be a nonempty, closed, and convex subset of a smooth, strictly

convex, and reflexive Banach space E. Assume that F : C x C — R satisfies (A1)—(A4), and let r > 0.
Then for each x € Eand q € F(T),

¢(q,Trx) + §(Trx, x) < p(g,x). (2.18)

For the rest of this paper, the sequence {x, }n 20 Converges strongly to p shall be denoted
by x, — pasn — oo, and we shall assume that [5 2, B € [0,1] such that ﬁ(l) +[5,(12) +[5,(11) =
1, foralln > 0.

3. Main Results

Theorem 3.1. Let E be a uniformly convex real Banach space which is also uniformly smooth. Let C be
a nonempty, closed, and convex subset of E. For each k =1,2,...,m, let F be a bifunction from C xC
satisfying (A1)-(A4), Ax : C — E* a continuous and monotone mapping and ¢ : C — R a lower
semicontinuous and convex functional. Suppose that {T, };~, and {S, },—, are two countable families
of weak relatively nonexpansive mappings of C into itself such that Q := N, GMEP(Fy, Ak, ¢x) N
(N2 o F(Tn)) N (N2 F(Sn)) #0. Let f : E — R be a convex and lower semicontinuous mapping with
C cint(D(f)), and suppose that {x,},., is iteratively generated by xo € C, Cy = C,

Zn = 7 (B T+ B T Tk + B T S,
Yn = ]71(“n]xn + (1 —an)Jzn),

TOn7Qn | 7QTQ:

Un = Ymn =~ Ym-1,n T2 rlnyn’

(3.1)
Chi1 = {w € Cy: G(w, Jun) < G(w, Jxu)},

f
X1 =1l x0, n 20,

with the conditions

(i) liminf, BB > 0

(ii) hmmfnﬁooﬂn ﬁ(3)
(iii) 0 < ay, < a < 1 for some a € (0,1);

(iv) {rkn}peq € (0,00), (k=1,2,...,m) satisfying iminf, 7k, >0, (k=1,2,...,m).

Then, {x, )y converges strongly to H{zxo.
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Proof. By Lemma 2.8, we know that (0% F(T},)) N (N F(S,) is closed and convex. We also
know from Lemma 2.11(iv) that N, GMEP(Fy, Ak, @) is closed and convex. Hence, Q =
Mt GMEP (F, A, k) N (N2 F(Ty)) N (N2 F(Sy)) is a nonempty, closed and convex subset

of C. Consequently, H{zxo is well defined. We first show that C,,, for all n > 0 is closed and
convex. It is obvious that Cy = C is closed and convex. Thus, we only need to show that C, is
closed and convex for each n > 1. Since G(z, Ju,) < G(z, Jx,) is equivalent to

2((z, Jxn) = (2, Jtn)) < [12all® = [, (3.2)

this implies that C,,1 is closed and convex for all #n > 0. This shows that H{:M xo is well defined

for all n > 0. By taking 0% = T%nTr%l’}n i 'Tr%nTr%n, k=1,2,...,mand 6% = I foralln > 1, we
obtain u, = 0'y,. We next show that Q C C,, for all n > 0. For n = 0, we have Q C C = C,.
Then for each x* € Q, we obtain

G(x*, Jun) < G(X*r ]erf}/n) < G(x*, ]}/n)
=G, (anJxn + (1 —ay)Jzn))
= ||X*||2 =20, (x", Jxn) = 2(1 = an)(x", Jzn)
+ Nl 20 + (1= an) Tzl + 20 (x7)
< NI = 2a(x", Jatn) = 2(1 = ) {x", J zn)
o[ Txal® + (1= an) | Jzal® +2pf (")
= a,G(x", Jxn) + (1= ) G(x", T z0)
= anG(x", Jxn) + (1= an)G(x", B T+ B0 T Tk + B TSk )
< @G, Jx) + (1= an) (1P = 2B (x", Jocu) = 2B (x*, J T
28,7 (x", JSuxa)
B el + B NTwxall” + B ISuall” +20 £ ()
= 0, G(x", Jxa) + (1= ) (B G, ) + B G, JTua) + B (X", JSuxn))

< G(x*, Jxp).
(3.3)

So, x* € C,. This implies that 0 # Q C C,, for all n > 0. It follows that {x,},, is well defined
forall n > 0.
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We now show that lim,, .G (x,, Jxo) exists. Since f : E — R is a convex and lower
semi-continuous, applying Lemma 2.5, we see that there exists #* € E* and a € R such that

f(y) 2(y,u")+a, VyeE. (3.4)
It follows that

G (%, JX0) = [|%all* = 2(n, JX0) + [|%0]1* +20f (%)
> ||xall* = 2(2u, J20) + [|x0]* + 2p(xn, u*) +2pa
= [l |l* = 2(xn, 20 — pu*) + ||2x0]* + 2pa (3.5)

2 2
> ||xull™ = 2llull| Jxo = pre” || + [|x0|” + 2pa

2 +2pa.

