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We consider the elliptic problem −Δu+ u= b(x)|u|p−2u+ h(x) in Ω, u∈H1
0 (Ω), where

2 < p < (2N/(N − 2)) (N ≥ 3), 2 < p <∞ (N = 2), Ω is a smooth unbounded domain
in RN , b(x) ∈ C(Ω), and h(x) ∈ H−1(Ω). We use the shape of domain Ω to prove that
the above elliptic problem has a ground-state solution if the coefficient b(x) satisfies
b(x)→ b∞ > 0 as |x| →∞ and b(x)≥ c for some suitable constants c ∈ (0,b∞), and h(x)≡
0. Furthermore, we prove that the above elliptic problem has multiple positive solu-
tions if the coefficient b(x) also satisfies the above conditions, h(x)≥ 0 and 0 < ‖h‖H−1 <
(p− 2)(1/(p− 1))(p−1)/(p−2)[bsupSp(Ω)]1/(2−p), where S(Ω) is the best Sobolev constant of
subcritical operator in H1

0 (Ω) and bsup = supx∈Ωb(x).

Copyright © 2007 Tsung-Fang Wu. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Introduction

In this paper, we are concerned with the existence and multiplicity of positive solutions
of the following elliptic problems:

−Δu+u= b(x)|u|p−2u+h(x) in Ω,

u∈H1
0 (Ω),

(1.1)

where 2 < p < (2N/(N − 2)) (N ≥ 3), 2 < p <∞ (N = 2), and Ω is a smooth unbounded
domain in RN . We assume that b(x)∈ C(Ω)∩L∞(Ω) satisfies

b(x) > 0, ∀x ∈Ω, (1.2)



2 Abstract and Applied Analysis

and h(x) satisfies

h(x)∈H−1(Ω), h(x)≥ 0. (1.3)

Associated with (1.1), we consider the energy functional Jbh in the Sobolev space H1
0 (Ω):

Jbh (u)= 1
2
‖u‖2

H1 − 1
p

∫
Ω
b(x)|u|p−

∫
Ω
h(x)u, (1.4)

where ‖u‖H1=(
∫
Ω |∇u|2+u2)1/2. By Rabinowitz [1, Proposition B.10], Jbh ∈C1(H1

0 (Ω),R).
It is well known that the solutions of (1.1) are the critical points of the energy functional
Jbh in H1

0 (Ω).
Under the assumption (1.3) and h(x) �≡ 0, (1.1) can be regarded as a perturbation

problem of the following homogeneous elliptic equation:

−Δu+u= b(x)|u|p−2u in Ω,

u∈H1
0 (Ω).

(1.5)

A typical approach for solving a problem of this kind is to use the minimax method:

αbΓ(Ω)= inf
γ∈Γ(Ω)

max
t∈[0,1]

Jb0
(
γ(t)

)
, (1.6)

where

Γ(Ω)= {γ ∈ C([0,1],H1
0 (Ω)

) | γ(0)= 0, γ(1)= e}, (1.7)

Jb0 (e)= 0, and e �= 0. By the mountain pass lemma due to Ambrosetti and Rabinowitz [2],
we called the nonzero critical point u ∈H1

0 (Ω) of Jb0 is as ground-state solution of (1.5)
in Ω if Jb0 (u) = αbΓ(Ω). We note that the ground-state solutions of (1.5) in Ω can also be
obtained by the Nehari minimization problem

αb0(Ω)= inf
v∈Mb

0(Ω)
Jb0 (v), (1.8)

where Mb
0(Ω) = {u ∈H1

0 (Ω)\{0} | ‖u‖2
H1 =

∫
Ω b(x)|u|p}. Note that Mb

0(Ω) contains ev-
ery nonzero solution of (1.5) in Ω, αbΓ(Ω)= αb(Ω) > 0 (see Willem [3] and Wang and Wu
[4]), and if b(x)≡ b∞ > 0 is a constant, then Jb0 and αb0(Ω) are replaced by J∞0 and α∞0 (Ω),
respectively.

