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1. Introduction

We will be working on a space of homogeneous type. Let X be a set endowed with a positive
Borel regular measure μ and a symmetric quasimetric d satisfying that there exists a constant
κ ≥ 1 such that for all x, y, z ∈ X, d(x, y) ≤ κ[d(x, z) + d(z, y)]. The triple (X, d, μ) is said to be
a space of homogeneous type in the sense of Coifman and Weiss [1] if μ satisfies the following
doubling condition: there exists a constant C ≥ 1 such that for all x ∈ X and r > 0,

μ
(
B(x, 2r)

) ≤ Cμ
(
B(x, r)

)
. (1.1)

It is easy to see that the above doubling property implies the following strong homogeneity:
there exist positive constants C and n such that for all λ ≥ 1, r > 0, and x ∈ X,

μ
(
B(x, λr)

) ≤ Cλnμ
(
B(x, r)

)
. (1.2)
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Moreover, there also exist constants C > 0 andN ∈ [0, n] such that for all x, y ∈ X and r > 0,

μ
(
B(y, r)

) ≤ C

(
1 +

d(x, y)
r

)N

μ
(
B(x, r)

)
. (1.3)

We remark that although all balls defined by d satisfy the axioms of complete system
of neighborhoods in X, and therefore induce a (separated) topology in X, the balls B(x, r) for
x ∈ X and r > 0 need not be open with respect to this topology. However, by a remarkable
result of Macı́as and Segovia in [2], we know that there exists another quasimetric d̃ such that

(i) there exists a constant C ≥ 1 such that for all x, y ∈ X, C−1d̃(x, y) ≤ d(x, y) ≤ Cd̃(x, y);

(ii) there exist constants C > 0 and γ ∈ (0, 1] such that for all x, x′, y ∈ X,
∣
∣d̃(x, y) − d̃

(
x′, y

)∣∣ ≤ C
(
d̃
(
x, x′))γ(d̃(x, y) + d̃

(
x′, y

))1−γ
. (1.4)

The balls corresponding to d̃ are open in the topology induced by d̃. Thus, throughout this
paper, we always assume that there exist constants C > 0 and γ ∈ (0, 1] such that for all
x, x′, y ∈ X,

∣∣d(x, y) − d
(
x′, y

)∣∣ ≤ C
(
d
(
x, x′))γ(d(x, y) + d

(
x′, y

))1−γ
, (1.5)

and that the balls B(x, r) for all x ∈ X and r > 0 are open.
Now let k be a positive integer and b ∈ BMO (X), define the kth-order commutatorMb,k

of the Hardy-Littlewood maximal operator with b by

Mb,kf(x) = sup
B�x

1
μ(B)

∫

B

∣∣b(x) − b(y)
∣∣k∣∣f(y)

∣∣dμ(y) (1.6)

for all x ∈ X. For the case that (X, d, μ) is the Euclidean space, Garcı́a-Cuerva et al. [3] proved
that Mb,k is bounded on Lp(Rn) for any p ∈ (1,∞), and Alphonse [4] proved that Mb,1 en-
joys a weak-type L(logL) estimate, that is, there exists a positive constant C, depending on
‖b‖BMO (Rn), such that for all suitable functions f ,

∣∣{x ∈ R
n : Mb,1f(x) > λ

}∣∣ ≤ C

∫

R
n

∣∣f(x)
∣∣

λ
log

(
e +

∣∣f(x)
∣∣

λ

)
dx. (1.7)

Li et al. [5] established a weighted estimate with any general weight for Mb,1 in R
n. As it was

shown in [3–5] for the setting of Euclidean spaces, the operatorMb,k plays an important role in
the study of commutators of singular integral operators with BMO symbols. In this paper, we
establish weighted estimates with general weights forMb,k in spaces of homogeneous type. To
state our results, we first give some notation.

Let E be a measurable set with μ(E) < ∞. For any fixed p ∈ [1,∞), δ > 0, and suitable
function f , set

‖f‖Lp(logL)δ,E = inf
{
λ > 0 :

1
μ(E)

∫

E

(∣∣f(x)
∣∣

λ

)p

logδ
(
e +

∣∣f(x)
∣∣

λ

)
dμ(x) ≤ 1

}
. (1.8)

The maximal operator MLp(logL)δ is defined by MLp(logL)δf(x) = supB�x‖f‖Lp(logL)δ,B, where
the supremum is taken over all balls containing x. In the following, we denote ML1(logL)δ by
ML(logL)δ for simplicity, and denote by L∞

b
(X) the set of bounded functions with bounded

support.
With the notation above, we now formulate our main results as follows.
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Theorem 1.1. Let k be a positive integer, p ∈ (1,∞), and b ∈ BMO (X). Then for any δ > 0, there
exists a positive constant C, depending only on p, k, and δ, such that for all nonnegative weightsw and
f ∈ L∞

b
(X),

∫

X

(
Mb,kf(x)

)p
w(x)dμ(x) ≤ C‖b‖kpBMO (X)

∫

X

∣∣f(x)
∣∣pML(logL)kp+δw(x)dμ(x). (1.9)

Theorem 1.2. Let k be a positive integer, b ∈ BMO (X), and δ > 0. There exists a positive constant
C = Ck,‖b‖BMO (X) such that for all nonnegative weights w, f ∈ L∞

b
(μ) and λ > 0,

w
({

x ∈ X : Mb,kf(x) > λ
}) ≤ C

∫

X

∣∣f(x)
∣∣

λ
logk

(
e +

∣∣f(x)
∣∣

λ

)
M

L(logL)k̃+δ
w(x)dμ(x), (1.10)

where, and in the following, k̃ = k if k is even and k̃ = k + 1 if k is odd.

As a corollary of Theorem 1.2, we establish a weighted endpoint estimate for the max-
imal commutator of singular integral operators with BMO (X) symbols. Let T be a Calderón-
Zygmund operator, that is, T is a linear L2(X)-bounded operator and satisfies that for all
f ∈ L2(X) with bounded support and almost all x /∈ suppf ,

Tf(x) =
∫

X
K(x, y)f(y)dμ(y), (1.11)

where K is a locally integrable function on X × X \ {(x, y) : x = y} and satisfies that for all
x /=y,

∣
∣K(x, y)

∣∣ ≤ C

μ
(
B
(
x, d(x, y)

)) , (1.12)

and that for all x, y, y′ ∈ X with d(x, y) ≥ 2d(y, y′),

∣∣K(x, y) −K
(
x, y′)∣∣ +

∣∣K(y, x) −K
(
y′, x

)∣∣ ≤ C

(
d
(
y, y′))τ

μ
(
B
(
x, d(x, y)

))(
d(x, y)

)τ (1.13)

with positive constants C and τ ≤ 1. For any ε > 0, suitable function f and x ∈ X, define the
truncated operator Tε by

Tεf(x) =
∫

d(x,y)>ε
K(x, y)f(y)dμ(y). (1.14)

Let b ∈ BMO (X) and let k be a positive integer. Define the commutator Tε;b,k by

Tε;b,0f(x) = Tεf(x), Tε;b,kf(x) = b(x)Tε;b,k−1f(x) − Tε;b,k−1(bf)(x) (1.15)

for all x ∈ X and f ∈ L∞
b
(X). The maximal operator associated with the commutator Tb,k is

defined by

T ∗
b,kf(x) = sup

ε>0

∣∣Tε;b,kf(x)
∣∣ (1.16)
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for all x ∈ X. In [6], it was proved that if T is a Calderón-Zygmund operator, then for any
p ∈ (1,∞), there exists a positive constant C such that for all f ∈ L∞

b
(X) and all nonnegative

weights w,
∫

X

∣∣T ∗
b,kf(x)

∣∣pw(x)dμ(x) ≤ C‖b‖kpBMO (μ)

∫

X

∣∣f(x)
∣∣pML(logL)(k+1)p+δw(x)dμ(x). (1.17)

In [5], it was proved that in R
n, T ∗

b,1 enjoys the following weighted weak-type endpoint esti-
mate: for any δ > 0, there exists a positive constant C, depending on n, δ, and ‖b‖BMO (Rn), such
that

w
({

x ∈ R
n : T ∗

b,1f(x) > λ
}) ≤ C

∫

R
n

∣
∣f(x)

∣∣

λ
log

(
e +

∣
∣f(x)

∣
∣

λ

)
ML(log)2+δw(x)dx. (1.18)

Using Theorem 1.2, we will prove the following result.