)2+ [0l = || T x0 - pue*

= (lxall = |0 — pre*
Since x,, = Hén Xy, it follows from (3.5) that

2y 2pa (3.6)

G(x*, Jx0) > G2, Jx0) > (l2all = || Tx0 = pue*]|)* + l10ll® = || Jxo — pu*

for each x* € Q. This implies that {x,};, is bounded and so is {G(x,, Jx0)}5ep- By the

construction of C,, we have that C,, ¢ C,, and x,, = H{:mxo € C, for any positive integer
m > n. It then follows from Lemma 2.7 that

@ (xXm, xn) + G(xn, Jx0) < G(Xpm, JX0). (3.7)
It is obvious that
¢ m, %) 2 (Ixmll = |xa]])* 2 0. (3.8)
In particular,

@ (xne1, Xn) + G(xn, Jx0) < G(xp41, JX0), (39)
nit, xn) > (]| — 2all)® > 0, '

and so {G(xy, Jxo) };— is nondecreasing. It follows that the limit of {G(x,, Jxo) } ;- exists. By
the fact that C,, ¢ C,, and x,,, = H{:m xo € C,, for any positive integer m > n, we obtain

¢(xm/ un) < ()b(xm/ xn)- (3.10)
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Now, (3.7) implies that
¢(xm/ uy) < ¢(xm/ Xn) < G(xm, Jx0) = G(xn, JX0). (3.11)
Taking the limit as m,n — oo in (3.11), we obtain

Him (o, x0) = 0. (3.12)

It then follows from Lemma 2.9 that ||x,, — x,|| — 0asm,n — oo. Hence, {x,},, is Cauchy.
Since E is a Banach space and C is closed and convex, then there exists p € C such thatx,, — p
asn — oo.

Now since ¢(xm, x,) — 0asm,n — oo we have in particular that ¢(xp41,x,) — 0as
n — oo and this further implies that lim, _, o ||Xp41 — X5 || = 0. Since x,.1 = Ilc,, X0 € Cpi1, we
have

n+l

G (xns1,Un) < P(xXns1, %), Yn2>0. (3.13)

Then, we obtain

;}i_{r;o(i)(xnﬂz un) =0. (314)

Since E is uniformly convex and smooth, we have from Lemma 2.9 that

lim [|xy41 = Xp|| = 0= Hm |1 — unl|. (3.15)
n— oo n— oo
So,
1260 = tnll < [%ne1 = xu | + ([ X541 — Unl- (3.16)
Hence,
lim ||x; — uy|| = 0. (3.17)
n— oo
Since J is uniformly norm-to-norm continuous on bounded sets and lim,, o, [|x, — u,|| = 0,
we obtain

Him ||, = unl| = 0. (3.18)
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Since {x,} is bounded, so are {z,}, {JTuxn}, and {JSuxn}. Let r := sup,o{lxnll, [ Tnxnll,
[ISnxyn|l}. Then from Lemma 2.10, we have

G(x*, Jun) < G(x*, JO1yn) < G(x*, Jyn)
= G(x*, () xn + (1= tn) J z0))
= [|x*|1? = 2a (", Jotu) = 2(1 = @) (x", JZu)
+ o + (1= aw)Jzal* + 20 f (x7)
< [l |1? = 20 (", Jotw) = 2(1 = @) (x", JZu)

+ || Jxal* + (1= an) || zal* + 20 (x*)
= anG(X*/ ]xn) + (1 - an)G(x*r ]Zn)

= auG(x*, Jxa) + (1= ) G(x", (B T+ B T Ten + B S )
< @G, Jx) + (1= ) (I = 287 (2", Jxa) = 2610 (x°, J o)
=20 (x", JSuxn) + B Il + B | Tueal®
4B 1Snacal” = BB 8 (120 = T Toxall) +20f (1))
= auG(x", Jxa) + (1 - @) (A G(x", Jxa) + B G, T Txn)
G, TSuxa) = BB g = T Tuxal))
< auG(x*, Jxn) + (1= ) (PG, Jxa) + B0 G(x", T x2)
4B G, Txa) = B B g (T = TTual)
= 4, G(x*, Jxa) + (1= ) (G, Ja) = B B 8 (1T = T Toxal))

< G(x*, Jxn) = (1 - an) B B g (1] % = TTutall)-
(3.19)