That the existence of ground-state solutions of (1.5) is affected by the shape of the
domain Ω and b(x) that satisfies some suitable conditions has been the focus of a great
deal of research in recent years. By the Rellich compactness theorem and the minimax
method, it is easy to obtain a ground-state solution for (1.5) in bounded domains. When
Ω is an unbounded domain and b(x) ≡ b∞, the existence of ground-state solutions has
been established by several authors under various conditions. We mention, in particular,
results by Berestycki and Lions [5], Lien et al. [6], Chen and Wang [7], and Del Pino and
Felmer [8, 9]. In [5], Ω= RN . Actually, Kwong [10] proved that the positive solution of
(1.5) in RN is unique. In [6], Ω is a periodic domain. In [7, 6], the domain Ω is required
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to satisfy that
(Ω1) Ω=Ω1∪Ω2, where Ω1, Ω2 are domains in RN and Ω1∩Ω2 is bounded;
(Ω2) α∞0 (Ω) <min{α∞0 (Ω1),α∞0 (Ω2)}.
In [8, 9], for 1 ≤ l ≤ N − 1, RN = Rl ×RN−l. For a point x ∈ RN , we have x = (y,z),

where y ∈Rl and z ∈RN−l. Let y ∈Rl, we denote by Ωy ⊂RN−l the projection of Ω onto
RN−l, that is,

Ωy = {z ∈RN−l | (y,z)∈Ω
}
. (1.9)

The domain Ω is required to satisfy that
(Ω3) Ω is a smooth subset of RN and the projections Ωy are bounded uniformly in

y ∈Rl;
(Ω4) there exists a nonempty closed set F ⊂RN−l such that F ⊂Ωy for all y ∈Rl;
(Ω5) for each δ > 0, there exists K > 0 such that

Ωy ⊂ {z ∈RN−l | dist(z,F) < δ
}

(1.10)

for all |y| ≥ K .
Moreover, when Ω=RN\ω is an exterior domain, where ω is a bounded domain. It is

well known that (1.5) in RN\ω does not admit any ground-state solution (see Benci and
Cerami [12]). However, Bahri and Lions [11] and Benci and Cerami [12] asserted that
(1.5) in RN\ω has a higher-energy positive solution. As Ω is an Esteban-Lions domain,
(1.5) in Ω does not admit any nontrivial solution (see Esteban and Lions [13]), where
the definition of Esteban-Lions domain is as follows: for a proper unbounded domain Ω
in RN , there exists χ ∈RN , ‖χ‖ = 1 such that n(x) · χ ≥ 0 and n(x) · χ �≡ 0 on ∂Ω, where
n(x) is the unit outward normal vector to ∂Ω at the point x.

When b(x) �≡ b∞, which satisfies the condition (1.2), the existence of ground-state so-
lutions of (1.5) has been established by the condition b(x) ≥ b∞ and the existence of
ground-state solutions of limit equation

−Δu+u= b∞|u|p−2u in Ω,

u∈H1
0 (Ω).

(1.11)

On the other hand, for Ω = RN and b(x) ≤ b∞ on RN with a strict inequality on a set
of positive measures, (1.5) in RN does not admit any ground-state solution. However,
Bahri and Lions [11], Cao [14], and Bahri and Li [15] asserted that (1.5) in RN has
a higher-energy positive solution under the coefficient b(x) which satisfies conditions
b(x) ≥ (1/2)(p−2)/2b∞ and b(x) → b∞ as |x| → ∞ such that the functional Jb0 in H1

0 (Ω)
satisfies the Palais-Smale condition for energy level β with

α∞0
(
RN

)
< β < α∞0

(
RN

)
+αb0

(
RN

)
. (1.12)
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The first result of our paper is relaxing the condition b(x)≥ b∞ to show the existence of
ground-state solution of (1.5) by the shape of domain Ω. First, we consider the following
assumptions:

