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It is well known that production, distribution, marketing, inventory control, and financing all/each
have a positive impact on the performance of a supply chain. Despite the growing interest in the
development of integrated inventory models, the interactions between these elements of a supply
chain may not be efficiently included, resulting in a restricted supply chain model presentation. To
incorporate this phenomenon, a mathematical model that tackles the interdependent relationships
between these aforementioned elements is developed in this paper. This study considers the
determination of the optimal pricing, ordering, and delivery policies of a profit-maximizing supply
chain system, faced with (1) unit wholesale price of the supplier is set based on unit production
cost, (2) unit production cost is taken as a function of demand rate and production rate, (3) the
supplier’s production rate is adjusted according to market demand, (4) market demand depends
upon buyer’s selling price, (5) a free freight is offered if the buyer’s order exceeds a certain
minimum requirement, and (6) a constant credit period is offered by the supplier to stimulate
the demand of the buyer. Algorithm for computing the optimal policies is derived. The sensitivity
of the optimal results with respect to those parameters which directly influence the production and
transportation costs is also examined.

1. Introduction

Following the assumption in Harris’s model [1], most traditional inventory models assumed
that the production rate is constant. However, with advanced manufacturing technologies,
such as Computer-aided design/manufacturing (CAD/CAM), flexible manufacturing sys-
tem (FMS), and computer-integrated manufacturing system (CIMS), modem manufacturing
industries are highly flexible, intelligent, and integrated. As stated by Schweitzer and
Seidmann [2], today it is not difficult to adjust the mechanical productivity. Over the years,
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a number of papers have been published dealing with economic order quantity problems
under conditions of variable production rate, such as Goswami and Chaudhuri [3], Balkhi
and Benkherouf [4], Goyal and Giri [5], Bhunia and Maiti [6], Kalir and Arzi [7], Rahim and
Ben-Daya [8], Giri et al. [9], and Öner and Bilgiç [10]. Recently, Li et al. [11] developed an
economic production quantity-(EPQ)-based model with planned backorders to evaluate the
impact of the postponement strategy on a manufacturer in a supply chain.

Transportation cost is another important but often overlooked feature of real inventory
systems. Transportation costs are a critical part of the total logistics costs of a commodity.
Given today’s intense market competition, an appropriate transportation cost function
should be included into lot-sizing research and modeling with all other appropriate costs.
Tersine and Toelle [12] first established an economic inventory-transport model with freight
discounts. Subsequent numerous studies on transportation cost have been published, for
instance, Lee [13], Hwang et al. [14], Tersine and Barman [15], Russell and Krajewski [16],
Shinn et al. [17], Swenseth and Godfrey [18] and Abad and Aggarwal [19]. Recently, Rieksts
and Ventura [20] consider using both truckload (TL) transportation and less than truckload
(LTL) transportation to fill order for inventory models that assume a constant demand rate
that must be met without shortages.

However, the above research mainly focuses on operational aspects but neglects
financial concens that firms may face when deciding the supply chain method. In real
business environments, many firms are capital constrained and need to finance their
operations from external capital markets. Today, payment within a specified period after
delivery, usually called trade credit, is a widely observed pricing strategy for improving the
profitability and cost effectiveness in sales (e.g., [21–23]). Suppliers offer a trade credit as
an incentive to increase sales and reduce stock, and the buyer can use the sale revenue to
benefit without interest charged during the credit period. Goyal [24] is the first one who
developed an EOQ model under the condition of permissible delay in payments. Numerous
other studies on trade credit have since been published including Aggarwal and Jaggi [25],
Jamal et al. [26], Chang and Dye [27], Teng [28], Arcelus et al. [29], Biskup et al. [30], Chang
et al. [31], Huang [32], Chang [33], Chung et al. [34], Ouyang et al. [35], Teng et al. [36],
Chung and Liao [37], and Sarmah et al. [38].

The above articles have investigated the effect on inventory policy under trade credit
from the perspective of the buyer (or supplier) only. However, decisions made by channel
members are interdependent which determine the performances of other members as well
as the entire channel. For example, a buyer’s selling price decision will influence the
customer demand and therefore the buyer’s and supplier’s sales volumes. As the buyer’s
order quantity decision based on customer demand will alter the supplier’s production
decision, while the supplier offers trade credit to encourage sales, the decisions on inventory
and pricing of the supply chain will be altered after a while. Therefore, to improve the
collaboration of supply chain partners, determining the optimal policies based on the
integrated total profit function is more reasonable than using the buyer or the supplier’s
individual profit functions. Some scholars have noted this fact and worked on developing
supply chain management decision models. Abad and Jaggi [39] developed ajoint approach
to determine the optimal unit price and the length of the credit period when end demand
is price sensitive under permissible delay in payments. Jaber and Osman [40] proposed
a centralized model where players in a two-level supply chain coordinate their orders to
minimize their local costs and that of the entire chain. Yang and Wee [41] considered an
optimal replenishment policy with a credit term in a collaborative deteriorating inventory
system when the demand is price sensitive and the replenishment rate is finite. Sheen and
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Table 1: Comparison between the papers discussing integrated inventory model with a trade credit.

Author(s) Demand
rate

Production
rate

Production/purchase
cost Freight rate Wholesale

price

Abad and
Jaggi [39]

Retail price
sensitive Constant Constant — Constant

Jaber and
Osman [40] Constant — — — Constant

Yang and
Wee [41]

Retail price
sensitive — Constant — Constant

Sheen and
Tsao [42]

Retail price
sensitive — Constant

Quantity
discounts are
offered

Constant

Chen and
Kang [43] Constant — — — Constant

Su et al. [44]
Customer’s
credit period
sensitive

Constant Constant — Constant

Ouyang et
al. [45]

Retail price
sensitive

Adjust with
demand rate Constant

Quantity
discounts are
offered

Constant

Ho et al. [46] Retail price
sensitive

Adjust with
demand rate Constant — Constant

This paper Price
sensitive

Adjust with
demand rate

Production and
demand sensitive

Conditionally
free shipment

Production
cost
related

“—” denotes the factor is not considered in the model.