It then follows that

A= a)B B g (1% = TTaxall) < (1= @)Y B (1T %n = JTuxall) < G(x*, Txn) = G(x*, Jtn).
(3.20)
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But

G(x*, Jxn) = G(x*, Jun) = [|%al* = [t ]* = 22", T2t — Jtt)

2 2 *
< |enll” = llanll”| +20Cx7, Jn = Jun)|

(3.21)
< Hllenll = el Cllxnll = Noall) + 20121 Jxn = Jun|
< lxn = sl (llxull + [[enll) + 2l (|1 20 = Juan]l.
From limy, —, o || X — uy|| = 0 and limy, —, o || J X, — Juy|| = 0, we obtain
G(x*, Jxn) = G(x*, Jun) — 0, n— oo. (3.22)
Using the condition liminf,, ., o, ﬁ,(ql) [5,(12) > 0, we have
Tim g([[Jxn = JTuxnl)) = 0. (3.23)

By property of g, we have limy, _, oo|| ] x,— J T, || = 0. Since J ! is also uniformly norm-to-norm
continuous on bounded sets, we have

nhf;o”x” - Tux,|| = 0. (3.24)
Similarly, we can show that
im [|x, = Spxa]| = 0. (3.25)

Since x, — p and {T},}, {S,} are uniformly closed, we have p € (05>, F(T,)) N (N5, F(Sy)).
Next, we show that p € M;', GMEP(Fi, Ak, ¢x). Now, by Lemma 2.12, we obtain

¢ (tn, Yn) = P(O5' Y, Yn)
< P(x", yn) — P (X", 07 yn) (3.26)

< P(x", xn) = P(x*, un) — 0, n— o0.

Using Lemma 2.9, we have lim,, _, o ||t/ — Y|l = 0. Furthermore,

2w = yu|| < llxn = wnll + ||ttn — yu|| — 0, 17— oo. (3.27)
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Since x, — pasn — ooand ||x, —yu|| = Oasn — oo, theny, — pasn — oo. By the fact
that 9’;, k=1,2,...,mis relatively nonexpansive and using Lemma 2.12 again, we have that

P(Ohyn ) <P yn) = $(x, 05y

(3.28)
< P(x*, xn) — <;b<x kan>
Observe that
(l)(x*/ Uy) = ﬁb(x*/ 91Tyn)
= p(x TETR o TETR - TRT Ry )
(3.29)
- T k)
< (j)(x 9k >
Using (3.29) in (3.28), we obtain
$(0kyn yn) < (", %) = p(x*,un) — 0, 11— oo, (3.30)
Then Lemma 2.9 implies that lim, o [|yn — 05yl =0, k = 1,2,...,m. Now
”p—@ijn n— 05y, +||lyn—p|| =0, n— 0, k=1,2,...,m. (3.31)
Similarly, lim,— o, |lp — 05~ 'y,|| =0, k =1,2,...,m. This further implies that
Tim [|05y, - 07y || = 0. (3.32)

Also, since J is uniformly norm-to-norm continuous on bounded sets and using (3.32), we
obtain

hm ”]9 Yn — ]Gk Yyl = 0. (3.33)
Since liminf, 1%k, >0, (k=1,2,...,m),
”]Qnyn ]911;—1:%1” =0. (3'34)

n — oo rk,n
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By Lemma 2.11, we have that foreachk =1,2,...,m
1 _
Ok <9£yn,y> + —<y - QEyn, ]953/,1 - ]9',: 1yn> >0, VyeC (3.35)
Tkn
Furthermore, using (A2) we obtain

=y~ 0y, 105y~ 05 ) > Qe (v, 05w, (3.36)

Tin
By (A4), (3.34), and Qﬁyn — p,wehave foreachk=1,2,...,m
Qc(y,p) <0, VYyeC (3.37)

For fixed y € C, let z;,, := ty + (1 - t)p for all t € (0, 1]. This implies that z; € C. This yields
that Qi (z:,p) <O0. It follows from (A1) and (A4) that

0= Qx(zt, zt) < tQk(z1,y) + (1 = 1)Qk (21, p)

(3.38)
< tQk(zt,y)
and hence
0<Qk(z1y). (3.39)
From condition (A3), we obtain
Qc(p,y) 20, VyeC. (3.40)

This implies that p € GMEP(Fx, Ak, ¢x), k = 1,2,...,m. Thus, p € N[',GMEP(Fx, Ak, ¢k).
Hence, we have p € Q = N, GMEP (Fi, Ak, px) N (N2, F(T,)) N (N2, F(Sn))-