(Ω1′) given k ≥ 0 and 1≤m≤ k, the domain Ω=⋃k
i=1Ωi, where Ωi∩Ω j is bounded

for all i �= j and Ω j is unbounded domain for all j = 1,2, . . . ,m;
(Ω2′) the functional J∞0 in H1

0 (Ω) satisfies the Palais-Smale condition for energy level
α∞0 (Ω);

(b1) b(x) ≥ (α∞0 (Ω)/min{α∞0 (Ω1),α∞0 (Ω2), . . . ,α∞0 (Ωm)})(p−2)/2b∞ and b(x) → b∞ as
|x| →∞.

Then we have the following result.

Theorem 1.1. If the domain Ω satisfies the conditions (Ω1′)-(Ω2′) and b(x) satisfies the
condition (b1), then (1.5) in Ω has a ground-state solution.

Remark 1.2. If the domain Ω satisfies the conditions (Ω1)-(Ω2), then the functional J∞0
in H1

0 (Ω) satisfies the Palais-Smale condition for energy level α∞0 (Ω), and we have

0 < α∞0 (Ω) <min
{
α∞0
(
Ω1
)
,α∞0

(
Ω2
)
, . . . ,α∞0

(
Ωm

)}
(1.13)

(see Lien et al. [6] and Chen and Wang [7]). Thus,

0 <
(

α∞0 (Ω)
min

{
α∞0
(
Ω1
)
,α∞0

(
Ω2
)
, . . . ,α∞0

(
Ωm

)}
)(p−2)/2

< 1. (1.14)

It is known that the general unbounded domains in RN can be classified into three
kinds. If Ω is an unbounded domain in RN , then it satisfies one of the following condi-
tions:

(1) J∞0 in H1
0 (Ω) satisfies the Palais-Smale condition for energy level α∞0 (Ω). In par-

ticular, (1.11) in Ω has a ground-state solution u0 such that J∞0 (u0)= α∞0 (Ω);
(2) J∞0 in H1

0 (Ω) does not satisfy the Palais-Smale condition for energy level α∞0 (Ω),
but (1.11) in Ω has a ground-state solution u0 such that J∞0 (u0)= α∞0 (Ω);

(3) equation (1.11) in Ω does not admit any ground-state solution.
In this motivation, consider a general unbounded domain Ω and its exterior domain

Ωc(r)=Ω\BN (0;r), and the following assumptions:
(Ω3′) equation (1.11) in Ω has a ground state solution u0 such that J∞0 (u0)= α∞0 (Ω).

(b2) b(x)≥ (α∞0 (Ω)/limr→∞α∞0 (Ωc(r)))(p−2)/2b∞ and b(x)→ b∞ as |x| →∞.
Then we have the following result.

Theorem 1.3. If the unbounded domain Ω satisfies the condition (Ω3′) and b(x) satisfies
the condition (b2), then (1.5) in Ω has a ground-state solution.

Remark 1.4. (1) If the domain Ω satisfies the conditions (Ω3)–(Ω5), J∞0 inH1
0 (Ω) satisfies

the Palais-Smale condition for energy level α∞0 (Ω). Then α∞0 (Ω) < α∞0 (Ωc(r)) for all r > 0
(see Del Pino and Felmer [8, 9] or Wu [16]). Since α∞0 (Ωc(r)) is nondecreasing as r is
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increasing, we have

0≤
(

α∞0 (Ω)
limr→∞α∞0

(
Ωc(r)

)
)(p−2)/2

< 1. (1.15)

(2) If Ω is a periodic domain, then J∞0 in H1
0 (Ω) does not satisfy the Palais-Smale

condition for energy level α∞0 (Ω), but (1.11) in Ω has a ground-state solution u0 such
that J∞0 (u0)= α∞0 (Ω). Then α∞0 (Ω)= α∞0 (Ωc(r)) for all r > 0 (see Lien et al. [6]). Thus,