Tsao [42] explored how channel coordination can be achieved using trade credit. Chen and
Kang [43] developed integrated models for determining the optimal replenishment time
interval and replenishment frequency. Su et al. [44] considered a seller-buyer channel in
which the end demand is credit period sensitive. Recently, Ouyang et al. [45] and Ho et
al. [46] considered an optimal replenishment and order policy with a credit term when the
demand is price sensitive and the production is rate sensitive demand.

In this study, to analyze pricing, ordering, delivery, and trade credit with compre-
hensive considerations of operation, marketing, and financing among channel members, a
supplier-buyer inventory model is developed. We assume the supplier’s unit selling price
is based on his/her unit production cost which is decided by the market demand and
production rates. And the production rate is adjusted with a price-sensitive market demand.
In such circumstances the unit wholesale price, reflecting the costs of the product, imposed
by the seller on the buyer, does influence the end demand for the product. In addition, the
supplier offers to pay freight charges if an order quantity meets or exceeds a certainminimum
requirement. Furthermore, a fixed trade credit period is offered by the supplier. In this paper,
we maximize the total profit of the whole supply chain (i.e., treating the supply chain as
a single level profit centre). An algorithm is developed to determine the optimal ordering,
shipping, and pricing policy. Numerical examples with relevant data are devoted to find
the optimal policies of the developed model. Sensitivity analysis for main parameters is also
conducted. The major difference between our model and other related models is shown in
Table 1.
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Figure 1: The supply chain system.

2. Mathematical Formulation

In this section, we consider an integrated inventory model with a retail price sensitive
demand, where the supplier offers to pay freight charges if an order quantity exceeds or
equal to a certain minimum requirement. In addition, a certain credit period is provided
to the buyer. The relationship among members in this supply chain system is illustrated in
Figure 1. To formulate the integrated inventorymodel, the supplier’s total profit per unit time
is discussed first. Then the buyer’s total profit per unit time is discussed.

2.1. Supplier’s Total Profit per Unit Time

During the production period, the supplier manufactures in batches of size nQ, where n is an
integer, and incurs a batch setup cost SV . The production cycle length is nQ/D = nT . Once
the firstQ units are produced, the supplier delivers them to the buyer and then continuously
making the delivery on average every T units of time until the supplier’s inventory level falls
to zero. Therefore, the setup cost per unit time is SV/(nT).

The inventory holding cost contains two components: unit holding cost and
opportunity cost. The unit holding cost relates to the actual ownership of the goods and
includes storage and maintenance expenses, which is accounted on a per-unit-of-inventory
basis. The opportunity holding cost is charged on the money value of the inventory on hand.
The supplier’s inventory per unit time is given by

{
nQ

[
Q

R
+ (n − 1)

Q

D

]
− n2Q2

2R
− Q2

D
[1 + 2 + · · · + (n − 1)]

}/
nQ

D
=
DT

2
[
(n − 1)

(
1 − ρ) + ρ],

(2.1)

where ρ = D/R.
Note that the similar derivation of supplier’s average inventory using amanufacturing

lot size of Q units can be found in Joglekar [48]. With production cost per unit c, the holding
cost rate excluding interest charges rV and the capital opportunity cost per dollar per unit
time IVp, the supplier’s holding cost per unit time is c(rV + IVp)DT[(n − 1)(1 − ρ) + ρ]/2.
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Because of offering a credit period M to the buyer, the supplier endures a capital
opportunity cost vIVpDM = θcIVpDM within the time gap between delivery and payment
received of the product. The supplier determines unit wholesale price $v (= θc) based on
unit production cost $c, therefore the sales revenue per unit time is (v − c)D = (θ − 1)cD.
In addition, to encourage order more, if the buyer’s order quantity Q ≥ ψ, the supplier is
required to pay the transportation cost per unit time (1 − IA(Q))(h +wQ)/T .

Therefore, the supplier’s total profit per unit, which is the sales revenue minus set-up
cost, holding cost, capital opportunity cost, and transportation cost, can be written as follows:

TVP(n) = cD

{
(θ − 1) −

(
rV + IVp

)
T

2
[
(n − 1)

(
1 − ρ) + ρ] − θIVpM

}

− (1 − IA(Q))(h +wQ)
T

− SV
nT

.

(2.2)

2.2. Buyer’s Total Profit per Unit Time

For the buyer, the total sales profit per unit time is given by (p − v)D = (p − θc)D and
the ordering cost per unit time is SB/T . With the unit purchasing cost v, the holding cost
rate rB, and the average inventory over the cycle Q/2, the buyer’s holding cost (excluding
interest charges) per unit time is vrBQ/2 = θcrBDT/2. The transportation cost per unit time
is IA(Q)(h +wQ)/T .

As the payment is done before or after the total depletion of inventory, we have the
following two possible cases: (i) T ≤M, and (ii) T ≥M.

Case 1 (T ≤M). In this case, as the permissible payment time expires on or after the inventory
is depleted completely, the buyer pays no opportunity cost for the purchase items. Through
the credit period, buyer sells the products and uses the sales revenue to earn interest at a rate
of IBe. Thus, the interest earned per unit time is

1
T

[
pIBe

∫T
0
Dtdt + pIBeDT(M − T)

]
= DpIBe

(
M − T

2

)
. (2.3)

Case 2 (T ≥ M). When buyer’s permissible payment time expires on or before the inventory
is depleted completely, the buyer can sell the items and earn interest with rate IBe until the
end of the credit period M. Thus, the interest earned per unit time is (pIBe/T)

∫M
0 Dtdt =

DpIBeM
2/2T . On the other hand, the buyer still has some inventory on hand when paying

the total purchasing amount to the supplier. Hence, for the items still in stock, buyer endures
a capital opportunity cost at a rate of IBp; the opportunity cost per unit time for the items is
obtained by (vIBp/T)

∫T
M D(T − t)dt = θcIBpD(T −M)2/2T .