Theorem 1.3. Let T be a Calderón-Zygmund operator. Then for any b ∈ BMO (X), nonnegative
integer k and δ > 0, there exists a positive constant C, depending on k, δ, and ‖b‖BMO (X), such that for
all λ > 0, f ∈ L∞

b
(X) and nonnegative weights w,

∫

{x∈X:T∗
b,k

f(x)>λ}
w(x)dμ(x) ≤ C

∫

X

∣∣f(x)
∣
∣

λ
logk

(
e +

∣
∣f(x)

∣∣

λ

)
ML(logL)k+1+δw(x)dμ(x). (1.19)

We mention that Theorems 1.1, 1.2, and 1.3 are also new even when w(x) ≡ 1 for all
x ∈ X.

We now make some conventions. Throughout the paper, we always denote by C a pos-
itive constant which is independent of main parameters, but it may vary from line to line. We
denote f ≤ Cg and f ≥ Cg simply by f � g and f � g, respectively. If f � g � f , we then
write f∼g. Constant, with subscript such as C1, does not change in different occurrences. A
weight w always means a nonnegative locally integrable function. For a measurable set E and
a weight w, χE denotes the characteristic function of E, w(E) =

∫
E w(x)dμ(x). Given λ > 0 and

a ball B, λB denotes the ball with the same center as B and whose radius is λ times that of B.
For a fixed p with p ∈ [1,∞), p′ denotes the dual exponent of p, namely, p′ = p/(p − 1). For
any measurable set E and any integrable function f on E, we denote bymE(f) the mean value
of f over E, that is, mE(f) = (1/μ(E))

∫
E f(x)dμ(x). For any locally integrable function f and

x ∈ X, the Fefferman-Stein sharp maximal function M#f(x) is defined by

M#f(x) = sup
B�x

1
μ(B)

∫

B

∣
∣f(y) −mB(f)

∣
∣dμ(y), (1.20)

where the supremum is taken over all balls B containing x. For any fixed q ∈ (0, 1), the sharp
maximal function M#

qf of the function f is defined by M#
qf = (M#(|f |q))1/q.

A generalization of Hölder’s inequality will be used in the proofs of our theorems. For
any measurable set E with μ(E) < ∞, positive integer l, and suitable function f , set

‖f‖expL1/l,E = inf
{
λ > 0 :

1
μ(E)

∫

E

exp
(∣∣f(x)

∣∣

λ

)1/l

dμ(x) ≤ 2
}
. (1.21)

Then the following generalization of Hölder’s inequality:

1
μ(E)

∫

E

∣∣f(x)h(x)
∣∣dμ(x) ≤ C‖f‖L(logL)l ,E‖h‖expL1/l,E (1.22)

holds for any suitable functions f and h; see [7] for details.
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2. Proof of Theorem 1.1

To prove Theorem 1.1, we need some technical lemmas. In what follows, we denote by M the
Hardy-Littlewood maximal function. Moreover, for any s > 0 and suitable function f , we set
Ms(f) = [M(|f |s)]1/s.

Lemma 2.1 (see [8]). There exists a positive constantC such that for all weightsw and all nonnegative
functions f satisfying μ({x ∈ X : f(x) > λ}) < ∞ for all λ > 0, then

(i) if μ(X) = ∞,

∫

X
f(x)w(x)dμ(x) ≤ C

∫

X
M#f(x)Mw(x)dμ(x); (2.1)

(ii) if μ(X) < ∞,

∫

X
f(x)w(x)dμ(x) ≤ C

∫

X
M#f(x)Mw(x)dμ(x) + Cw(X)mX(f). (2.2)

Lemma 2.2. For any q ∈ (0, 1), there exists a positive constant C such that for all f ∈ Lp(X) with
p ∈ [1,∞) and all x ∈ X, M#

q(Mf)(x) ≤ CM#f(x).

For the case that (X, d, μ) is the Euclidean space, this lemma was proved in [9]. For
spaces of homogeneous type, the proof is similar to the case of Euclidean spaces; see [6].

Lemma 2.3. Let p ∈ (1,∞) and let k be a positive integer.

(a) There exists a positive constant C, depending only on k and p, such that for all f ∈ L∞
b
(X)

and all weights w,

∫

X

[
ML(logL)kf(x)

]p
w(x)dμ(x) ≤ C

∫

X

∣∣f(x)
∣∣pMw(x)dμ(x). (2.3)

(b) For any δ1 > 0, there exists a positive constant C, depending only on k, p, and δ1, such that
for all f ∈ L∞

b
(X) and all weightsw,

∫

X

(
Mkf(x)

)p[
M

L(logL)kp
′−1+δ1w(x)

]1−p
dμ(x) ≤ C

∫

X

∣∣f(x)
∣∣p[w(x)

]1−p
dμ(x). (2.4)

For Euclidean spaces, Lemma 2.3(a) is just Corollary 1.8 in [10] and Lemma 2.3(b) is
included in the proof of Theorem 2 in [11] together with (4.11) in [12]. For spaces of homoge-
neous type, Lemma 2.3(a) is a simple corollary of Theorem 1.4 in [13]. On the other hand, by
Theorem 1.4 in [13], and the estimate that for all weights w, ML(logL)kw ≈ Mk+1w (see [12]),
we can prove Lemma 2.3(b) by the ideas used in [11, page 751]. For details, see [6].

By a similar argument that was used in the proof of Theorem 2.1 in [14], we can verify
the existence of the following approximation of the identity of order γ with bounded support
onX. We omit the details here.

For any x ∈ X and r > 0, set Vr(x) = μ
(
B(x, r)

)
.
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Lemma 2.4. Let γ be as in (1.5). Then there exists an approximation of the identity {Sk}k∈Z
of order

γ with bounded support on X. Namely, {Sk}k∈Z
is a sequence of bounded linear integral operators on

L2(X), and there exist constantsC0, C̃ > 0 such that for all k ∈ Z and all x, x′, y, and y′ ∈ X, Sk(x, y),
the integral kernel of Sk is a measurable function fromX ×X into C satisfying

(i) Sk(x, y) = 0 if d(x, y) ≥ C̃2−k and 0 ≤ Sk(x, y) ≤ C0(1/(V2−k(x) + V2−k(y)));

(ii) Sk(x, y) = Sk(y, x) for all x, y ∈ X;

(iii) |Sk(x, y) − Sk(x′, y)| ≤ C02kγd(x, x′)γ(1/(V2−k(x) + V2−k(y))) for d(x, x′) ≤ max{C̃/κ,
1/κ}21−k;

(iv) C0V2−k(x)Sk(x, x) > 1 for all x ∈ X and k ∈ Z;

(v)
∫
X Sk(x, y)dμ(y) = 1 =

∫
X Sk(x, y)dμ(x).