(
α∞0 (Ω)

limr→∞α∞0
(
Ωc(r)

)
)(p−2)/2

≡ 1. (1.16)

Remark 1.5. If the domain Ω = RN , coefficient b(x) satisfies the condition (1.2) and
b(x) ≤ b∞ with a strict inequality on a set of positive measures, then (1.5) in RN does
not admit any ground-state solution and α∞0 (RN ) = αb0(RN ). However, if the domain
Ω satisfies the conditions (Ω1)-(Ω2) (or (Ω3)–(Ω5)), b(x) satisfies the condition (b1)
(or (b2)) and b(x) ≤ b∞ with a strict inequality on a set of positive measure, then from
Theorem 1.1 (or Theorem 1.3), we can conclude that (1.5) has a ground-state solution.
Moreover, α∞0 (Ω) < αb0(Ω).

Finally, we consider (1.1). For Ω=RN , several authors have shown the existence of at
least two positive solutions of (1.1) inRN under some suitable conditions. In [17] by Zhu
for b(x)= b∞, h(x) is exponential decay and ‖h‖L2 is sufficiently small. By Cao and Zhou
in [18] and Jeanjean [19], for b(x) ≥ b∞ and ‖h‖H−1 sufficiently small. By Adachi and
Tanaka in [20], for b(x) ≥ b∞ −Ce−λ|x| for some C,λ > 0 and ‖h‖H−1 sufficiently small.
Moreover, Adachi and Tanaka [21] used that (1.5) inRN does not admit any ground-state
solution for the condition b(x)≤ b∞ with a strict inequality on a set of positive measures,
to show that (1.1) in RN has at least four positive solutions for ‖h‖H−1 sufficiently small.
The second aim of our paper is also relaxing the condition b(x) ≥ b∞ to show the exis-
tence of at least two positive solutions of (1.1) in Ω. Denote

bsup = sup
x∈Ω

b(x) (1.17)

and S(Ω)= [(2p/(p− 2))α∞0 (Ω)](2−p)/2p is the best Sobolev constant of subcritical oper-
ator in H1

0 (Ω) (see Lin et al. [22] or Willem [3]). Then we have the following results.

Theorem 1.6. Suppose that the domain Ω satisfies the conditions (Ω1′)-(Ω2′) and b(x)
satisfies the condition (b1). If h≥ 0 and

0 < ‖h‖H−1 < (p− 2)
(

1
p− 1

)(p−1)/(p−2)[
bsupS

p(Ω)
]1/(2−p)

, (1.18)

then (1.1) in Ω has at least two positive solutions.



6 Abstract and Applied Analysis

Theorem 1.7. Suppose that the domain Ω satisfies the condition (Ω3′) and b(x) satisfies
the condition (b2). If h≥ 0 and

0 < ‖h‖H−1 < (p− 2)
(

1
p− 1

)(p−1)/(p−2)[
bsupS

p(Ω)
]1/(2−p)

, (1.19)

then (1.1) in Ω has at least two positive solutions.

This paper is organized as follows. In Section 2, we describe various preliminaries. In
Section 3, we use the shape of the domain Ω to prove that (1.5) in Ω has a ground-state
solution. In Section 4, we modify the proof of Adachi and Tanaka [21], Tarantello [23],
Cao and Zhu [18], and Zhu [17] to prove that (1.1) inΩ has at least two positive solutions.

2. Preliminary

We define the Palais-Smale (PS) sequences, (PS) values, and (PS) conditions in H1
0 (Ω)

for Jbh as follows.

