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Let Bn be the unit ball of C
n, H(Bn) the space of all holomorphic functions in Bn. Let u ∈ H(Bn)

and α be a holomorphic self-map of Bn. For f ∈ H(Bn), the weigthed composition operator uCα is
defined by (uCαf)(z) = u(z)f(α(z)), z ∈ Bn. The boundedness and compactness of the weighted
composition operator on some weighted spaces on the unit ball are studied in this paper.
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1. Introduction

Let Bn be the unit ball of C
n, H(Bn) the space of all holomorphic functions in Bn, and H∞ =

H∞(Bn) the space of all bounded holomorphic functions in the unit ball. For f ∈ H(Bn), let

Rf(z) =
n∑

j=1

zj
∂f

∂zj
(z) (1.1)

be the radial derivative of f .
A positive continuous function μ on [0, 1) is called normal if there exist positive numbers

α and β, 0 < α < β, and δ ∈ [0, 1) such that (see, e.g., [1, 2])
μ(r)

(1 − r)α
is decreasing on [δ, 1), lim

r→1

μ(r)
(1 − r)α

= 0,

μ(r)

(1 − r)β
is increasing on [δ, 1), lim

r→1

μ(r)

(1 − r)β
= ∞.

(1.2)

An f ∈ H(Bn) is said to belong to the weighted-type space, denoted by H∞
μ = H∞

μ (Bn),
if

‖f‖H∞
μ
= sup

z∈Bn

μ
(|z|)∣∣f(z)∣∣ < ∞, (1.3)

where μ is normal on [0, 1) (see [3]). H∞
μ is a Banach space with the norm ‖·‖H∞

μ
.
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The little weighted-type space, denoted by H∞
μ,0, is the subspace of H∞

μ consisting of
those f ∈ H∞

μ such that

lim
|z|→1

μ
(|z|)∣∣f(z)∣∣ = 0. (1.4)

When μ(r) = (1−r2)α, the induced spacesH∞
μ andH∞

μ,0 become the (classical)weighted spaces
H∞

α andH∞
α,0 respectively.

An f ∈ H(Bn) is said to belong to the logarithmic-type spaceH∞
log if

‖f‖H∞
log

= sup
z∈Bn

∣∣f(z)
∣∣

log
(
e/

(
1 − |z|2)) < ∞. (1.5)

It is easy to see thatH∞
log becomes a Banach space under the norm ‖·‖H∞

log
, and that the following

inclusions hold:

H∞ ⊂ B ⊂ H∞
log ⊂ H∞

α , α > 0, (1.6)

where B is the Bloch space defined by

B =
{
f ∈ H(Bn) : sup

z∈Bn

(
1 − |z|2)∣∣Rf(z)

∣∣ < ∞
}
. (1.7)

For some information on the Bloch and related spaces see, for example, [4–13] and the
references therein. For some information on the spaceH∞

log in the unit disk see [14].
Let u ∈ H(Bn), and let ϕ be a holomorphic self-map of Bn. For f ∈ H(Bn), the weighted

composition operator uCϕ is defined by

(
uCϕf

)
(z) = u(z)f

(
ϕ(z)

)
, z ∈ Bn. (1.8)

The weighted composition operator can be regarded as a generalization of a multiplication
operator and a composition operator, which is defined by (Cϕf)(z) = f(ϕ(z)). The work in
[15] contains much information on this topic.

In the setting of the unit ball, Zhu studied the boundedness and compactness of the
weighted composition operator between Bergman-type spaces and H∞ in [16]. More general
results can be found in [17, 18]. Some necessary and sufficient conditions for the weighted
composition operator to be bounded and compact between the Bloch space and H∞ are given
in [19]. In the setting of the unit polydisk, some necessary and sufficient conditions for a
weighted composition operator to be bounded and compact between the Bloch space and
H∞(Bn

1) are given in [20, 21] (see also [22] for the case of composition operators). Other related
results can be found, for example, in [3, 23–32].