Therefore, the total profit per unit time for the buyer, which is the sales profit plus
the interest earned, minus the total relevant costs, composed of ordering cost, holding cost,
opportunity cost and transportation cost, can be expressed as follows:

TBP
(
p, T

)
=

⎧⎨
⎩
TBP1

(
p, T

)
, T ≤M,

TBP2
(
p, T

)
, T ≥M,

(2.4)
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where

TBP1
(
p, T

)
= D

{
p − θc

(
1 +

rBT

2

)
+ pIBe

(
M − T

2

)}
− IA(Q)(h +wQ)

T
− SB
T
, (2.5)

TBP2
(
p, T

)
=D

{
p−θc

[
1+

rBT

2
+
IBp(T−M)2

2T

]
+
pIBeM

2

2T

}
− IA(Q)(h+wQ)

T
− SB
T
. (2.6)

3. Theoretical Results

Once the supplier and buyer have established a long-term strategic partnership and are
contracted to commit to the relationship, they will determine the best joint policy in which to
cooperate. Under this circumstance, joint total profit per unit time for the supplier and buyer
is

Π
(
n, p, T

)
=

⎧⎨
⎩
Π1
(
n, p, T

)
, T ≤M,

Π2
(
n, p, T

)
, T ≥M,

(3.1)

where

Π1
(
n, p, T

)
= TVP(n) + TBP1

(
p, T

)

= D
{
p −w − c

[
1 + θIVpM +

T

2
(
θrB + ϕ

)]
+ pIBe

(
M − T

2

)}
− S

T
,

(3.2)

Π2
(
n, p, T

)
= TVP(n) + TBP2

(
p, T

)

= D

{
p −w − c

{
1 +

ϕT

2
+ θ

[(
IVp − IBp

)
M +

IBpM
2

2T
+
T
(
rB + IBp

)
2

]}

+
pIBeM

2

2T

}
− S

T
,

S =
SV
n

+ SB + h, ϕ =
(
rV + IVp

)[
(n − 1)

(
1 − ρ) + ρ].

(3.3)

Note that Π1(n, p,M) = Π2(n, p,M), hence joint total profit per unit time Π(n, p, T) is
continuous at point T =M for fixed n and p.

To find the optimal solution, say (n∗, p∗, T ∗), that maximizes the above-integrated total
profit, the following procedures are taken. First, for fixed p and T , check the effect of n on the
joint total profit per unit time Π(n, p, T) with the fact ∂2Π(n, p, T)/∂n2 = ∂2Πi(n, p, T)/∂n2 =
−2SV/(n3T) < 0, i = 1, 2,Π(n, p, T) is a concave function of n. Therefore, for fixed p and T ,
the search for the optimal shipment number, n∗, is reduced to find a local optimal solution.

Case 1 (T ≤ M). For fixed n and p, with ∂2Π1(n, p, T)/∂T2 = −2S/T3 < 0,Π1(n, p, T) is a
concave function of T ; hence, there exists a unique value of T (denoted by T1(n, p)) which
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maximizes Π1(n, p, T). By solving ∂Π1(n, p, T)/∂T = −D[c(θrB + ϕ) + pIBe]/2 + S/T2 =
0, T1(n, p) can be obtained and is given as

T1
(
n, p

)
=

√√√√ 2S
D
[
c
(
θrB + ϕ

)
+ pIBe

] . (3.4)

To ensure T1(n, p) ≤M, substituting (3.4) into this inequality results in

if 2S ≤ Δ, then T1
(
n, p

) ≤M, (3.5)

where

Δ = D
[
c
(
θrB + ϕ

)
+ pIBe

]
M2. (3.6)

Conversely, if 2S > Δ, we have

∂Π1
(
n, p, T

)
∂T

>
D
[
c
(
θrB + ϕ

)
+ pIBe

](
M2 − T2)

2T2
≥ 0, (3.7)

which implies that Π1(n, p, T) is an increase function of T ∈ (0,M]. Hence, for fixed n and
p,Π1(n, p, T) has a maximum value at the boundary point T =M.

From the above results, we can easyily obtain the following lemma. The proof is
omitted here.

Lemma 3.1. For any given n and p,

(a) if 2S ≤ Δ, then T = T1(n, p) is the optimal value which maximizes Π1(n, p, T).

(b) if 2S > Δ, then T =M is the optimal value which maximizes Π1(n, p, T).

Case 2 (T ≥ M). The first order necessary condition with respect to T for Π2(n, p, T) in (3.3)
to be maximized is

∂Π2
(
n, p, T

)
∂T

=
D

2

{
−c[θ(rB + IBp

)
+ ϕ
]
+

(
cθIBp − pIBe

)
M2

T2

}
+
S

T2
= 0, (3.8)

then we obtain the value of T (denoted by T2(n, p)) as

T2
(
n, p

)
=

√√√√2S +D
(
cθIBp − pIBe

)
M2

Dc
[
θ
(
rB + IBp

)
+ ϕ
] . (3.9)

To ensure T2(n, p) ≥M, substituting (3.9) into this inequality results in the following:

if 2S ≥ Δ, then T2
(
n, p

) ≥M, where Δ is defined as above. (3.10)
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Note that when 2S ≥ Δ holds, then

2S +D
(
cθIBp − pIBe

)
M2 ≥ D[c(θrB + ϕ

)
+ pIBe

]
M2 +D

(
cθIBp − pIBe

)
M2

= D
{
c
[
θ
(
rB + IBp

)
+ ϕ
]}
M2 > 0

(3.11)

holds, which implies that T2(n, p) in (3.9) is well defined. Besides, we can show that

∂2Π2
(
n, p, T

)
∂T2

= −

[
2S +D

(
cθIBp − pIBe

)
M2

]
T3

< 0. (3.12)

Hence, T2(n, p) in (3.9) is a unique value which maximizes Π2(n, p, T).
Conversely, if 2S < Δ, we have

∂Π2
(
n, p, T

)
∂T

<
D

2

{
−c[θ(rB + IBp

)
+ ϕ
]
+

(
cθIBp − pIBe

)
M2

T2

}
+
D
[
c
(
θrB + ϕ

)
+ pIBe

]
M2

2T2

=
D

2

{
−c[θ(rB + IBp

)
+ ϕ
]
+
c
[
θ
(
rB + IBp

)
+ ϕ
]
M2

T2

}

≤ D

2

{
−c[θ(rB + IBp

)
+ ϕ
]
+
c
[
θ
(
rB + IBp

)
+ ϕ
]
M2

M2

}
= 0.