For any ε > 0 and x, y ∈ X, let

Sε(x, y) ≡ Sk(x, y)χ(2−k−1, 2−k](ε). (2.5)

Obviously, Sε satisfies (i) through (v) of Lemma 2.4 with 2−k replaced by ε. From (iii) and (iv)
of Lemma 2.4, it follows that there exist constants C′ ∈ (0,min{C̃/κ, 1/κ, (C0)

−2/γ}) and C > 1
such that for all ε > 0 and all x, y ∈ X satisfying d(x, y) < C′ε,

CVε(x)Sε(x, y) > 1. (2.6)

For a positive integer k and a function b ∈ BMO (X), let M̃b,k be the operator defined by

M̃b,kf(x) = sup
ε>0

M̃ε;b,kf(x) (2.7)

for all f ∈ L∞
b
(X) and x ∈ X, where for ε > 0,

M̃ε;b,kf(x) =
∫

X
Sε(x, y)

∣∣b(x) − b(y)
∣∣k∣∣f(y)

∣∣dμ(y). (2.8)

If k = 0, we denote M̃b,k and M̃ε;b,k simply by M̃ and M̃ε, respectively. From (i) of Lemma 2.4
together with (1.1), it follows that Sε(x, y) � 1/Vε(x) � 1/V2C̃ε(x).Notice that if d(x, y) ≥ 2C̃ε,
then Sε(x, y) = 0. Thus,

M̃b,kf(x) = sup
ε>0

M̃ε;b,kf(x) � sup
ε>0

1
V2C̃ε(x)

∫

B(x,2C̃ε)

∣∣b(x) − b(y)
∣∣k∣∣f(y)

∣∣dμ(y) � Mb,kf(x).

(2.9)

On the other hand, for each fixed ε > 0, by (2.6) and VC′ε(x)∼Vε(x), we have

1
VC′ε(x)

∫

B(x,C′ε)

∣∣b(x) − b(y)
∣∣k
∣∣f(y)

∣∣dμ(y) �
∫

X
Sε(x, y)

∣∣b(x) − b(y)
∣∣k
∣∣f(y)

∣∣dμ(y)

� M̃b,kf(x).
(2.10)

By the definition of Mb,k, we further obtain Mb,kf(x) � M̃b,kf(x). Thus, there exists some
constant C ≥ 1 such that for all x ∈ X and f ∈ L∞

b
(X),

C−1M̃b,kf(x) ≤ Mb,kf(x) ≤ CM̃b,kf(x). (2.11)

For the sharp function estimate of M̃b,k, we have the following estimate.



Guoen Hu et al. 7

Lemma 2.5. Let k be a positive integer and b ∈ BMO (X). For any q and s with 0 < q < s < 1, there
exists a positive constant C such that for all f ∈ L∞

b
(X) and all x ∈ X,

M#
q

(
M̃b,kf

)
(x) ≤ C

k−1∑

j=0

‖b‖k−jBMO (X)Ms

(
M̃b,jf

)
(x) + C‖b‖kBMO (X)ML(logL)kf(x). (2.12)

Proof. By (i), (ii), and (iii) of Lemma 2.4, we obtain that for all x, y ∈ X,

∣∣Sε(x, y)
∣∣ � 1

μ
(
B
(
x, d(x, y)

)) , (2.13)

and that for all ε > 0 and all x, y, y′ ∈ X with d(x, y) ≥ 2κd(y, y′),

∣∣Sε(x, y) − Sε

(
x, y′)∣∣ +

∣∣Sε(y, x) − Sε

(
y′, x

)∣∣ � 1
μ
(
B
(
x, d(x, y)

))

(
d
(
y, y′)

d(x, y)

)γ

. (2.14)

To verify (2.12), by homogeneity, we may assume that ‖b‖BMO (X) = 1. For all f ∈ L∞
b
(X),

x ∈ X, and balls B containing x, it suffices to prove that

inf
c∈C

(
1

μ(B)

∫

B

∣∣M̃b,kf(y) − c
∣∣qdμ(y)

)1/q

�
k−1∑

j=0

Ms

(
M̃b,jf

)
(x) +ML(logL)kf(x). (2.15)

We consider the following three cases.
Case 1 (μ(X \ C1B) = 0). Where and in what follows C1 = κ(4κ + 1). In this case, we have that
for all x ∈ X,

M̃b,kf(x) �
k−1∑

j=0

∣∣mB(b) − b(x)
∣∣k−jM̃b,jf(x) + M̃

((
b −mB(b)

)k
f
)
(x). (2.16)

The Kolmogorov inequality (see [15, page 102]), along with the fact that M (and so M̃) is
bounded from L1(X) to L1,∞(X) and the inequality (1.22) gives us that

{
1

μ(B)

∫

B

[
M̃

((
b −mB(b)

)k
f
)
(y)

]q
dμ(y)

}1/q

� 1
μ(B)

∫

C1B

∣∣b(y) −mB(b)
∣∣k∣∣f(y)

∣∣dμ(y)

� 1
μ(B)

∫

C1B

∣∣b(y) −mC1B(b)
∣∣k∣∣f(y)

∣∣dμ(y) +
∣∣mC1B(b) −mB(b)

∣∣ 1
μ(B)

∫

C1B

∣∣f(y)
∣∣dμ(y)

� ML(logL)kf(x),
(2.17)

where the last inequality follows from the John-Nirenberg inequality, which states that for any
ball Q,

∥∥∣∣mQ(b) − b
∣∣k∥∥

expL1/k,Q � ‖b‖kBMO (X). (2.18)
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On the other hand, if 0 < q < s < 1, an application of Hölder’s inequality implies that

{
1

μ(B)

∫

B

[
M̃b,kf(x)

]q
dμ(x)

}1/q

�
k−1∑

j=0

Ms

(
M̃b,jf

)
(x) +

{
1

μ(B)

∫

B

[
M̃

((
b −mB(b)

)k
f
)
(y)

]q
dμ(y)

}1/q

.

(2.19)

We then get (2.15).
Case 2 (μ(X\C1B)/= 0 and μ(C1B\B) > 0). In this case, decompose f into f = fχC1B+fχX\C1B ≡
f1 + f2, recalling that χE denotes the characteristic function of the set E. Let y0 be a point in B
such that

CB ≡ sup
ε>0

∫

X
Sε

(
y0, z

)∣∣mB(b) − b(z)
∣∣k∣∣f2(z)

∣∣dz < ∞. (2.20)

With the aid of the formula

(
mB(b) − b(z)

)k =
(
b(y) − b(z)

)k +
k−1∑

j=0

C
j

k

(
b(y) − b(z)

)j(
mB(b) − b(y)

)k−j
, (2.21)

where Cj

k
is the constant from Newton’s formula, we have

∣∣∣
∣∣b(y) − b(z)

∣∣k∣∣f(z)
∣∣ − ∣∣mB(b) − b(z)

∣∣k∣∣f2(z)
∣∣
∣∣∣

�
k−1∑

j=0

∣∣b(y) − b(z)
∣∣j∣∣mB(b) − b(y)

∣∣k−j∣∣f(z)
∣∣ +

∣∣mB(b) − b(z)
∣∣k∣∣f1(z)

∣∣.
(2.22)

Thus for any y ∈ B,

∣∣M̃b,kf(y) − CB

∣∣ =
∣∣∣∣sup
ε>0

∣∣M̃ε;b,kf(y)
∣∣ − sup

ε>0

∣∣M̃ε

((
mB(b) − b

)k
f2
)(
y0
)∣∣
∣∣∣∣

≤ sup
ε>0

∣∣M̃ε;b,kf(y) − M̃ε

((
mB(b) − b

)k
f2
)(
y0
)∣∣

� M̃
((
mB(b) − b

)k
f1
)
(y) +

k−1∑

j=0

∣∣mB(b) − b(y)
∣∣k−jM̃b,jf(y)

+ sup
ε>0

∣∣M̃ε

((
mB(b) − b

)k
f2
)
(y) − M̃ε

((
mB(b) − b

)k
f2
)(
y0
)∣∣

≡ I (y) + II (y) + III (y).