Definition 2.1. (i) For β ∈ R, a sequence {un} is a (PS)β-sequence in H1
0 (Ω) for Jbh if

Jbh (un)= β+ o(1) and (Jbh )′(un)= o(1) strongly in H−1(Ω) as n→∞;
(ii) β ∈R is a (PS) value in H1

0 (Ω) for Jbh if there is a (PS)β-sequence in H1
0 (Ω) for Jbh ;

(iii) Jbh satisfies the (PS)β-condition in H1
0 (Ω) if every (PS)β-sequence inH1

0 (Ω) for Jbh
contains a convergent subsequence;

(iv) Jbh satisfies the (PS) condition in H1
0 (Ω) if for every β ∈R, Jbh satisfies the (PS)β-

condition in H1
0 (Ω).

We need the following lemmas.

Lemma 2.2. Let un⇀ u weakly in H1
0 (Ω). Then there exists a subsequence {un} such that

(i) {un} is bounded in H1
0 (Ω) and ‖u‖H1 ≤ liminfn→∞‖un‖H1 ;

(ii) un⇀ u,∇un⇀∇u weakly in L2(Ω), and un→ u a.e. in Ω;
(iii) ‖un−u‖2

H1 = ‖un‖2
H1 −‖u‖2

H1 + o(1).

The proof is clear by the routine arguments, and hence is omitted here.

Lemma 2.3 (Brézis-Lieb lemma). Suppose that un→ u a.e. in Ω and there exists c > 0 such
that ‖un‖Lp ≤ c for n= 1,2, . . . . Then

(i) ‖un−u‖pLp = ‖un‖pLp −‖u‖pLp + o(1);
(ii) |un−u|p−2(un−u)−|un|p−2un + |u|p−2u= o(1) in Lp/(p−1)(Ω).

For the proof, see Brézis and Lieb [24].

Lemma 2.4. Let un⇀ u weakly in H1
0 (Ω) and

(
Jbh
)′(
un
)=−Δun +un− b(x)

∣∣un∣∣p−2
un +h(x)= o(1) in H−1(Ω). (2.1)
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Then
(i) |un−u|p−2(un−u)−|un|p−2un + |u|p−2u= o(1) in H−1(Ω);

(ii) (J∞0 )′(wn)=−Δwn +wn− b∞|wn|p−2wn = o(1) in H−1(Ω), where wn = un−u;
(iii) if {un} is a (PS)β-sequence in H1

0 (Ω) for Jbh then {wn} is a (PS)(β−Jbh (u))-sequence in

H1
0 (Ω) for J∞0 .

Proof. For (i), (ii), see Bahri and Lions [11]. (iii) Since un⇀ u weakly in H1
0 (Ω) and {un}

is a (PS)β-sequence for Jbh in H1
0 (Ω), by Lemmas 2.2, 2.3, and the Sobolev embedding

theorem, there exists a subsequence {un} such that wn⇀ 0 in H1
0 (Ω),

∥∥wn

∥∥2
H1 =

∥∥un∥∥2
H1 −‖u‖2

H1 + o(1),∥∥wn

∥∥p
Lp =

∥∥un∥∥pLp −‖u‖pLp + o(1).
(2.2)

Thus,

J∞0
(
wn
)= Jbh

(
wn
)

+ o(1)= Jbh
(
un
)− Jbh (u) + o(1)= β− Jbh (u) + o(1). (2.3)

Therefore, by part (ii), {pn} is a (PS)(β−Jbh (u))-sequence in H1
0 (Ω) for J∞0 . �

We need the following useful results.

Lemma 2.5. Let {un} be a sequence in H1
0 (Ω). Then {un} is a (PS)αb0(Ω)-sequence for Jb0 if

and only if Jb0 (un) = αb0(Ω) + o(1) and
∫
Ω |∇un|2 + u2

n =
∫
Ω b(x)|un|p + o(1). In particular,

every minimizing sequence {un} in Mb
0(Ω) of αb0(Ω) is a (PS)αb0(Ω)-sequence inH1

0 (Ω) for Jb0 .

The proof is almost the same as that by Wang and Wu in [4, Lemma 7], and is omitted
here.