(3.13)

Thus,Π2(n, p, T) is a strictly decreasing function of T ∈ [M,∞), which implies thatΠ2(n, p, T)
has a maximum value at the boundary point T =M for fixed n and p.

From the above results, we can easily obtain the following lemma. The proof is omitted
here.

Lemma 3.2. For any given n and p,

(a) if 2S ≥ Δ, then T = T2(n, p) is the optimal value which maximizes Π2(n, p, T).

(b) if 2S < Δ, then T =M is the optimal value which maximizes Π2(n, p, T).

Combining Lemmas 3.1 and 3.2, we obtain the following result.

Theorem 3.3. For any given n and p,

(a) if 2S ≤ Δ, the optimal replenishment cycle length is T = T1(n, p).

(b) If 2S > Δ, the optimal replenishment cycle length is T = T2(n, p).

Proof. It immediately follows from the facts that Π1(n, p,M) = Π2(n, p,M), Lemmas 3.1 and
3.2.
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Next, let

f
(
p
)
= 2S −Δ = 2S −D[c(θrB + ϕ

)
+ pIBe

]
M2

= 2S − ap−δ
[
c0
(
ap−δ

)γ−β
ρ−γ
(
θrB + ϕ

)
+ pIBe

]
M2,

(3.14)

and taking the derivative of f(p)with respect to p, it gets

df
(
p
)

dp
= ap−δ−1

⎡
⎣c0δ(γ − β + 1

)(
ap−δ

)γ−β(
θrB + ϕ

)
ργ

+ (δ − 1)pIBe

⎤
⎦M2 > 0, (3.15)

because 0 < β − γ < 1 and δ > 1. Therefore f(p) is a strictly increasing function of p.
Furthermore, we have limp→ 0+f(p) = −∞ and limp→∞f(p) = 2S > 0. Hence, a unique value
p̂ such that f(p̂) = 0 exists, that is,

ap̂−δ
[(
ap̂−δ

)γ−β
c0ρ

−γ(θrB + ϕ
)
+ p̂IBe

]
M2 = 2S. (3.16)

Thus, we have

2S ≤ Δ iff p ≤ p̂. (3.17)

Based on the above arguments and Theorem 3.3, we can easily obtain the following
lemma. The proof is omitted here.

Lemma 3.4. For any given n and p,

(a) if p ≤ p̂, the optimal replenishment cycle length is T = T1(n, p),

(b) if p > p̂, the optimal replenishment cycle length is T = T2(n, p).

From Lemma 3.4, when n and p are given, we can get the maximum joint total profit
per unit time as follows:

Π
(
n, p

)
=

⎧⎨
⎩
Π1
(
n, p, T1

(
n, p

))
, if p ≤ p̂,

Π2
(
n, p, T2

(
n, p

))
, if p > p̂,

(3.18)
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where

Π1
(
n, p, T1

(
n, p

))
= ap−δ

[
p(1 + IBeM) −w −

(
ap−δ

)γ−β
c0ρ

−γ(1 + θIVpM)]

−
√
2ap−δS

[(
ap−δ

)γ−β
c0ρ−γ

(
θrB + ϕ

)
+ pIBe

]
,

(3.19)

Π2
(
n, p, T2

(
n, p

))
= ap−δ

{
p −w −

(
ap−δ

)γ−β
c0ρ

−γ[1 + θ(IVp − IBp)M]}

−
√(

ap−δ
)γ−β+1

c0ρ−γ
[
θ
(
rB + IBp

)
+ cϕ

]

×
√{

2S + ap−δ
[(
ap−δ

)γ−β
c0ρ−γθIBp − pIBe

]
M2

}
.

(3.20)

Now, to obtain the optimal retail price pwhichmaximizesΠ(n, p) for fixed n, by taking
the first-order partial derivative of Πi(n, p, Ti(n, p)), i = 1, 2 in (3.19) and (3.20) with respect
to p and by setting the result to be zero, we have

∂Π1
(
n, p, T1

(
n, p

))
∂p

= ap−δ
{
δ

p

[
w +

(
1 − β + γ)(ap−δ)γ−βc0ρ−γ(1 + θIVpM)]

+(1 − δ)(IBeM + 1)
}

+
{
δ

p

[(
1 − β + γ)(ap−δ)γ−βc0ρ−γ(ϕ + θrB

)] − (1 − δ)IBe
}

×
√√√√ S

2
(
ϕ + θrB

)
c0
(
ap−δ

)γ−β−1
ρ−γ + pIBe

= 0,

(3.21)

∂Π2
(
n, p, T2

(
n, p

))
∂p

=

⎧⎪⎪⎨
⎪⎪⎩
ap−δM2

{(
δ/p

)[(
1 − β + γ)(ap−δ)γ−βc0ρ−γθIBp] + (1 − δ)IBe

}
√{

2S + ap−δM2
[(
ap−δ

)γ−β
c0ρ−γθIBp − pIBe

]}

−δ
p

(
1 − β + γ)

√{
2S + ap−δM2

[(
ap−δ

)γ−β
c0ρ−γθIBp − pIBe

]}
⎫⎪⎪⎬
⎪⎪⎭

× 1
2

√[
ϕ + θ

(
rB + IBp

)]
c0
(
ap−δ

)γ−β+1
ρ−γ + ap−δ(1 − δ) + δ

p

×
{
w − (γ − β + 1

)
c0
(
ap−δ

)γ−β+1
ρ−γ
[
Mθ

(
IBp − IVp

) − 1
]}

= 0.