(2.23)

As in Case 1, we have that

{
1

μ(B)

∫

B

∣∣I(y)
∣∣qdμ(y)

}1/q

� ML(logL)kf(x),

{
1

μ(B)

∫

B

∣∣II(y)
∣∣qdμ(y)

}1/q

�
k−1∑

j=0

Ms

(
M̃b,jf

)
(x).

(2.24)
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As for III (y), by (2.14) and (1.22), it is easy to get

III (y) ≤ sup
ε>0

∫

X

∣∣Sε(y, z) − Sε

(
y0, z

)∣∣∣∣mB(b) − b(z)
∣∣k∣∣f2(z)

∣∣dμ(z)

�
∫

X\C1B

(
d
(
y, y0

))γ

μ
(
B
(
y, d(y, z)

))(
d(y, z)

)γ
∣∣mB(b) − b(z)

∣∣k∣∣f(z)
∣∣dz

�
∞∑

l=1

2−lγ
1

μ
(
2lC1B

)

∫

2lC1B

∣∣m2lC1B(b) − b(z)
∣∣k∣∣f(z)

∣∣dμ(z)

+
∞∑

l=1

2−lγ
∣
∣m2lC1B(b) −mB(b)

∣
∣k 1

μ
(
2lC1B

)

∫

2lC1B

∣
∣f(z)

∣
∣dμ(z)

�
∞∑

l=1

2−lγ
∥∥∣∣m2lC1B(b) − b

∣
∣k
∥∥
expL1/k,2lC1B

‖f‖L(logL)k,2lC1B

+
∞∑

l=1

2−lγ
∣∣m2lC1B(b) −mB(b)

∣∣kMf(x) � ML(logL)kf(x),

(2.25)

where the last inequality follows from (2.18) and |m2lQ(b)−mQ(b)| � l. This leads to our desired
estimate (2.15).
Case 3 (μ(X\C1B)/= 0 and μ(C1B\B) = 0). In this case, we take B′ such that B ⊂ B′, μ(B′) = μ(B),
and μ(C1B

′ \ B′) > 0. We then have that

inf
c∈C

1
μ(B)

∫

B

∣
∣M̃b,kf(x) − c

∣
∣qdμ(x) ≤ inf

c∈C

1
μ
(
B′)

∫

B′

∣
∣M̃b,kf(x) − c

∣
∣qdμ(x). (2.26)

With the ball B replaced by B′ in Case 2, we also obtain the result that for any y ∈ B′,

sup
ε>0

∫

X

∣
∣Sε(y, z) − Sε

(
y0, z

)∣∣
∣
∣mB′(b) − b(z)

∣
∣k
∣
∣f2(z)

∣
∣dz ≤ CML(logL)kf(x), (2.27)

which completes the proof of Lemma 2.5.

Lemma 2.6. Let α, β ∈ [0,∞). There exists a positive constant C, depending only on α and β, such
that for all weights w,

ML(logL)α
(
ML(logL)βw

)
(x) ≤ CML(logL)α+β+1w(x). (2.28)

For Euclidean spaces, a generalization of Lemma 2.6 was proved in [16]. For spaces of
homogeneous type, by a standard argument involving a covering lemma in [17, page 138], we
have that for any λ > 0 and suitable function f ,

μ
({

x ∈ X : ML(logL)αf(x) > λ
})

�
∫

X

∣∣f(x)
∣∣

λ
logα

(

e +

∣∣f(x)
∣∣

λ

)

dμ(x). (2.29)

Using this, Lemma 2.6 can be proved by applying the ideas used in [16]. For details, see [6,
Lemma 7].
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Proof of Theorem 1.1. We assume again that ‖b‖BMO (X) = 1. At first, we claim that when μ(X) =
∞, for all λ > 0 and f ∈ L∞

b
(X), μ({x ∈ X : M̃b,kf(x) > λ}) < ∞. In fact, for any f ∈ L∞

b
(X),

let R be large enough such that supp f ⊂ B(x0, R) for some x0 ∈ X. Notice that for all x ∈
X \ B(x0, 3R),

Mf(x) �
‖f‖L1(X)

μ
(
B
(
x, d

(
x, x0

))) . (2.30)

It then follows that for p ∈ (1,∞),

μ
({

x ∈ X \ B(x0, 3R
)
:
∣∣b(x) −mB(x0,R)(b)

∣∣kMf(x) > λ
})

≤ λ−p
∫

X\B(x0,3R)

∣∣b(x) −mB(x0,R)(b)
∣∣kp(Mf(x)

)p
dμ(x)

≤ λ−p‖f‖p
L1(X)

∫

X\B(x0,3R)

∣∣b(x) −mB(x0,d(x,x0))(b)
∣∣kp

{
μ
(
B
(
x, d

(
x, x0

)))}p dμ(x) < ∞.

(2.31)

This, together with the estimate that

μ
({

x ∈ X : M
((
b −mB(x0,R)(b)

)k
f
)
(x) > λ

})
� λ−p

∥∥∣∣b −mB(x0,R)(b)
∣∣kf

∥∥p

Lp(X) < ∞, (2.32)

leads to our claim.
By (2.11), to prove Theorem 1.1, it suffices to prove that for all weights w,

∫

X

(
M̃b,kf(x)

)p
w(x)dμ(x) �

∫

X

∣∣f(x)
∣∣pML(logL)kp+δw(x)dμ(x). (2.33)

We proceed our proof by an inductive argument on k. When k = 0, (2.33) is implied by the fact
thatMw(x) ≤ ML(logL)δw(x) for all x ∈ X and the following known inequality:

∫

X

[
M̃f(x)

]p
w(x)dμ(x) �

∫

X

∣∣f(x)
∣∣pMw(x)dμ(x). (2.34)

See [18, pages 150-151], for a proof of the last inequality when X = R
n. The same ideas also

work forX. Now we assume that k is a positive integer and (2.33) holds for any integer l with
0 ≤ l ≤ k−1. Then M̃b,l (0 ≤ l ≤ k−1) can extend to a bounded operator on Lp(X) for p ∈ (1,∞)
and so for any λ > 0 and σ ∈ (0, 1),

μ
({

x ∈ X : M
((
M̃b,lf

)σ)(x) > λ
})

< ∞. (2.35)

We now prove (2.33). To begin with, we prove that for any given q ∈ (0, 1) and k ∈ N,
and for all weights h and all f ∈ L∞

b
(X),

∫

X

(
M̃b,kf(x)

)q
h(x)dμ(x) �

∫

X

(
ML(logL)kf(x)

)q
Mkh(x)dμ(x). (2.36)
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We first consider the case that μ(X) = ∞. Choose r1, . . . , rk−1, rk such that 0 < q = r0 < r1 < · · · <
rk−1 < rk < 1. By Lemma 2.5, we obtain that for any 1 ≤ m ≤ k − 1 and any weight h,

∫

X

(
M#

rj

(
M̃b,mf

)
(x)

)q
h(x)dμ(x)

�
m−1∑

l=0

∫

X

(
Mrj+1

(
M̃b,lf

)
(x)

)q
h(x)dμ(x) +

∫

X

(
ML(logL)mf(x)

)q
h(x)dμ(x).