We introduce the Nehari minimization problem for (1.1) as

αbh(Ω)= inf
u∈Mb

h(Ω)
Jbh (u), (2.4)

where Mb
h(Ω)= {u∈H1

0 (Ω)\{0} | 〈(Jbh )′(u),u〉 = 0}. Define

ψ(u)= 〈(Jbh
)′

(u),u
〉= ‖u‖2

H1 −
∫
Ω
b(x)|u|p−

∫
Ω
h(x)u. (2.5)

Then we have the following result.

Lemma 2.6. If ‖h‖H−1 < (p− 2)(1/(p− 1))(p−1)/(p−2)[bsupSp(Ω)]1/(2−p), then for each u∈
Mb

h(Ω),

〈
ψ′(u),u

〉= ‖u‖2
H1 − (p− 1)

∫
Ω
b(x)|u|p �= 0. (2.6)

Proof. For u∈Mb
h(Ω), we have

‖u‖2
H1 −

∫
Ω
b(x)|u|p−

∫
Ω
h(x)u= 0. (2.7)
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Then

〈
ψ′(u),u

〉= 2‖u‖2
H1 − p

∫
Ω
b(x)|u|p−

∫
Ω
h(x)u

= ‖u‖2
H1 − (p− 1)

∫
Ω
b(x)|u|p.

(2.8)

We claim that if ‖h‖H−1<(p−2)(1/(p−1))(p−1)/(p−2)[bsupSp(Ω)]1/(2−p), then 〈ψ′(u),u〉 �=0
for all u∈Mb

h(Ω). Let I : Mb
h(Ω)→R be given by

I(u)= K(p)

( ‖u‖2p−2
H1∫

Ω b(x)|u|p
)1/(p−2)

−
∫
Ω
h(x)u, (2.9)

where K(p)= (p− 2)(1/(p− 1))(p−1)/(p−2). Then we have for u∈Mb
h(Ω),

I(u)= K(p)

( ‖u‖2p−2
H1∫

Ω b(x)|u|p
)1/(p−2)

−
∫
Ω
h(x)u

≥ K(p)

( ‖u‖2p−2
H1∫

Ω b(x)|u|p
)1/(p−2)

−‖h‖H−1‖u‖H1

= ‖u‖H1

(
K(p)

( ‖u‖pH1∫
Ω b(x)|u|p

)1/(p−2)

−‖h‖H−1

)
(2.10)

since

( ‖u‖pH1∫
Ω b(x)|u|p

)1/(p−2)

≥ [bsupS
p(Ω)

]1/(2−p) ∀u∈H1
0 (Ω)\{0}. (2.11)

Thus, for ‖h‖H−1 < K(p)[bsupSp(Ω)]1/(2−p), we have

I(u) > 0 ∀u∈Mb
h(Ω). (2.12)

Assume that there is a w ∈Mb
h(Ω) such that 〈ψ′(w),w〉 = 0, then we have

‖w‖2
H1 = (p− 1)

∫
Ω
b(x)|w|p,

∫
Ω
h(x)w = ‖w‖2

H1 −
∫
Ω
b(x)|w|p = (p− 2)

∫
Ω
b(x)|w|p.

(2.13)

From (2.12) and (2.13),

0 < I(w)= K(p)

( ‖w‖2p−2
H1∫

Ω b(x)|w|p
)1/(p−2)

−
∫
Ω
h(x)w

=
(

1
p− 1

)(p−1)/(p−2)

(p−2)

(
(p− 1)p−1

[∫
Ω b(x)|w|p]p−1

∫
Ω b(x)|w|p

)1/(p−2)

−(p−2)
∫
Ω
h(x)w = 0,

(2.14)
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which is a contradiction. Thus, we can conclude that for

‖h‖H−1 < (p− 2)
(

1
p− 1

)(p−1)/(p−2)[
bsupS

p(Ω)
]1/(2−p)