(3.22)
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Eventually, we check the second-order condition ∂2Πi(n, p, Ti(n, p))/∂p2 < 0, i = 1, 2, for
concavity.

Therefore, we obtain the following result.

Theorem 3.5. For any given n,

(a) if there exists a value p1 which satisfies the corresponding ∂Π1(n, p, T1(n, p))/∂p = 0 in
(3.21), ∂2Π1(n, p, T1(n, p))/∂p2 < 0 and p1 ≤ p̂, then (p, T) = (p1, T1(n, p1)) is the
optimal solution such that Π1(n, p1, T1(n, p1)) has a maximum value,

(b) if there exists a value p2 which satisfies the corresponding ∂Π2(n, p, T2(n, p))/∂p = 0 in
(3.22), ∂2Π2(n, p, T2(n, p))/∂p2 < 0, and p2 > p̂, then (p, T) = (p2, T2(n, p2)) is the
optimal solution such that Π2(n, p2, T2(n, p2)) has a maximum value.

Proof. It immediately follows from Lemma 3.4.

Summarizing the above arguments, an efficient algorithm for obtaining the optimal
solution (n∗, p∗, T ∗) is depicted.

Algorithm 3.6.

Step 1. Set n = 1.

Step 2. Determine p̂ from (3.16).

Step 3. Find p1 which satisfies p1 ≤ p̂, ∂Π1(n, p, T1(n, p))/∂p = 0 in (3.21) and ∂2Π1(n, p,
T1(n, p))/∂p2 < 0, then determine T1(n, p1) by (3.4) and calculateΠ1(n, p1, T1(n, p1)) by (3.19);
otherwise, set Π1(n, p, T1(n, p)) = 0.

Step 4. Find p2 which satisfies the p2 > p̂, ∂Π2(n, p, T2(n, p))/∂p = 0 in (3.22) and ∂2Π2(n, p,
T2(n, p))/∂p2 < 0, then determine T2(n, p2) by (3.9) and calculateΠ2(n, p2, T2(n, p2)) by (3.20);
otherwise, set Π2(n, p2, T2(n, p2)) = 0.

Step 5. Find Maxi=1,2{Πi(n, pi, Ti(n, pi))}.
Set Π(n)(n, p(n), T (n)) = Maxi=1,2{Πi(n, pi, Ti(n, pi))}, then (p(n), T (n)) is the optimal

solution for this given n.

Step 6. Set n = n + 1. Repeat Steps 2 to 5 to find Π(n)(n, p(n), T (n)).

Step 7. IfΠ(n)(n, p(n), T (n)) ≥ Π(n−1)(n − 1, p(n−1), T (n−1)), go to Step 6. Otherwise, go to Step 8.

Step 8. Set Π∗(n∗, p∗, T ∗) = Π(n−1)(n − 1, p(n−1), T (n−1)). (n∗, p∗, T ∗) is the optimal solution.

Once the optimal solution (n∗, p∗, T ∗) is obtained, the optimal order quantity Q∗ =
D(p∗)T ∗ follows.

4. Numerical Examples and Discussion

Example 4.1. In order to verify the proposed model, a numerical case will be used to
demonstrate ourmodel. We consider a company produces a product for an industrial client. It
has experienced that the demand rate is price-relative. This item is produced with the market
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Figure 2: Concavity of the total profit functionΠ(n)(n, p, T) for fixed n = 16.

demand. To increase sales, a credit term “net 30” (i.e.,M = 30 days) is offered by the supplier,
IVp = 0.04/$/year, IBe = 0.09/$/year, and IBp = 0.10/$/year. In addition, per shipment from
the company to the client is assessed a fixed cost h = $200/shipment and a variable cost
w = $0.5/unit. In addition, all shipments on orders equal to or over ψ = 900 units are shipped
free of charge. Summary of other parameters used is as follows: a = 100000, δ = 1.5, ρ = 0.95,
c0 = 4.75, θ = 2, γ = 1.5, β = 1.52, SV = $1000/setup, SB = $200/order, rV = 0.05, and rB = 0.1.

After running the basic set of parameters, the computational results are that the buyer
charges his/her customers a retail price p∗ = $12.8258/unit, the optimal replenishment cycle
length is T ∗ = T2 = 0.4170 per year and the demand rate isD(p∗) = a(p∗)−δ = 2177 units/year.
The optimal lot size Q∗ = D(p∗)T ∗ = 908 units per order which is over the minimum
boundary of free deliveries, so the shipping cost h + wQ∗ = $654 per shipment will be
paid by the supplier. Under this condition, the buyer’s annual total profit is $7653. Per
production run, the supplier spends c = c0D−βRγ = $4.3990/unit to produce the items at rate
R = D/ρ = 2, 292 units/year and sells them at a wholesale price v = θc = $8.7979/unit
to the buyer. As there are 16 deliveries from the supplier to the buyer per production
run, the supplier’s annual total profit is $7490, and the maximumjoint total annual profit
Π∗(n∗, p∗, T ∗) = Π∗(16, 12.8258, 0.4170) = $15143.

When p and T are decision variables, the surface generated by the total profit function
Π(16, p, T) over a wide range of values of p and T is shown in Figure 2. The graph is
drawn using MATHEMATICA 4.0. Furthermore, we show the numerical results with values
of n = 1, 2, . . . , 200. The numerical results indicate that there is a unique integer n which
maximizes the value of Π(n) ≡ Π(n)(n, p(n), T (n)), as shown in Figure 3. Consequently, the
solution obtained through this Algorithm is the optimal solution.

Example 4.2. Using the same data as in Example 4.1, we investigate some values of M to
analyze the effects of credit period on performance. Consider M ∈ {0, 10, 30, 45, 60, 75, 90},
the optimal solutions obtained through this Algorithm are presented in Table 2. To illustrate
the relationship between credit terms and profit progress, we also demonstrate profit gain
(comparingwith no trade credit, i.e.,M = 0) in percentage in the last three columns of Table 2.
We define the profit gain = [(profit with trade credit − profit without trade credit)/profit
without trade credit] × 100%.
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Figure 3: The optimal total profit per unit time for n = 1, 2, . . . , 200.