(2.37)

Therefore, applying Lemmas 2.1 and 2.2, and the estimate (2.35), we have

∫

X

(
Mrj+1

(
M̃b,lf

)
(x)

)q
h(x)dμ(x) =

∫

X

(
M

((
M̃b,lf

)rj+1)(x)
)q/rj+1

h(x)dμ(x)

�
∫

X

(
M#

q/rj+1

(
M

((
M̃b,lf

)rj+1)(x)
))q/rj+1

Mh(x)dμ(x)

�
∫

X

(
M#((M̃b,lf

)rj+1(x)
))q/rj+1

Mh(x)dμ(x)

=
∫

X

(
M#

rj+1

(
M̃b,lf

)
(x)

)q
Mh(x)dμ(x),

(2.38)

which leads to

∫

X

(
M#

rj

(
M̃b,mf

)
(x)

)q
h(x)dμ(x)

�
m−1∑

l=0

∫

X

(
M#

rj+1

(
M̃b,lf

)
(x)

)q
Mh(x)dμ(x) +

∫

X

(
ML(logL)mf(x)

)q
h(x)dμ(x).

(2.39)

Repeating the argument above k − 1 times, we then have that for all weights h,

∫

X

(
M#

q

(
M̃b,kf

)
(x)

)q
h(x)dμ(x)

�
k−1∑

j=0

∫

X

(
M#

r1

(
M̃b,jf

)
(x)

)q
Mh(x)dμ(x) +

∫

X

(
ML(logL)kf(x)

)q
h(x)dμ(x)

�
k−2∑

j=0

∫

X

(
M#

r2

(
M̃b,jf

)
(x)

)q
M2h(x)dμ(x) +

k−1∑

j=0

∫

X

(
ML(logL)j f(x)

)q
Mh(x)dμ(x)

+
∫

X

(
ML(logL)kf(x)

)q
h(x)dμ(x)

�
1∑

j=0

∫

X

(
M#

rk−1

(
M̃b,jf

)
(x)

)q
Mk−1h(x)dμ(x) +

k∑

j=0

∫

X

(
ML(logL)j f(x)

)q
Mk−1h(x)dμ(x).

(2.40)

On the other hand, notice that for all x ∈ X, M#
rk−1(M̃b,0f)(x) � M2f(x), and that, by (2.12)

and the fact thatM2f(x)∼ML(logL)f(x) for all x ∈ X (see [12, (4.11)]), we then have that for all
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x ∈ X, M#
rk−1(M̃b,1f)(x) � Mrk(M̃b,0f)(x) +ML(logL)f(x) � M2f(x). From these inequalities,

it then follows that
∫

X

(
M#

q

(
M̃b,kf

)
(x)

)q
h(x)dμ(x)

�
∫

X

(
M2f(x)

)q
Mk−1h(x)dμ(x) +

k∑

j=0

∫

X

(
ML(logL)j f(x)

)q
Mk−1h(x)dμ(x)

�
∫

X

(
ML(logL)kf(x)

)q
Mk−1h(x)dμ(x),

(2.41)

which together with (i) of Lemma 2.1 gives (2.36).
We turn our attention to (2.36) for the case of μ(X) < ∞. For all x ∈ X,

M̃b,lf(x) �
l∑

j=0

∣∣b(x) −mX(b)
∣∣jM̃

((
mX(b) − b

)l−j
f
)
(x). (2.42)

Moreover, the Kolmogorov inequality, together with Hölder’s inequality, the inequalities
(1.22), and (2.18), tells us that for any 0 ≤ j ≤ k, r ∈ (0, 1), and t ∈ (r, 1),

1
μ(X)

∫

X

∣∣b(x) −mX(b)
∣∣rj(M̃

((
mX(b) − b

)l−j
f
)
(x)

)r
dμ(x)

�
{

1
μ(X)

∫

X

[
M̃

((
mX(b) − b

)l−j)
f(x)

]t
dμ(x)

}r/t

�
{

1
μ(X)

∫

X

∣∣f(x)
∣∣∣∣mX(b) − b(x)

∣∣l−jdμ(x)
}r

�
(‖f‖L(logL)l−j ,X

)r
.

(2.43)

Combining the above estimates, we obtain

mX
((
M̃b,lf

)r) �
(
inf
x∈X

ML(logL)lf(x)
)r
. (2.44)

Let q, r1, r2, . . . , rk be as in the case of μ(X) = ∞. Another application of Kolmogorov inequality
and the fact thatM is bounded from L1(X) to L1,∞(X) leads to

{
mX

(
M

(
M̃b,lf

)rj)q/rj}rj/q

� mX
((
M̃b,lf

)rj) �
(
inf
x∈X

ML(logL)lf(x)
)rj

. (2.45)

As in the case of μ(X) = ∞, by Lemmas 2.1, 2.2, and 2.5, we have that for any q ∈ (0, 1),
∫

X

(
M̃b,kf

)q
h(x)dμ(x) �

∫

X

(
M#

q

(
M̃b,kf

)
(x)

)q
Mh(x)dμ(x) + h(X)mX

((
M̃b,kf

)q)

�
k−1∑

j=0

∫

X

(
M#

r1

(
M̃b,jf

)
(x)

)q
M2h(x)dμ(x)

+
∫

X

(
ML(logL)kf(x)

)q
Mh(x)dμ(x)

+
k−1∑

j=0

(Mh)(X)mX
(
M

(
M̃b,jf

)r1)q/r1 + h(X)mX
((
M̃b,kf

)q)

�
∫

X

(
ML(logL)kf(x)

)q
Mkh(x)dμ(x).

(2.46)

Combining the two cases yields(2.36).
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For any fixed p ∈ (1,∞) and δ > 0, choose q ∈ (0, 1) and δ1 > 0 such that kp/q+δ1 < kp+δ.
This, via a duality argument, (2.36), and Lemma 2.3, leads to

∥∥(M̃b,kf
)q∥∥

Lp/q(w)

= sup
‖h‖

L(p/q)
′(

w1−(p/q)′
)≤1

∣
∣
∣
∣

∫

X

[
M̃b,kf(x)

]q
h(x)dμ(x)

∣
∣
∣
∣

� sup
‖h‖

L(p/q)
′(

w1−(p/q)′
)≤1

∫

X

[
ML(logL)kf(x)

]q
Mkh(x)dμ(x)

� sup
‖h‖

L(p/q)
′(

w1−(p/q)′
)≤1

{∫

X

[
ML(logL)kf(x)

]p
ML(logL)kp/q−1+δ1w(x)dμ(x)

}q/p

×
{∫

X
[Mkh(x)]

(p/q)′[
ML(logL)kp/q−1+δ1w(x)

]1−(p/q)′
dμ(x)

}1/(p/q)′

�
{∫

X

[
ML(logL)kf(x)

]p
ML(logL)kp/q−1+δ1w(x)dμ(x)

}q/p

�
{∫

X

∣∣f(x)
∣∣pML(logL)kp+δw(x)dμ(x)

}q/p

,

(2.47)

where in the last inequality we have used Lemma 2.6. This completes the proof of Theorem 1.1.