Finally, we show that p = Héxo. Since Q = N, GMEP(Fy, Ak, ¢x) N (N2 F(T,)) N
(N ,F(Sy)) is a closed and convex set, from Lemma 2.6, we know that H{zxo is single valued

and denote w = Héxo. Since x,, = Hénxo and w € Q c C,,, we have
G(xn/ ].X'Q) < G(w/ ]xo)/ Vn > 0. (341)

We know that G(¢, J¢) is convex and lower semi-continuous with respect to { when ¢ is fixed.
This implies that

G(p, Jxo) <liminf G(x,, Jxo) < limsup G(x,, Jx0) < G(w, ] xo). (3.42)

n—oo

From the definition of ngo and p € Q, we see that p = w. This completes the proof. O
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Corollary 3.2 (Lietal. [38]). Let E be a uniformly convex real Banach space which is also uniformly
smooth. Let C be a nonempty, closed, and convex subset of E. Suppose that T : C — C is a relatively
nonexpansive mapping of C into itself such that F(T)# @ and f : E — R is a convex and lower
semicontinuous mapping with C C int(D(f)). Suppose that {x, },, is iteratively generated by xo €
C C=C

Yo =] NanJxn+ (1 - ay)JTxy),
Con ={weCy:G(w, Jyx) <G(w, Jx,)}, (3.43)

f
Xni1 =11 x0, n20,

where ] is the duality mapping on E. Suppose that {a,},—q is a sequence in (0,1) such that
limsup,  _a, <1. Then, {x,},., converges strongly to H{E(T)xo.

Corollary 3.3. Let E be a uniformly convex real Banach space which is also uniformly smooth. Let C
be a nonempty, closed and convex subset of E. For each k = 1,2,...,m, let Fi be a bifunction from
C x C satisfying (A1)—(A4), Ax : C — E* a continuous and monotone mapping and i : C — Ra
lower semicontinuous and convex functional. Suppose {T,, }ey and { Sy} are two countable families
of weak relatively nonexpansive mappings of C into itself such that Q := "' GMEP(F, Ak, ¢x) N
(N2 F(Tn)) N (N2, F(Sy)) #0. Suppose that {x, ), is iteratively generated by xo € C, Co = C

zn = J 7 (B T+ B T Tk + B T S,

Yn = ]_1 (anJxn+ (1= an)]zn),

= T TR - TET Ly, (3.44)
Cn1 = {w €Cy: ¢(w/ uy) < ¢(w1xn)}/
xn+1 = chq xO/ n 2 0/

with the conditions

(i) liminf, . 7 > 0
(ii) hmmfnﬁooﬂn ﬁ(s)
(iii) 0 < ay, < a < 1 for some a € (0,1);
(iv) {rkn}peq € (0,00), (k=1,2,...,m) satisfying liminf, , ,rc, >0,(k=1,2,...,m).

Then, {x,}, converges strongly to TIgxy.

Proof. Take f(x) = 0 for all x € E in Theorem 3.1, G(¢, Jx) = ¢(¢, x) and cho = I1cxp. Then,
the desired conclusion follows. O

Remark 3.4. Corollary 3.3 extends and improves on Theorem 1.5. In fact, the iterative
procedure (3.44) is simpler than (1.14) in the following two aspects: (a) the process of
computing Q,, = {w € Cpo1 N Q1 : (xy — w, JXxo — Jx,) > 0} is removed; (b) the process
of computing I'lc,no, is replaced by computing I'lc,.
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4. Applications
A mapping H from E to E* is said to be

(i) monotone if (Hx - Hy,x—y) >0, forall x,y € E;
(ii) strictly monotone if H is monotone and (Hx - Hy, x — y) = 0 if and only if x = y;

(iii) p-Lipschitz continuous if there exists a constant f > 0 such that [|[Hx — Hy|| <
Pllx -y, forall x,y € E.

Let M be a set-valued mapping from E to E* with domain D(M) = {z € E : Mz#@} and
range R(M) =U{Mz : z € D(M)}. A set-valued mapping M is said to be

(i) monotone if (x1 — x, y1 — y2) > 0 for each x; € D(M) and y; € Mx;, i =1,2;
(ii) r-strongly monotone if (x1 — x2, 11 — y2) > rllx1 — x;||* for each x; € D(M) and
yi € Mx;, i=1,2;
(iii) maximal monotone if M is monotone and its graph G(M) = {(x,y) : y € Mx} is
not properly contained in the graph of any other monotone operator;

(iv) a general H-monotone if M is monotone and (H+AM)E = E* holds for every A > 0,
where H is a mapping from E to E*.