Table 2: Influence of optimal solution with differentM values.

M n∗ p∗ c T ∗ D∗ Q∗ IA(Q) TVP TBP Π Profit gain in percentage (%)

Supplier Buyer Channel

0 16 12.9322 4.4001 T2 = 0.4205 2150 904 0 7457 7614 15071 — — —

10 16 12.8936 4.3997 T2 = 0.4194 2160 906 0 7471 7622 15093 0.19 0.11 0.15

30 16 12.8258 4.3990 T2 = 0.4170 2177 908 0 7490 7653 15143 0.44 0.51 0.48

45 16 12.7832 4.3985 T2 = 0.4149 2188 908 0 7497 7689 15186 0.53 0.99 0.76

60 17 12.7483 4.3982 T2 = 0.4091 2197 899 1 9080 6153 15233 21.76 −19.19 1.07

75 17 12.7207 4.3979 T2 = 0.4065 2104 896 1 9079 6206 15285 21.74 −18.50 1.42

90 17 12.7008 4.3977 T2 = 0.4036 2209 892 1 9070 6271 15341 21.62 −17.63 1.79

Table 2 shows the optimal retail price p∗ and replenishment cycle length T ∗ decreases
when the credit period M is increasing. However, the optimal order quantities Q∗ increase
first then drop. Observe from Table 2 that as the credit periodM increases, the profit gains in
percentage are positive for the supplier and entire supply chain system, but are not always
positive for the buyer. These results reveal that a larger credit period may motivate the buyer
to order a smaller quantity and shorten the replenishment cycle length in order to take
advantages of the trade credit more frequently. Yet, if the buyer orders less than ψ (= 900
units), shipping costs will be charged. The result indicates that when a firm faces a trade-off
between trade credit and free-freight order, receiving a trade credit is not always a good idea.

Example 4.3. Here we examine the issue of how sensitive the performances of the supply
chain are to the supplier’s capacity utilization parameter ρ. Using the same data as in
Example 4.1 except the value of ρ belongs to the set {0.95, 0.75, 0.50, 0.25}. The results are
reported in Table 3.

Table 3 indicates that the lower the supplier’s capacity utilization, that is, the greater
inefficient production in the supply chain, the higher production cost. The increasing cost in
production leads to rising retail price which in turn reduces market demand and drop profits
of the supply chain system. Therefore, while the value of ρ decreases, the expected profits per
unit time of the buyer and the entire supply chain decrease. On the other hand, the supplier’s
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Table 3: Influence of optimal solution with different ρ values.

ρ n∗ p∗ c T ∗ D∗ Q∗ IA(Q) TVP TBP Π

0.95 16 12.8258 4.3990 T2 = 0.4170 2177 908 0 7490 7653 15143

0.75 7 17.3946 6.3287 T2 = 0.4539 1378 626 1 7951 4314 12264

0.50 5 30.2920 11.8217 T2 = 0.5200 600 312 1 6245 2299 8544

0.25 4 80.8479 34.4361 T2 = 0.6625 138 91 1 3976 425 4401

Table 4: Computation results for various values of β (γ = 1.5).

β n∗ p∗ v c T ∗ D∗ Q∗ IA(Q) TVP TBP Π

1.52 16 12.8258 8.7979 4.3990 T2 = 0.4170 2177 908 0 7490 7653 15143
1.53 16 11.8692 8.1187 4.0594 T2 = 0.4095 2445 1002 0 7687 8039 15726
1.54 16 10.9690 7.4739 3.7370 T2 = 0.4023 2753 1107 0 7873 8471 16344
1.55 16 10.1240 6.8634 3.4317 T2 = 0.3952 3104 1227 0 8045 8955 17000
1.56 16 9.3332 6.2870 3.1435 T2 = 0.3885 3507 1362 0 8195 9500 17695
1.57 16 8.5952 5.7443 2.8721 T2 = 0.3820 3968 1516 0 8318 10114 18432
1.58 16 7.9088 5.2349 2.6175 T2 = 0.3758 4496 1690 0 8406 10806 19212
1.59 16 7.2724 4.7584 2.3792 T2 = 0.3701 5099 1887 0 8450 11588 20038
1.60 16 6.6845 4.3142 2.1571 T2 = 0.3648 5786 2111 0 8438 12471 20909
1.61 16 6.1433 3.9014 1.9507 T2 = 0.3599 6567 2364 0 8361 13466 21827
1.62 16 5.6469 3.5194 1.7597 T2 = 0.3556 7452 2650 0 8206 14586 22793
1.63 16 5.1935 3.1670 1.5835 T2 = 0.3519 8449 2974 0 7961 15844 23805
1.64 16 4.7809 2.8434 1.4217 T2 = 0.3489 9566 3338 0 7612 17249 24862
1.65 16 4.4069 2.5472 1.2736 T2 = 0.3466 10809 3747 0 7149 18812 25961

expected profits per unit time increase first then drop. This results from free shipping offered
by the supplier with an order amount over 900 units as ρ = 0.95. The managerial implication
of the result is that if the supplier can obtain the demand information of final customers
through the buyer, then he/she may employ the information to adjust his/her production to
meet this demand and optimize the entire supply chain.

Example 4.4. Following assumptions (5) in Section 2, the supplier’s unit production cost is
directly related to the production rate R and inversely related to demand rate D, which
is given by c(D,R) = c0D

−βRγ . To understand the effect of various values of γ and β on
the channel performance, using the same parameter values as in Example 4.1, we apply the
Algorithm to obtain the optimal solutions. The results are shown in Tables 4 and 5.