3. Proof of Theorem 1.2

We begin with some preliminary lemmas.

Lemma 3.1 (see [17]). Let (X, d, μ) be a space of homogeneous type and let f be a nonnegative inte-
grable function. Then for every λ > mX(f)(mX(f) = 0 if μ(X) = ∞), there exist a sequence of pairwise
disjoint balls {Bj}j≥1 and a constant C4 ≥ 1 such that

mC4Bj
(f) ≤ λ < mBj

(f) (3.1)

andmB(f) ≤ λ for every ball B centered at x ∈ X \ (∪jC4Bj).

Lemma 3.2. Let d and l be two nonnegative integers. Then for all t1, t2 ≥ 0,

t1t
d
2 log

(
e + t1t

d
2

) ≤ C
(
t1log

d+l(e + t1
)
+ exp t2

)
. (3.2)

Proof. We may assume that d ≥ 1, otherwise the conclusion holds obviously. Set Φ1(t) =
tlogl(e+ t),Φ2(t) = tlogl+d(e+ t), andΦ3(t) = exp(t1/d). Let j = 1, 2, 3. Denote byΦ−1

j the inverse

of Φj , that is, Φ−1
j (t) = inf{s > 0 : Φj(s) > t}. It is well known that Φ−1

1 (t) ≈ tlog−l(e + t) and

Φ−1
2 (t) ≈ tlog−(d+l)(e + t) (see [19]). On the other hand, it is easy to verify that Φ−1

3 (t) = 0 when
t ∈ [0, 1) andΦ−1

3 (t) = logdtwhen t ∈ [1,∞). Therefore, for all t ∈ [0,∞),Φ−1
2 (t)Φ−1

3 (t) � Φ−1
1 (t).

This via [7, Lemma 6, page 63] tells us that Φ1(t1td2) � Φ2(t1) + Φ3(td2). Our desired conclusion
then follows directly.
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Proof of Theorem 1.2. With the notation M̃b,k as in (2.7), by (2.11), it suffices to prove that for
‖b‖BMO (X) = 1 and all f ∈ L∞

b
(X) and λ > 0,

w
({

x ∈ X : M̃b,kf(x) > λ
})

�
∫

X

∣
∣f(x)

∣
∣

λ
logk

(
e +

∣
∣f(x)

∣
∣

λ

)
M

L(logL)k̃+δ
w(x)dμ(x), (3.3)

where k̃ = k when k is even and k̃ = k + 1 when k is odd.
Recall that for all f ∈ L∞

b
(X),

w({x ∈ X : M̃f(x) > λ}) � 1
λ

∫

X
|f(x)|Mw(x)dμ(x). (3.4)

(See [18, page 151] for a proof when X = R
n. The same idea also works for X.) By Hölder’s

inequality, it follows that for all x ∈ X,

M̃b,kf(x) ≤
(
M̃b,k+1f(x)

)k/(k+1)(
M̃f(x)

)1/(k+1)
(3.5)

and so when k is odd,

w
({

x ∈ X : M̃b,kf(x) > λ
}) ≤ w

({
x ∈ X : M̃b,k+1f(x) > λ

})
+w

({
x ∈ X : M̃f(x) > λ

})

� w
({

x ∈ X : M̃b,k+1f(x) > λ
})

+
1
λ

∫

X

∣∣f(x)
∣∣Mw(x)dμ(x).

(3.6)

Thus, it suffices to prove (3.3) for the case that k is even. We employ some ideas from [20], and
proceed our proof of (3.3) by an inductive argument. When k = 0, (3.3) is implied by the fact
that Mw(x) ≤ ML(logL)δw(x) for all x ∈ X and (3.4). Now let k be a positive integer. We may
assume that ML(logL)k+δw is finite almost everywhere, otherwise there is nothing to be proved.
For any fixed δ > 0, we assume that for any nonnegative integer lwith 0 ≤ l ≤ k−1, there exists
a constant C = Cl,δ such that for all λ > 0,

w
({

x ∈ X : M̃b,lf(x) > λ
})

�
∫

X

∣∣f(x)
∣∣

λ
logl

(
e +

∣∣f(x)
∣∣

λ

)
M

L(logL)l̃+δ
w(x)dμ(x), (3.7)

where and in what follows, l̃ = l when l is even and l̃ = l + 1 when l is odd. If μ(X) < ∞
and λ ≤ ‖f‖L1(X)[μ(X)]−1, the inequality (3.3) is trivial. So it remains to consider the case
that λ > ‖f‖L1(X)[μ(X)]−1. For each fixed bounded function f with bounded support and λ >

‖f‖L1(X)[μ(X)]−1, applying Lemma 3.1 to |f | at level λ, we obtain a sequence of balls {Bj}j≥1
with pairwise disjoint interiors. As in the proof of Lemma 2.10 in [17], set V1 = (C4B1)\(∪n≥2Bn)
and Vj = (C4Bj) \ [∪j−1

n=1Vn ∪ ∪l≥j+1Bl], it then follows that Bj ⊂ Vj ⊂ (C4Bj) and ∪jVj = ∪j(C4Bj).
Define the functions g and h, respectively, by g ≡ |f |χX\∪jVj

+
∑

jmVj
(|f |)χVj

and h ≡ ∑
jhj with

hj ≡ (|f | − mVj
(|f |))χVj

. Recall that μ is regular and the set of continuous function is dense in
Lp(X) for any p ∈ [1,∞). Lemma 3.1 implies that for any fixed j,

C−1
6 λ ≤ 1

μ
(
Vj

)
∫

Vj

∣∣f(y)
∣∣dμ(y) ≤ C6λ (3.8)
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with C6 > 1 a constant independent of f and j, which together with the Lebesgue differentia-
tion theorem and Lemma 3.1 again yields that

‖g‖L∞(X) ≤ C6λ. (3.9)

Let Ω = ∪j(C7Bj)with C7 = C1C4. The doubling property of μ and (3.1) now state that

w(Ω) �
∑

j

w
(
C7Bj

)

μ
(
C7Bj

) μ
(
Bj

)
� 1

λ

∑

j

inf
x∈Bj

Mw(x)
∫

Bj

∣∣f(y)
∣
∣dμ(y) � 1

λ

∫

X

∣∣f(y)
∣
∣Mw(y)dμ(y).

(3.10)

Following an argument similar to the case of Euclidean spaces (see [18, page 159]), we have
that for any γ ≥ 0, there exists a positive constant C, depending only on γ , such that for all
x ∈ C4Bj ,

ML(logL)γ
(
wχX\Ω

)
(x) � inf

y∈C4Bj

ML(logL)γ
(
wχX\Ω

)
(y). (3.11)

Thus,

∣∣mVj
(f)

∣∣
∫

Vj

ML(logL)k+δ
(
wχX\Ω

)
(x)dμ(x) � λμ

(
Vj

)
inf
y∈Bj

ML(logL)k+δ(wχX\Ω)(y)

� λμ
(
Bj

)
inf
y∈Bj

ML(logL)k+δ
(
wχX\Ω

)
(y)

�
∫

Bj

∣∣f(x)
∣∣ML(logL)k+δ

(
wχX\Ω

)
(x)dμ(x).