We denote the set {x € E : 0 € Mx} by M~10. From Li et al. [38], we know thatif H : E — E*
is strictly monotone and M : E — 2F" is general H-monotone mapping, then M0 is closed
and convex. Furthermore, for every A > 0 and x* € E*, there exists a unique x € D(M) such
that x = (H + AM)™'x*. Thus, we can define a single-value mapping T\ : E — D(M) by
Twx = (H + AM) ' Hx. It is obvious that M0 = F(T}) for all A > 0.

Lemma 4.1 (Alber, [39]). If E is a uniformly convex and uniformly smooth Banach space, 6g(€) is
the modulus of convexity of E, and pg(t) is the modulus of smoothness of E, then the inequalities

8%,;(%) <P(x,2) < 4d2pE<M) (4.1)

hold for all x and & in E, where d = A/(||x||> + ||&]|?) /2.

Lemma 4.2 (Xia and Huang [45]). Let E be a Banach space with dual space E*, H : E — E*a
strictly monotone mapping, and M : E — 2F" a general H-monotone mapping. Then

(i) (H + AM) ™" is a single-valued mapping;

(i) if E is reflexive and M : E — 2F is r-strongly monotone, (H + AM)™" is Lipschitz
continuous with constant 1/ Ar, where r > 0.

Theorem 4.3. Let E be a uniformly convex real Banach space which is also uniformly smooth with
Se(e) > ke? and pg(t) < ct? for some k,c > 0. For each k = 1,2,...,m, let Fi be a bifunction from
E x E satisfying (A1)-(A4), Ax : E — E* a continuous and monotone mapping, and @i : E — R
a lower semicontinuous and convex functional. Suppose that H : E — E* is a strictly monotone
and pB-Lipschitz continuous mapping and M; : E — 2F" is a general H-monotone mapping and
ri-strongly monotone mapping with r; > 0, i = 1,2 such that Q := N[ GMEP(Fy, A, ¢x) N MI10 N
M;O;é(i). Let T){VI" =(H + .)LMi)ilH, i=1,2let f: E — Raconvex and lower semicontinuous
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mapping with D(f) = E and suppose for each n > 0 that there exists a A, > 0 such that 64cf> <
min{(1/2)kA2r?, (1/2)kA2r2}. Let {x, )5 be iteratively generated by xo € E, Co = E

2= T (B T+ BOTT 20 + BT, ),

Yn = ]_1 (anJxn+ (1= an)]zn),

_ TQm TQm 1, TQZ TQl (42)

Tt Pt tondri,Yns

Coi1={w e Cy: G(w, Jyn) <G(w, Jxu)},

f
Xn+l1 = ch+1 X0, n 2 0/

with the conditions

i) hmmfnqooﬂn ﬁ(Z)

(ii) hmmfnﬁooﬂn ﬁ(s)

({i)0<a, <a<1;

(iv) liminf,_, A, > 0;

(V) {rkntoq € (0,00), (k=1,2,...,m) satisfying iminf, o ¢, >0, (k =1,2,...,m).

Then, {x,}yq converges strongly to H{zxo

Proof. We only need to prove that {T){\fl } and {Ti\fz} are countable families of weak
relatively nonexpansive mappings with common fixed points sets N | F (Ti\fl) = M;'0 and
Ny o F (Ti\fz) = M;'0, respectively. Firstly, we have N F (T){\:I ') = M;'0#0. Secondly, we show
that ¢(p, T){\flw) <¢(p,w) forallw € E, p € F(T){\fl), n > 0. Now, by Lemma 4.2 and the
Lipschitz continuity of H, we have

[Tp = T || = || (H -+ M) Hp - (H + 1,My) " Haol|

1
< 1 lHp - Ho| (4.3)
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By (4.3) and Lemma 4.1,

¢ (p, Ti\flw> =¢ (T){\flp, Ti\fl w)

My, oM,
§4d2pE<4”TA" pdTM w”>

g64c||Tj‘flp—Tj‘flw||2 (4.4)
64c
<7 : lp = wl|”,

1
b0 0) zwzéE(”P ") -

Since 64cp* < (1/2)k)u2r1, it follows from (4.4) that ¢(p, T){\flw) < ¢(p,w), for all w € E,
p € F(T){\fl), n > 0. Thirdly, we show that ﬁ({T){\fl 1 = ﬂZ’zOF(T){\fl) = MI10. We first show
that I?({T){\f1 1) C M{lo. Letp € ﬁ({Tffl }), then there exists {x,} C E such that x, — p and

limy, - oo || X0 — T){VII Xyn|| = 0. Since H is p-Lipschitz continuous,
n

”Hxn - HT"'x, e (4.5)
Letting n — oo, we obtain
1
T <Hxn - HT" xn> —0. (4.6)
It follows from (1/A,)(Hx, - H T){\f 'x,) € MlT){\f ' and the monotonicity of M; that
1
<x - T, x* - — (Hox, - HT)" xn>> >0 4.7)
n An n
for all € D(M;) and x* € M;x. Taking the limit as # — oo, we obtain
(x=p,x*) >0 (4.8)