In this paper, we study the weighted composition operator from H∞
log to the spaces H∞

μ

andH∞
log. Some necessary and sufficient conditions for the weighted composition operator uCϕ

to be bounded and compact are given.
Throughout the paper, constants are denoted by C; they are positive and may not be the

same in every occurrence.
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2. Main results and proofs

In this section, we give our main results and their proofs. Before stating these results, we need
some auxiliary results, which are incorporated in the lemmas which follow.

Lemma 2.1. Assume that u ∈ H(Bn), ϕ is a holomorphic self-map of Bn, and μ is a normal function
on [0, 1). Then, uCϕ : H∞

log → H∞
μ is compact if and only if uCϕ : H∞

log → H∞
μ is bounded, and for

any bounded sequence (fk)k∈N
in H∞

log which converges to zero uniformly on compact subsets of Bn as
k → ∞, one has ‖uCϕfk‖H∞

μ
→ 0 as k → ∞.

The proof of Lemma 2.1 follows by standard arguments (see, e.g., [15, Proposition 3.11]
as well as the proofs of the corresponding results in [7, 22, 33, 34]). Hence, we omit the details.

Lemma 2.2. Assume that μ is normal. A closed set K in H∞
μ,0 is compact if and only if it is bounded

and satisfies

lim
|z|→1

sup
f∈K

μ
(|z|)∣∣f(z)∣∣ = 0. (2.1)

The proof of Lemma 2.2 is similar to the proof of Lemma 1 in [35]. We omit the details.
Now, we are in a position to state and prove our main results.

Theorem 2.3. Assume that u ∈ H(Bn), ϕ is a holomorphic self-map of Bn, and μ is normal on [0, 1).
Then, uCϕ : H∞

log → H∞
μ is bounded if and only if

M = sup
z∈Bn

μ
(|z|)∣∣u(z)∣∣ log e

1 − ∣∣ϕ(z)
∣∣2

< ∞. (2.2)

Proof. Assume that uCϕ : H∞
log → H∞

μ is bounded. For a ∈ Bn, set

fa(z) = log
e

1 − 〈z, a〉 . (2.3)

It is easy to see that fa ∈ H∞
log and supa∈Bn

‖fa‖H∞
log

< ∞.
For any b ∈ Bn, we have

∞ >
∥∥uCϕfϕ(b)

∥∥
H∞

μ

= sup
z∈Bn

μ
(|z|)∣∣(uCϕfϕ(b)

)
(z)

∣∣

= sup
z∈Bn

μ
(|z|)|u(z)||fϕ(b)

(
ϕ(z)

)|

≥ μ
(|b|)|u(b)| log e

1 − |ϕ(b)|2 ,

(2.4)

which implies (2.2).
Conversely, assume that (2.2) holds. Then, for any f ∈ H∞

log, we have

μ
(|z|)∣∣(uCϕf

)
(z)

∣∣ = μ
(|z|)∣∣u(z)∣∣∣∣f(ϕ(z))∣∣ ≤ μ

(|z|)∣∣u(z)∣∣ log e

1 − ∣∣ϕ(z)
∣∣2
‖f‖H∞

log
. (2.5)

Taking the supremum in (2.5) over Bn and using condition (2.2), the boundedness of the
operator uCϕ : H∞

log → H∞
μ follows, as desired.
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Theorem 2.4. Assume that u ∈ H(Bn), ϕ is a holomorphic self-map of Bn, and μ is a normal function
on [0, 1). Then, uCϕ : H∞

log → H∞
μ is compact if and only if u ∈ H∞

μ and

lim
|ϕ(z)|→1

μ
(|z|)∣∣u(z)∣∣ log e

1 − ∣∣ϕ(z)
∣∣2

= 0. (2.6)

Proof. Assume that uCϕ : H∞
log → H∞

μ is compact. Then, it is obvious that uCϕ : H∞
log → H∞

μ

is bounded. Taking the function f(z) = 1 ∈ H∞
log, we see that u ∈ H∞

μ . Let (ϕ(zk))k∈N
be a

sequence in Bn such that limk⇀∞|ϕ(zk)| = 1. Set

fk(z) =
(
log

e

1 − 〈
z, ϕ

(
zk
)〉

)2(
log

e

1 − ∣∣ϕ
(
zk
)∣∣2

)−1
, k ∈ N. (2.7)