(3.12)

For each fixed δ > 0, choose p0 ∈ (1,∞) and δ1 > 0 such that kp0 + δ1 < k + δ. From the last
estimate, (2.11), Theorem 1.1, and (3.9), it follows that

w
({

x ∈ X \Ω : M̃b,kg(x) > λ/2
})

� λ−p0
∫

X

∣∣g(x)
∣∣p0ML(logL)kp0+δ1

(
wχX\Ω

)
(x)dμ(x)

� λ−1
∫

X

∣∣g(x)
∣∣ML(logL)kp0+δ1

(
wχX\Ω

)
(x)dμ(x)

� λ−1
(∫

X\∪jVj

∣∣f(x)
∣∣ML(logL)k+δ

(
wχX\Ω

)
(x)dμ(x)

+
∑

j

∣∣mVj
(f)

∣∣
∫

Vj

ML(logL)k+δ
(
wχX\Ω

)
(x)dμ(x)

)

� λ−1
∫

X

∣∣f(x)
∣∣ML(logL)k+δw(x)dμ(x).

(3.13)

Thus, our proof is now reduced to proving

w

({
x ∈ X \Ω : M̃∗

b,k
h(x) >

λ

2

})
�

∫

X

∣
∣f(x)

∣
∣

λ
logk

(

e +

∣
∣f(x)

∣
∣

λ

)

ML(logL)k+δw(x)dμ(x),

(3.14)
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where

M̃∗
b,kh(x) = sup

ε>0

∣∣∣∣

∫

X
Sε(x, y)

∣∣b(x) − b(y)
∣∣kh(y)dμ(y)

∣∣∣∣. (3.15)

For any j ≥ 1, let

M̃∗hj(x) = sup
ε>0

∣∣∣∣

∫

X
Sε(x, y)hj(y)dμ(y)

∣∣∣∣. (3.16)

We now prove (3.14). With the aid of the formula that for all x, y ∈ X,

(
b(x) − b(y)

)k =
k∑

l=0

Cl
k

(
b(x) −mBj

(b)
)l(

mBj
(b) − b(y)

)k−l
, (3.17)

since k is even, for x ∈ X \Ω, we write

M̃∗
b,kh(x) �

∑

j

∣∣b(x) −mBj
(b)

∣∣kM̃∗hj(x) +
k−1∑

l=0

M̃b,l

(
∑

j

(
b(·) −mBj

(b)
)k−l

hj

)

(x)

≡ G(x) +H(x).

(3.18)

Recall that {Vj}j are mutually disjoint. If we set Φl(t) = tlogl(e + t), our inductive hypothesis
(3.7) via (3.11) now tells us that

w

({
x ∈ X \Ω : H(x) >

λ

4

})

�
k−1∑

l=0

∑

j

∫

Vj

Φl

(∣∣b(y) −mBj
(b)

∣∣k−l∣∣f(y)
∣∣

λ

)

dμ(y) inf
z∈C4Bj

M
L(logL)l̃+δ

(
wχX\Ω

)
(z)

+
k−1∑

l=0

∑

j

∫

Vj

Φl

(∣∣b(y) −mBj
(b)

∣∣k−l∣∣mVj
(f)

∣∣

λ

)

dμ(y) inf
z∈Bj

M
L(logL)l̃+δ

(
χX\Ωw

)
(z).

(3.19)

An application of Lemma 3.2 then gives that

∫

Vj

Φl

(∣∣b(y) −mBj
(b)

∣∣k−l∣∣f(y)
∣∣

λ

)

dμ(y)

�
∫

Vj

Φl

(∣∣b(y) −mC4Bj
(b)

∣∣k−l∣∣f(y)
∣∣

λ

)

dμ(y)

+ Φl

(∣∣mC4Bj
(b) −mBj

(b)
∣∣k−l)

∫

Vj

Φl

(∣∣f(y)
∣∣

λ

)

dμ(y)

�
∫

Vj

exp

(∣∣b(y) −mC4Bj
(b)

∣∣

C2

)

dμ(x) +
∫

Vj

Φk

(∣∣f(x)
∣∣

λ

)

dμ(x)

�
∫

Vj

Φk

(∣∣f(x)
∣∣

λ

)

dμ(x).

(3.20)
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For each fixed j, notice that by (3.8) and Lemma 3.2,

∫

Vj

Φl

(∣
∣b(y) −mBj

(b)
∣
∣k−l∣∣mVj

(f)
∣
∣

λ

)

dμ(y) � μ
(
Bj

)
. (3.21)

It then follows that

w

({
x ∈ X \Ω : H(x) >

λ

4

})
�

∑

j

∫

Vj

Φk

(∣
∣f(x)

∣
∣

λ

)
ML(logL)k+δw(x)dμ(x)

+
∑

j

μ
(
Bj

)
inf
y∈Bj

ML(logL)k+δw(y)

�
∫

X
Φk

(∣∣f(x)
∣∣

λ

)
ML(logL)k+δw(x)dμ(x).

(3.22)

It remains to prove that

w

({
x ∈ X \Ω : G(x) >

λ

4

})
� λ−1

∫

X

∣∣f(x)
∣∣ML(logL)kw(x)dμ(x). (3.23)

For each fixed j, let yj and rj be the center and radius of Bj , respectively. If x ∈ X \Ω, then by
the vanishing moment of hj and the estimate (2.14), we obtain that

M̃∗hj(x) ≤ sup
ε>0

∫

X

∣∣Sε(x, y) − Sε

(
x, yj

)∣∣∣∣hj(y)
∣∣dμ(y)

�
(
rj
)γ

{
d
(
x, yj

)}−γ

μ
(
B
(
yj, d

(
x, yj

)))
∫

X

∣∣hj(y)
∣∣dμ(y).

(3.24)

This in turn implies that

w

({
x ∈ X \Ω : G(x) >

λ

4

})

� 1
λ

∑

j

(
rj
)γ
∫

X\C7Bj

∣∣b(x) −mBj
(b)

∣∣k

μ
(
B
(
yj, d

(
x, yj

)))
w(x)

{
d
(
x, yj

)}γ dμ(x)
∫

X

∣∣hj(y)
∣∣dμ(y)

≤ 1
λ

∑

j

(
rj
)γ ∞∑

l=1

∫

(2lC7Bj)\(2l−1C7Bj)

∣∣b(x) −mBj
(b)

∣∣kw(x)

μ
(
B
(
yj, d

(
x, yj

)))(
d
(
x, yj

))γ dμ(x)
∫

X

∣∣hj(y)
∣∣dμ(y)

� 1
λ

∑

j

∫

X

∣∣hj(y)
∣∣dμ(y) inf

y∈C7Bj

ML(logL)kw(y) � 1
λ

∫

X

∣∣f(x)
∣∣ML(logL)kw(x)dμ(x),

(3.25)

where in the second to the last inequality, we use the fact that for each fixed j, yj ∈ Vj

and positive integer l, a standard argument involving the inequalities (1.22) and (2.18)
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yields

∫

(2lC7Bj)\(2l−1C7Bj)

∣∣b(x) −mBj
(b)

∣∣kw(x)

μ
(
B
(
yj, d

(
x, yj

)))(
d
(
x, yj

))γ dμ(x) � lk
(
2lrj

)−γ
inf

y∈C7Bj

ML(logL)kw(y); (3.26)

see also the proof of (2.25). We then complete the proof of Theorem 1.2.

4. Proof of Theorem 1.3

This section is devoted to the proof of Theorem 1.3.