From Table 4, we can see that for a certain value γ (=1.5), increasing β leads to a higher
order size as well profit gains for the buyer and entire channel. However, with the increase
in β, the supplier’s profit increases first then drops. The results indicate that, while unit
production cost is sensitive to market demand rate, the supplier will make a mass production
to reduce unit production cost. A decrease retail price resulting from lower unit production
cost yields an increase in market demand increase. Then the buyer’s profit gain increases
with an upward market demand. On the other hand, though the supplier can reduce unit
production cost by producing in large batches, however, the holding costs also increase with
large production quantity. Consequently, a larger production lot size is not always more
beneficial for the supplier.
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Table 5: Computation results for various values of γ (β = 1.52).

γ n∗ p∗ v c T ∗ D∗ Q∗ IA(Q) TVP TBP Π

1.37 16 4.3842 2.5274 1.2637 T2 = 0.3466 10893 3776 0 7106 18937 26044

1.38 16 4.7574 2.8230 1.4115 T2 = 0.3489 9637 3362 0 7579 17357 24936

1.39 16 5.1695 3.1464 1.5732 T2 = 0.3519 8508 2994 0 7936 15935 23871

1.40 16 5.6227 3.4986 1.7493 T2 = 0.3555 7500 2667 0 8189 14662 22851

1.41 16 6.1191 3.8809 1.9405 T2 = 0.3598 6607 2377 0 8350 13529 21878

1.42 16 6.6607 4.2942 2.1471 T2 = 0.3646 5817 2121 0 8431 12522 20953

1.43 16 7.2496 4.7394 2.3697 T2 = 0.3699 5123 1895 0 8446 11629 20075

1.44 16 7.8873 5.2171 2.6086 T2 = 0.3757 4514 1696 0 8405 10838 19243

1.45 16 8.5756 5.7282 2.8641 T2 = 0.3819 3982 1521 0 8318 10138 18456

1.46 16 9.3161 6.2730 3.1365 T2 = 0.3884 3517 1366 0 8196 9518 17714

1.47 16 10.1101 6.8521 3.4261 T2 = 0.3952 3111 1229 0 8046 8967 17013

1.48 16 10.9589 7.4658 3.7329 T2 = 0.4022 2756 1109 0 7874 8478 16353

1.49 16 11.8638 8.1144 4.0572 T2 = 0.4095 2447 1002 0 7688 8042 15730

1.50 16 12.8258 8.7979 4.3990 T2 = 0.4170 2177 908 0 7490 7653 15143

Furthermore, it can be noted from Table 5 that the optimal order sizes decline with
the increase in γ for a specific β (=1.52). In addition, profits for the buyer and entire channel
decrease but increase first then drop for the supplier. Since the unit production cost increases
with γ , therefore, higher unit wholesale price and retail price are required. As expected, the
increasing retail price significantly reduces market demand significantly resulting in lower
total profit for the buyer. On the other hand, first the supplier’s profit goes up with the
increasing wholesale price, however, as the demand level falls below its desired target this
leads to a much lower annual profit for the supplier.

Example 4.5. The purpose of this example is to evaluate the relative performances for various
values of the problem parameters. The study was conducted for different values of h,w, and
rB/rV . With the exception of the selected parameters, the values of other parameters have
been kept the same as in Example 4.1. The optimal policy maximizing the channel’s profit for
the various problem parameters is reported in Table 6.

From Table 6, it is observed that as the value of rB/rV increases, that is, as the relative
carrying cost rate (excluding interest charge) for the buyer increases, the buyer will order a
smaller lot size within a shorter inventory cycle, so more replenishments for each production
run (higher value of n) are required. While the value of w increases (i.e., the relative unit
shipping cost increases), the buyer will order a smaller lot size within a longer inventory
cycle in order to save cost while selling the items to customers at a higher retail price. Also,
the entire channel’s expected total profit reduces as the ratio rB/rV and w increase. Finally,
Table 6 shows with the increase in h the replenishment cycle and lot size both increase first
then decrease. And the number of shipments from the supplier to the buyer and channel
profit decrease first then increase.

5. Conclusion

In this paper, we consider a single-supplier single/buyer supply chain problem where the
production rate of the supplier is assumed to be linearly related to the market demand rate,
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Table 6: The results of sensitivity analysis.