It is easy to see that supk∈N
‖fk‖H∞

log
< ∞. Moreover, fk → 0 uniformly on compact subsets of Bn

as k → ∞. By Lemma 2.1,

lim
k→∞

∥∥uCϕfk
∥∥
H∞

μ
= 0. (2.8)

We have

∥∥uCϕfk
∥∥
H∞

μ
= sup

z∈Bn

μ
(|z|)∣∣u(z)fk

(
ϕ(z)

)∣∣ ≥ μ
(∣∣zk

∣∣)∣∣u
(
zk
)∣∣ log

e

1 − |ϕ(zk
)|2 , (2.9)

which together with (2.8) implies that

lim
k→∞

μ
(∣∣zk

∣∣)∣∣u
(
zk
)∣∣ log

e

1 − ∣∣ϕ
(
zk
)∣∣2

= 0. (2.10)

This proves that (2.6) holds.
Conversely, assume that u ∈ H∞

μ and (2.6) holds. From this, it follows that (2.2) holds;
hence uCϕ : H∞

log → H∞
μ is bounded. In order to prove that uCϕ : H∞

log → H∞
μ is compact,

according to Lemma 2.1, it suffices to show that if (fk)k∈N
is a bounded sequence in H∞

log
converging to 0 uniformly on compact subsets of Bn, then

lim
k→∞

∥∥uCϕfk
∥∥
H∞

μ
= 0. (2.11)

Let (fk)k∈N
be a bounded sequence in H∞

log such that fk → 0 uniformly on compact
subsets of Bn as k → ∞. By (2.6), we have that for any ε > 0, there is a constant δ ∈ (0, 1) such
that

μ
(|z|)∣∣u(z)∣∣ log e

1 − ∣∣ϕ(z)
∣∣2

< ε (2.12)
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whenever δ < |ϕ(z)| < 1. Let K = {w ∈ Bn : |w| ≤ δ}. Equation (2.12) along with the fact that
u ∈ H∞

μ implies

∥∥uCϕfk
∥∥
H∞

μ
= sup

z∈Bn

μ
(|z|)∣∣(uCϕfk

)
(z)

∣∣

= sup
z∈Bn

μ
(|z|)∣∣u(z)fk

(
ϕ(z)

)∣∣

≤
(

sup
{z∈Bn: |ϕ(z)|≤δ}

+ sup
{z∈Bn: δ≤|ϕ(z)|<1}

)
μ
(|z|)∣∣u(z)∣∣∣∣fk

(
ϕ(z)

)∣∣

≤ ‖u‖H∞
μ
sup
w∈K

∣∣fk(w)
∣∣ + sup

{z∈Bn: δ≤|ϕ(z)|<1}
μ
(|z|)∣∣u(z)∣∣ log e

1 − ∣∣ϕ(z)
∣∣2
∥∥fk

∥∥
H∞

log

≤ ‖u‖H∞
μ
sup
w∈K

∣∣fk(w)
∣∣ + Cε.

(2.13)

Observe that K is a compact subset of Bn so that

lim
k→∞

sup
w∈K

∣∣fk(w)
∣∣ = 0. (2.14)

With the aid of the above inequality, we can deduce that

lim sup
k→∞

∥∥uCϕfk
∥∥
H∞

μ
≤ Cε (2.15)

by letting k → ∞. Since ε is an arbitrary positive number, it follows that the last limit is equal
to zero. Therefore, uCϕ : H∞

log → H∞
μ is compact. The proof is complete.