Lemma 4.1. Let T be a Calderón-Zygmund operator. Then, there exists a positive constant C such that
for all λ > 0, f ∈ L∞

b
(X), and weights w,

∫

{x∈X: T∗f(x)>λ}
w(x)dμ(x) ≤ C

∫

X

∣∣f(x)
∣∣

λ
ML(logL)1+δw(x)dμ(x). (4.1)

Lemma 4.1 can be proved by a similar but more careful argument as that used in the
proof of Theorem 1.2 in [8]. We omit the proof here for brevity.

Proof of Theorem 1.3. The argument here is similar to that used in the proof of Theorem 1.2,
and we will only give an outline. Also, we proceed our proof by an inductive argument. By
Lemma 4.1, it is obvious that (1.19) is true when k = 0. Now let k be a positive integer. For any
fixed δ > 0, and any nonnegative integer l with 0 ≤ l ≤ k − 1, we assume that for all λ > 0 and
f ∈ L∞

b
(X),

w
({

x ∈ X : T ∗
b,lf(x) > λ

})
�

∫

X

∣∣f(x)
∣∣

λ
logl

(

e +

∣∣f(x)
∣∣

λ

)

ML(logL)l+1+δw(x)dμ(x). (4.2)

We need only consider the case that λ > ‖f‖L1(X)[μ(X)]−1. For each fixed bounded function f

with bounded support and λ > ‖f‖L1(X)[μ(X)]−1, applying Lemma 3.1 to |f | at level λ, with the
same notation {Bj}j , {Vj}j , Ω as in the proof of Theorem 1.2, we decompose f ≡ g + h, where
g ≡ fχX\∪jVj

+
∑

jmVj
(f)χVj

and h ≡ ∑
jhj with hj ≡ (f − mVj

(f))χVj
. Applying the estimate

(1.17), and a similar argument to that used to deal with the term M̃b,kg gives us that

w

({
x ∈ (X \Ω) : T ∗

b,kg(x) >
λ

2

})
� λ−p0

∫

X

∣∣g(x)
∣∣p0ML(logL)(k+1)p0+δ1

(
wχX\Ω

)
(x)dμ(x)

� λ−1
∫

X

∣∣f(x)
∣∣ML(logL)k+1+δw(x)dμ(x),

(4.3)

where p0 ∈ (1,∞) and δ1 > 0 such that (k + 1)p0 + δ1 < k + 1 + δ.
We now turn to the term T ∗

b,k
h. For any x ∈ X \Ω and ε > 0, set

I1(x, ε) =
{
j : ∀ y ∈ C4Bj, d(x, y) ≤ ε

}
,

I2(x, ε) =
{
j : ∀ y ∈ C4Bj, d(x, y) > ε

}
,

I3(x, ε) =
{
j :

(
C4Bj

) ∩ {y ∈ X : d(x, y) > ε
}
/=∅,

(
C4Bj

) ∩ {
y ∈ X : d(x, y) ≤ ε

}
/=∅

}
.

(4.4)
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It then follows that
∣∣Tε;b,kh(x)

∣∣ ≤
∣∣∣∣∣
Tε;b,k

(
∑

j∈I2(x,ε)
hj

)

(x)

∣∣∣∣∣
+

∣∣∣∣∣
Tε;b,k

(
∑

j∈I3(x,ε)
hj

)

(x)

∣∣∣∣∣

�
∣∣∣∣∣

∑

j∈I2(x,ε)

(
b(x) −mBj

(b)
)k
Tεhj(x)

∣
∣
∣
∣∣
+

k−1∑

l=0

∣
∣∣
∣
∣
Tε;b,l

(
∑

j

(
b(·) −mBj

(b)
)k−l

hj

)

(x)

∣
∣
∣
∣
∣

+
k−1∑

l=0

∣∣∣∣∣
Tε;b,l

(
∑

j∈I3(x,ε)

(
b(·) −mBj

(b)
)k−l

hj

)

(x)

∣∣∣∣∣

+

∣∣∣∣∣
Tε;b,k

(
∑

j∈I3(x,ε)
hj

)

(x)

∣∣∣∣∣
≡ Uε(x) + Vε(x) +Wε(x) + Xε(x).

(4.5)

Notice that for x ∈ (X \ Ω) and j ∈ I2(x, ε), we have that Tεhj(x) = Thj(x). By the vanishing
moment of hj and the regularity condition (1.13), we have

sup
ε>0

Uε(x) ≤
∑

j

∣∣b(x) −mBj
(b)

∣∣k
∫

X

(
d
(
y, yj

))τ

μ
(
B
(
y, d(x, y)

))(
d(x, y)

)τ
∣∣hj(y)

∣∣dμ(y) (4.6)

and so

w

({
x ∈ (X \Ω) : sup

ε>0
Uε(x) >

λ

6

})

� λ−1
∑

j

∫

X

∣∣hj(y)
∣∣(d

(
y, yj

))τ
∫

X\C7Bj

∣∣b(x) −mBj
(b)

∣∣kw(x)

μ
(
B
(
y, d(x, y)

))(
d(x, y

))τ dμ(x)dμ(y)

� λ−1
∫

X

∣∣f(x)
∣∣ML(logL)kw(x)dμ(x).

(4.7)

Our inductive hypothesis (4.2), via the argument for the term H in the proof of Theorem 1.2,
leads to

w

({
x ∈ (X \Ω) : sup

ε>0
Vε(x) >

λ

4

})
�

∫

X

∣∣f(x)
∣∣

λ
logk

(

e +

∣∣f(x)
∣∣

λ

)

ML(logL)k+1+δw(x)dμ(x).

(4.8)

Notice that for x ∈ X \Ω and j ∈ I3(x, ε), we have that C4Bj ⊂ {B(x,C8ε) \ B(x,C9ε)}, where
C8 and C9 with C8 > C9 are two positive constants. Therefore, for all x ∈ X \Ω,

sup
ε>0

(
Wε(x) + Xε(x)

)
�

k∑

l=0

Mb,l

(
∑

j

∣∣b −mBj
(b)

∣∣k−l∣∣hj

∣∣
)

(x). (4.9)

This, along with Theorem 1.2 and an argument for the term H in the proof of Theorem 1.2,
leads to

w

({
x ∈ (X \Ω) : sup

ε>0
(Wε(x) + Xε(x)) >

λ

6

})

�
k∑

l=0

∑

j

∫

Vj

Φl

(∣∣b(y) −mBj
(b)

∣∣k−l∣∣hj(y)
∣∣

λ

)

M
L(logL)l̃+δ

(wχχ\Ω)(y)dμ(y)

�
∫

X

∣∣f(y)
∣∣

λ
logk

(

e +

∣∣f(y)
∣∣

λ

)

M
L(logL)k̃+δ

w(y)dμ(y),

(4.10)
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where l̃ = l when l is even and l̃ = l + 1 when l is odd. Combining the estimates for the terms
supε>0Uε, supε>0Vε, and supε>0(Wε + Xε) gives us that

w

({
x ∈ (X \Ω) : T ∗

b,kh(x) >
λ

2

})
�

∫

X

|f(y)|
λ

logk
(

e +

∣
∣f(y)

∣∣

λ

)

ML(logL)k+1+δw(y)dμ(y),

(4.11)

which completes the proof of Theorem 1.3.
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[10] C. Pérez, “On sufficient conditions for the boundedness of the Hardy-Littlewood maximal operator
between weighted Lp-spaces with different weights,” Proceedings of the London Mathematical Society,
vol. 71, no. 1, pp. 135–157, 1995.
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