for all € D(M;) and x* € M;jx. By the maximality of M;, we know that p € Milo. On
the other hand, we know that F (T){:I ) = M;'0, F (TMl) c F (TMl) for all n > 0, therefore,
MI10 =n» F (T){:I = F (OZ":OT){:I '). Thus, we have proved that { '} is a countable famﬂy of
weak relatively nonexpansive mappings with common fixed pomts sets N  F (T){\fl) = Mj 1o.
By following the same arguments, we can show that {T){\fz} is a countable family of weak

relatively nonexpansive mappings with common fixed points sets N | F (T){VIZ) =M;'0. O
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Let E be a uniformly convex and uniformly smooth Banach space, H = J and M a
maximal monotone mapping. Then, we can define J, = (J+AM) “1J forall A > 0. We know that
]\ is relatively nonexpansive and therefore weak relatively nonexpansive and M0 = F(J,)
for all A > O (see, e.g., [2]), where F(J)) denotes the fixed points set of J,. By Corollary 3.3,
we obtain the following theorem.

Theorem 4.4. Let E be a uniformly convex real Banach space which is also uniformly smooth. For each
k=1,2,...,m,let Fy be a bifunction from E x E satisfying (A1)-(A4), Ax : E — E* a continuous
and monotone mapping, and ¢x : E — R a lower semicontinuous and convex functional. For each
i=1,2, let M; C E x E* a maximal monotone operator, and let ])]LVI" =(J+ AMi)71]f07 all A > 0, and
suppose C is a nonempty closed and convex subset of E such that D(M;) C C C J71(Ny>oR(J+AM;)),
i =1,2. Assume that Q := (" GMEP(Fx, Ak, ¢x) N M0N0 M0 # 0 and let {x, }52 be iteratively
generated by xo € E, Co = E,

2o = J (B T+ BO TIT 0 + B T ),

Yn = ]71(“n]xn + (1 —an)Jzn),

T Qs | 7T (4.9)

Up = Tmn = Vm-1,n n=Tn yn’
Cra1 ={w e Cy:p(w,yn) < P(w, xn)},

Xn41 = Ic,41x0, m 20,

with the conditions
(i) liminf, . % > 0;
(if) liminf,_ o f5 S > 0;
({ii)0<a, <a<1;
(iv) iminf, . A, > 0;
(V) {rintper € (0,00), (k=1,2,...,m) satisfying liminf, e, >0, (k=1,2,...,m).

Then, {x, ), converges strongly to TIgxy.

Acknowledgments

The author would like to express his thanks to the referees for their valuable suggestions. This
research work is dedicated to Professor Isaac U. Asuzu of the University of Nigeria, Nsukka.

References

[1] C. Chidume, Geometric Properties of Banach Spaces and Nonlinear Iterations, vol. 1965 of Lecture Notes in
Mathematics, Springer, London, UK, 2009.

[2] W. Takahashi, Nonlinear Functional Analysis-Fixed Point Theory and Applications, Yokohama Publishers,
Yokohama, Japan, 2000.

[3] W. Takahashi, Nonlinear Functional Analysis, Yokohama Publishers, Yokohama, Japan, 2000.

[4] S. Kamimura and W. Takahashi, “Strong convergence of a proximal-type algorithm in a Banach
space,” SIAM Journal on Optimization, vol. 13, no. 3, pp. 938-945, 2002.



Abstract and Applied Analysis 23

[5] Y. Su, H-K. Xu, and X. Zhang, “Strong convergence theorems for two countable families of
weak relatively nonexpansive mappings and applications,” Nonlinear Analysis: Theory, Methods &
Applications, vol. 73, no. 12, pp. 3890-3906, 2010.

[6] D.Butnariu, S. Reich, and A. J. Zaslavski, “Asymptotic behavior of relatively nonexpansive operators
in Banach spaces,” Journal of Applied Analysis, vol. 7, no. 2, pp. 151-174, 2001.

[7] D. Butnariu, S. Reich, and A. J. Zaslavski, “Weak convergence of orbits of nonlinear operators in
reflexive Banach spaces,” Numerical Functional Analysis and Optimization, vol. 24, no. 5-6, pp. 489-508,
2003.

[8] Y. Censor and S. Reich, “Iterations of paracontractions and firmly nonexpansive operators with
applications to feasibility and optimization,” Optimization, vol. 37, no. 4, pp. 323-339, 1996.