rB/rV h w n∗ p∗ c v T ∗ D∗ Q∗ IA(Q) TVP TBP Π

1

50 0.1 19 12.0406 4.3906 8.7813 T2 = 0.3504 2393 839 1 9983 6473 16456

0.5 19 13.1982 4.4027 8.8055 T2 = 0.3746 2086 781 1 8695 7092 15787

0.9 19 14.3547 4.4139 8.8277 T2 = 0.3982 1839 732 1 7661 7535 15196

200 0.1 15 11.8179 4.3882 8.7764 T2 = 0.4382 2461 1079 0 9524 6501 16025

0.5 15 12.9599 4.4003 8.8007 T2 = 0.4687 2143 1005 0 7401 7984 15385

0.9 15 14.1011 4.4115 8.8230 T2 = 0.4985 1889 941 0 5733 9086 14819

400 0.1 21 12.1258 4.3916 8.7831 T2 = 0.3173 2368 751 1 9892 6721 16614

0.5 21 13.2893 4.4037 8.8073 T2 = 0.3390 2064 700 1 8619 7314 15934

0.9 21 14.4516 4.4147 8.8295 T2 = 0.3603 1820 656 1 7597 7737 15334

2

50 0.1 21 11.9396 4.3895 8.7791 T2 = 0.3109 2424 754 1 10126 6133 16259

0.5 21 13.0898 4.4017 8.8033 T2 = 0.3324 2112 702 1 8819 6785 15603

0.9 21 14.2390 4.4128 8.8256 T2 = 0.3534 1861 658 1 7769 7254 15024

200 0.1 16 11.6930 4.3868 8.7736 T2 = 0.3898 2501 975 0 9649 6117 15766

0.5 16 12.8258 4.3990 8.7979 T2 = 0.4170 2177 908 0 7490 7653 15143

0.9 16 13.9579 4.4101 8.8203 T2 = 0.4436 1918 851 1 7974 6619 14592

400 0.1 23 12.0342 4.3906 8.7811 T2 = 0.2822 2395 676 1 10020 6419 16439

0.5 23 13.1909 4.4027 8.8053 T2 = 0.3016 2087 630 1 8729 7041 15771

3

0.9 23 14.3466 4.4138 8.8276 T2 = 0.3206 1840 590 1 7693 7488 15181

50 0.1 23 11.8499 4.3885 8.7771 T2 = 0.2816 2451 690 1 10254 5825 16079

0.5 23 12.9934 4.4007 8.8014 T2 = 0.3010 2135 643 1 8929 6507 15435

0.9 23 14.1360 4.4118 8.8236 T2 = 0.3200 1882 602 1 7865 7001 14866

200 0.1 18 11.5824 4.3855 8.7711 T2 = 0.3512 2537 891 1 10578 4949 15527

0.5 18 12.7070 4.3977 8.7955 T2 = 0.3757 2208 829 1 9202 5720 14921

0.9 18 13.8311 4.4089 8.8179 T2 = 0.3997 1944 777 1 8099 6286 14385

400 0.1 25 11.9526 4.3897 8.7793 T2 = 0.2560 2420 619 1 10134 6145 16279

0.5 25 13.1033 4.4018 8.8036 T2 = 0.2736 2108 577 1 8827 6794 15622

0.9 25 14.2530 4.4129 8.8258 T2 = 0.2908 1858 540 1 7779 7262 15041

while demand is sensitive to retail price. The wholesale price imposed by the supplier on the
buyer is based on his/her unit production cost which is determined by the market demand
rate and production rate. The supplier produces one product in batches and periodically
delivers the product at a fixed lot size to the buyer. In addition, to encourage the retailer
to order more, the supplier offers a trade credit and a quantity-dependent free freight.
By analyzing the total channel profit function, we then developed a solution algorithm to
determine the optimal retail price, replenishment cycle length and the number of shipments
per production cycle from the supplier to the buyer. Numerical examples are presented to
illustrate this model. Comprehensive sensitivity analyses for the effects of the parameters on
the optimal solutions are also offered.

The following observations could be made from the numerical examples. First, when
the buyer faces a trade-off between ordering a smaller quantity to take advantages of the
trade credit more frequently against ordering a larger quantity to take advantages of free
shipping, he/shemust carefully weigh the pros of each. Second, it is found that if the supplier
can acquire “real time” market demand rate from the buyer and adjust production rate to
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match, this not only helps to reduce production cost for the supplier but also increases the
profit gain for the entire supply chain. Finally, the result indicates that a larger production
lot size is not always more economical for the supplier. It is because though the supplier
can achieve economies of scale by producing in large batches, however, his/her holding and
transportation costs also increase with a large order quantity.

As for future research, our model can be extended to more general supply chain
networks, for example, multiechelon or assembly supply chains. Also, it is interesting to
consider deteriorating items into the proposed model.

6. Notation and Assumptions

The following notations are adopted throughout this paper:

R: Supplier’s production rate.

SV : Supplier’s setup cost per setup.

SB: Buyer’s ordering cost per order.

rV : Supplier’s holding cost rate, excluding interest charges.

rB: Buyer’s holding cost rate, excluding interest charges.

c: Supplier’s unit production cost.

v: Supplier’s unit wholesale price.

p: Buyer’s unit retail price (decision variable).

D: Market demand rate for the product.

M: Buyer’s credit period offered by the supplier per order.

IVp: Supplier’s capital opportunity cost per dollar per unit time.

IBp: Buyer’s capital opportunity cost per dollar per unit time.

IBe: Buyer’s interest earned per dollar per unit time.

n: Number of shipments from supplier to buyer per production run, a positive integer
(decision variable).

T : Buyer’s replenishment cycle length (decision variable).

Q: Buyer’s order quantity per order (decision variable).

h: Fixed shipping cost per delivery.

w: Unit shipping cost.

TVP : The supplier’s expected total profit per unit time.

TBP : The buyer’s expected total profit per unit time.

Π: The channel’s expected total profit per unit time.

In addition, the following assumptions are made in deriving the model.

(1) There is single supplier and single buyer for a single product.

(2) Shortages are not permitted.
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(3) The market demand rate for the product is assumed sensitive to the buyer’s selling
price p and is given by D(p) = ap−δ, where a > 0 is a scaling factor, and δ > 0
is a price-elasticity coefficient. For notational simplicity, D(p) and D will be used
interchangeably in this paper.

(4) The supplier’s capacity utilization, ρ, is the ratio of the demand rate, D, to the
production rate, R, which is given as less than 1, that is, ρ = D/R and ρ < 1.

(5) The supplier’s unit production cost is directly related to the production rate R
and inversely related to demand rate D, which is given by c(D,R) = c0D

−βRγ ,
where c0, β and γ are nonnegative real numbers and satisfy 0 < β − γ < 1. Similar
assumption has been considered in Cheng [47]. For notational simplicity, c(D,R)
and c will be used interchangeably in this paper.

(6) Each unit is produced for $c and sold $v to the buyer, where v = θc, θ > 1.
Afterward, each unit is sold by the buyer on the market for $p (> v).

(7) The buyer’s replenishment cycle length is T and order quantity is Q (= DT) per
order.

(8) The supplier manufactures, at rate R, in batches of sizes of nQ and incurs a batch
set up cost SV . Each batch is dispatched to the buyer in n equal size shipments.

(9) Per shipment from the supplier to the buyer is assessed a fixed cost h that includes
insurance on consignment invoice value, trucking costs, and a variable cost w for
the unit shipping. In addition, free shipping is offered when the amount ordered
reaches the minimum amount ψ. That is the buyer’s transportation cost per order
is IA(Q)(h + wQ), where IA(Q) is the indicator function of Q with IA(Q) = 1, if
Q ∈ A = {Q | Q < ψ}; IA(Q) = 0 if Q/∈A.

(10) During the credit period, the buyer sells the items and uses the sales revenue to
earn interest at a rate of IBe. At the end of the permissible delay period, the buyer
pays the purchasing cost to the supplier and incurs an opportunity cost at a rate of
IBp for the items in stock.
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