Theorem 2.5. Assume that u ∈ H(Bn), ϕ is a holomorphic self-map of Bn, and μ is a normal function
on [0, 1). Then, uCϕ : H∞

log → H∞
μ,0 is compact if and only if u ∈ H∞

μ,0 and

lim
|ϕ(z)|→1

μ
(|z|)∣∣u(z)∣∣ log e

1 − ∣∣ϕ(z)
∣∣2

= 0. (2.16)

Proof. Assume that uCϕ : H∞
log → H∞

μ,0 is compact. Then, it is clear that uCϕ : H∞
log → H∞

μ is
compact, and hence (2.16) holds. In addition, taking the function given by f(z) = 1, we get
u ∈ H∞

μ,0.
Conversely, suppose that u ∈ H∞

μ,0 and (2.16) holds. In the proof of the implication we
follow the lines, for example, of the proof of Lemma 4.2 in [24]. From (2.16), it follows that for
every ε > 0, there exists a δ ∈ (0, 1) such that

μ
(|z|)∣∣u(z)∣∣ log e

1 − ∣∣ϕ(z)
∣∣2

< ε (2.17)

when δ < |ϕ(z)| < 1. From the assumption u ∈ H∞
μ,0, we have that for the above ε, there exists

an r ∈ (0, 1) such that when r < |z| < 1,

μ
(|z|)∣∣u(z)∣∣ < ε

log
(
e/

(
1 − δ2

)) . (2.18)
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Therefore, if r < |z| < 1 and δ < |ϕ(z)| < 1, we obtain

μ
(|z|)∣∣u(z)∣∣ log e

1 − ∣∣ϕ(z)
∣∣2

< ε. (2.19)

If |ϕ(z)| ≤ δ and r < |z| < 1,we have that

μ
(|z|)∣∣u(z)∣∣ log e

1 − ∣∣ϕ(z)
∣∣2

≤ μ
(|z|)∣∣u(z)∣∣ log e

1 − δ2
< ε. (2.20)

Combining (2.19) with (2.20), we get

lim
|z|→1

μ
(|z|)∣∣u(z)∣∣ log e

1 − ∣∣ϕ(z)
∣∣2

= 0. (2.21)

On the other hand, from (1.5)we have that

μ
(|z|)∣∣(uCϕf

)
(z)

∣∣ ≤ μ
(|z|)∣∣u(z)∣∣ log e

1 − ∣∣ϕ(z)
∣∣2
‖f‖H∞

log
.

Taking the supremum in the above inequality over all f ∈ H∞
log such that ‖f‖H∞

log
≤ 1, then

letting |z| → 1, by (2.21) it follows that

lim
|z|→1

sup
‖f‖H∞

log
≤1
μ
(|z|)∣∣(uCϕ(f)

)
(z)

∣∣ = 0. (2.22)

From this and by employing Lemma 2.2, we see that uCϕ : H∞
log → H∞

μ,0 is compact. The proof
is complete.

Similar to the proofs of Theorems 2.3 and 2.4, we easily get the following two results. We
also omit their proofs.

Theorem 2.6. Assume that u ∈ H(Bn) and ϕ is a holomorphic self-map of Bn. Then, the following
statements hold.

(a) uCϕ : H∞
log → H∞

log is bounded if and only if

sup
z∈Bn

∣∣u(z)
∣∣ log

(
e/

(
1 − ∣∣ϕ(z)

∣∣2))

log
(
e/

(
1 − |z|2)) < ∞. (2.23)

(b) uCϕ : H∞
log → H∞

log is compact if and only if u ∈ H∞
log and

lim
|ϕ(z)|→1

∣∣u(z)
∣∣ log

(
e/

(
1 − ∣∣ϕ(z)

∣∣2))

log
(
e/

(
1 − |z|2)) = 0. (2.24)

Theorem 2.7. Assume that u ∈ H(Bn) and ϕ is a holomorphic self-map of Bn. Then, the following
statements hold.

(a) uCϕ : H∞
log → H∞ is bounded if and only if

sup
z∈Bn

∣∣u(z)
∣∣ log

e

1 − ∣∣ϕ(z)
∣∣2

< ∞. (2.25)

(b) uCϕ : H∞
log → H∞ is compact if and only if u ∈ H∞ and

lim
|ϕ(z)|→1

∣∣u(z)
∣∣ log

e

1 − ∣∣ϕ(z)
∣∣2

= 0. (2.26)
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[10] S. Stević, “On an integral operator on the unit ball in C
n,” Journal of Inequalities and Applications, no. 1,

pp. 81–88, 2005.
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