[9] S. Matsushita and W. Takahashi, “A strong convergence theorem for relatively nonexpansive
mappings in a Banach space,” Journal of Approximation Theory, vol. 134, no. 2, pp. 257-266, 2005.

[10] W. Takahashi and K. Zembayashi, “Strong convergence theorem by a new hybrid method for
equilibrium problems and relatively nonexpansive mappings,” Fixed Point Theory and Applications,
vol. 2008, Article ID 528476, 11 pages, 2008.

[11] X. Qin and Y. Su, “Strong convergence theorems for relatively nonexpansive mappings in a Banach
space,” Nonlinear Analysis: Theory, Methods & Applications, vol. 67, no. 6, pp. 1958-1965, 2007.

[12] J. Kang, Y. Su, and X. Zhang, “Hybrid algorithm for fixed points of weak relatively nonexpansive
mappings and applications,” Nonlinear Analysis: Hybrid Systems, vol. 4, no. 4, pp. 755765, 2010.

[13] H. Zegeye and N. Shahzad, “Strong convergence theorems for monotone mappings and relatively
weak nonexpansive mappings,” Nonlinear Analysis: Theory, Methods & Applications, vol. 70, no. 7, pp.
2707-2716, 2009.

[14] M. Liu, S. Chang, and P. Zuo, “On a hybrid method for generalized mixed equilibrium problem and
fixed point problem of a family of quasi-¢-asymptotically nonexpansive mappings in Banach spaces,”
Fixed Point Theory and Applications, vol. 2010, Article ID 157278, 18 pages, 2010.

[15] N. Petrot, K. Wattanawitoon, and P. Kumam, “A hybrid projection method for generalized mixed
equilibrium problems and fixed point problems in Banach spaces,” Nonlinear Analysis: Hybrid Systems,
vol. 4, no. 4, pp. 631-643, 2010.

[16] S. Saewan, P. Kumam, and K. Wattanawitoon, “Convergence theorem based on a new hybrid
projection method for finding a common solution of generalized equilibrium and variational
inequality problems in Banach spaces,” Abstract and Applied Analysis, vol. 2010, Article ID 734126,
25 pages, 2010.

[17] S. Saewan and P. Kumam, “Modified hybrid block iterative algorithm for convex feasibility
problems and generalized equilibrium problems for uniformly quasi-¢-asymptotically nonexpansive
mappings,” Abstract and Applied Analysis, vol. 2010, Article ID 357120, 22 pages, 2010.

[18] P. Kumam and S. Saewan, “A hybrid iterative scheme for a maximal monotone operator and two
countable families of relatively quasi-nonexpansive mappings for generalized mixed equilibrium and
variational inequality problems,” Abstract and Applied Analysis, vol. 2010, Article ID 123027, 31 pages,
2010.

[19] S.-S. Zhang, “Generalized mixed equilibrium problem in Banach spaces,” Applied Mathematics and
Mechanics. English Edition, vol. 30, no. 9, pp. 1105-1112, 2009.

[20] P. L. Combettes and S. A. Hirstoaga, “Equilibrium programming in Hilbert spaces,” Journal of
Nonlinear and Convex Analysis, vol. 6, no. 1, pp. 117-136, 2005.

[21] Y.Liu, “A general iterative method for equilibrium problems and strict pseudo-contractions in Hilbert
spaces,” Nonlinear Analysis: Theory, Methods & Applications, vol. 71, no. 10, pp. 4852-4861, 2009.

[22] A. Moudafi, “Weak convergence theorems for nonexpansive mappings and equilibrium problems,”
Journal of Nonlinear and Convex Analysis, vol. 9, no. 1, pp. 37-43, 2008.

[23] S. Plubtieng and R. Punpaeng, “A new iterative method for equilibrium problems and fixed
point problems of nonexpansive mappings and monotone mappings,” Applied Mathematics and
Computation, vol. 197, no. 2, pp. 548-558, 2008.

[24] X. Qin, M. Shang, and Y. Su, “Strong convergence of a general iterative algorithm for equilibrium
problems and variational inequality problems,” Mathematical and Computer Modelling, vol. 48, no. 7-8,
pp. 1033-1046, 2008.

[25] Y. Su, M. Shang, and X. Qin, “An iterative method of solution for equilibrium and optimization
problems,” Nonlinear Analysis: Theory, Methods & Applications, vol. 69, no. 8, pp. 2709-2719, 2008.

[26] W. Takahashi and K. Zembayashi, “Strong and weak convergence theorems for equilibrium problems
and relatively nonexpansive mappings in Banach spaces,” Nonlinear Analysis: Theory, Methods &
Applications, vol. 70, no. 1, pp. 45-57, 2009.



24 Abstract and Applied Analysis

[27] S. Takahashi and W. Takahashi, “Viscosity approximation methods for equilibrium problems and
fixed point problems in Hilbert spaces,” Journal of Mathematical Analysis and Applications, vol. 331, no.
1, pp. 506-515, 2007.

[28] R. Wangkeeree, “An extragradient approximation method for equilibrium problems and fixed point
problems of a countable family of nonexpansive mappings,” Fixed Point Theory and Applications, vol.
2008, Article ID 134148, 17 pages, 2008.

[29] X. Qin, Y. J. Cho, and S. M. Kang, “Viscosity approximation methods for generalized equilibrium
problems and fixed point problems with applications,” Nonlinear Analysis: Theory, Methods &
Applications, vol. 72, no. 1, pp. 99-112, 2010.

[30] Y. Shehu, “Fixed point solutions of generalized equilibrium problems for nonexpansive mappings,”
Journal of Computational and Applied Mathematics, vol. 234, no. 3, pp. 892-898, 2010.

[31] S. Takahashi and W. Takahashi, “Strong convergence theorem for a generalized equilibrium problem
and a nonexpansive mapping in a Hilbert space,” Nonlinear Analysis: Theory, Methods & Applications,
vol. 69, no. 3, pp. 1025-1033, 2008.

[32] J.-W. Peng and J.-C. Yao, “Strong convergence theorems of iterative scheme based on the extragradient
method for mixed equilibrium problems and fixed point problems,” Mathematical and Computer
Modelling, vol. 49, no. 9-10, pp. 1816-1828, 2009.

[33] S. Plubtieng and K. Sombut, “Weak convergence theorems for a system of mixed equilibrium
problems and nonspreading mappings in a Hilbert space,” Journal of Inequalities and Applications, vol.
2010, Article ID 246237, 12 pages, 2010.

[34] Y. Yao, Y.-C. Liou, and J.-C. Yao, “A new hybrid iterative algorithm for fixed-point problems, vari-
ational inequality problems, and mixed equilibrium problems,” Fixed Point Theory and Applications,
vol. 2008, Article ID 417089, 15 pages, 2008.

[35] E.Blum and W. Oettli, “From optimization and variational inequalities to equilibrium problems,” The
Mathematics Student, vol. 63, no. 1-4, pp. 123-145, 1994.

[36] L.-C.Cengand].-C. Yao, “A hybrid iterative scheme for mixed equilibrium problems and fixed point
problems,” Journal of Computational and Applied Mathematics, vol. 214, no. 1, pp. 186201, 2008.

[37] S. Plubtieng and K. Ungchittrakool, “Strong convergence theorems for a common fixed point of two
relatively nonexpansive mappings in a Banach space,” Journal of Approximation Theory, vol. 149, no. 2,
pp. 103115, 2007.

[38] X. Li, N.-J. Huang, and D. O’Regan, “Strong convergence theorems for relatively nonexpansive
mappings in Banach spaces with applications,” Computers & Mathematics with Applications, vol. 60,
no. 5, pp. 1322-1331, 2010.

[39] Y. I Alber, “Metric and generalized projection operators in Banach spaces: properties and
applications,” in Theory and Applications of Nonlinear Operators of Accretive and Monotone Type, vol.
178 of Lecture Notes in Pure and Applied Mathematics, pp. 15-50, Dekker, New York, NY, USA, 1996.

[40] Y. I. Alber and S. Reich, “An iterative method for solving a class of nonlinear operator equations in
Banach spaces,” Panamerican Mathematical Journal, vol. 4, no. 2, pp. 39-54, 1994.

[41] 1. Cioranescu, Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems, vol. 62 of
Mathematics and Its Applications, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1990.

[42] K. Wu and N. Huang, “The generalised f-projection operator with an application,” Bulletin of the
Australian Mathematical Society, vol. 73, no. 2, pp. 307-317, 2006.

[43] J. Fan, X. Liu, and J. Li, “Iterative schemes for approximating solutions of generalized variational
inequalities in Banach spaces,” Nonlinear Analysis: Theory, Methods & Applications, vol. 70, no. 11, pp.
3997-4007, 2009.

[44] Y. J. Cho, H. Zhou, and G. Guo, “Weak and strong convergence theorems for three-step iterations
with errors for asymptotically nonexpansive mappings,” Computers & Mathematics with Applications,
vol. 47, no. 4-5, pp. 707-717, 2004.

[45] E-Q. Xia and N.-]. Huang, “Variational inclusions with a general H-monotone operator in Banach
spaces,” Computers & Mathematics with Applications, vol. 54, no. 1, pp. 24-30, 2007.