, (2.15)

we have 〈ψ′(u),u〉 �= 0 for all u∈Mb
h(Ω). �

By Lemma 2.6, we write Mb
h(Ω)=Mb+

h (Ω)∪Mb−
h (Ω), where

Mb+
h (Ω)=

{
u∈Mb

h(Ω) | ‖u‖2
H1 − (p− 1)

∫
Ω
b(x)|u|p > 0

}
,

Mb−
h (Ω)=

{
u∈Mb

h(Ω) | ‖u‖2
H1 − (p− 1)

∫
Ω
b(x)|u|p < 0

}
,

(2.16)

and define

αb+
h (Ω)= inf

u∈Mb+
h (Ω)

Jbh (u), αb−h (Ω)= inf
u∈Mb−

h (Ω)
Jbh (u). (2.17)

For each u∈H1
0 (Ω)\{0}, we write

tmax =
( ‖u‖2

H1

(p− 1)
∫
Ω b(x)|u|p

)1/(p−2)

> 0. (2.18)

Similar as the proof of some results by Tarantello in [23], we have the following two
lemmas.

Lemma 2.7. For each u∈H1
0 (Ω)\{0},

(i) there is a unique t− = t−(u) > tmax > 0 such that t−u ∈ Mb−
h (Ω) and Jbh (t−u) =

maxt≥tmax J
b
h (tu);

(ii) t−(u) is a continuous function for nonzero u;
(iii) Mb−

h (Ω)= {u∈H1
0 (Ω)\{0} | (1/‖u‖H1 )t−(u/‖u‖H1 )= 1};

(iv) if
∫
Ωhu > 0, then there is a unique 0 < t+ = t+(u) < tmax such that t+u ∈Mb+

h (Ω)
and Jbh (t+u)=min0≤t≤t− Jbh (tu).

Lemma 2.8. (i) For each u ∈Mb+
h (Ω),

∫
Ωh(x)u > 0 and Jbh (u) < 0. In particular, αh(Ω) ≤

α+
h (Ω) < 0;

(ii) Jbh is coercive and bounded below on Mb
h(Ω).

Proof. (i) For each u∈Mb+
h (Ω), ‖u‖2

H1 − (p− 1)
∫
Ω b(x)|u|p > 0 and

‖u‖2
H1 =

∫
Ω
b(x)|u|p +

∫
Ω
h(x)u. (2.19)

Thus,

∫
Ω
h(x)u= ‖u‖2

H1 −
∫
Ω
b(x)|u|p > (p− 2)

∫
Ω
b(x)|u|p > 0, (2.20)
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and hence

Jbh (u)=
(

1
2
− 1
p

)∫
Ω
b(x)|u|p− 1

2

∫
Ω
h(x)u

<
p− 2
2p

∫
Ω
b(x)|u|p− p− 2

2

∫
Ω
b(x)|u|p

=− (p− 1)(p− 2)
2p

∫
Ω
b(x)|u|p < 0.

(2.21)

(ii) Is similar to the proof of Theorem 1 by Tarantello in [23]. �

3. Homogeneous problems

First, we present several (PS) conditions inH1
0 (Ω) for Jb0 which are used to prove our main

results. As a consequence of Lemma 2.8(ii), for each (PS)β-sequence {un} in H1
0 (Ω) for

Jb0 , there exist a subsequence {un} and u0 in H1
0 (Ω) such that un⇀ u0 weakly in H1

0 (Ω).
Then u0 is a solution of (1.5) in Ω. Moreover, we have the following lemma.

Let Ω be any unbounded domain and ξ ∈ C∞([0,∞)) such that 0≤ ξ ≤ 1 and

ξ(t)=
⎧⎨
⎩

0 for t ∈ [0,1]

1 for t ∈ [2,∞).
(3.1)

Let

ξn(z)= ξ
(

2|z|
n

)
. (3.2)

Then we have the following result.

Lemma 3.1. Let {un} be a (PS)β-sequence in H1
0 (Ω) for Jb0 satisfying un ⇀ 0 weakly in

H1
0 (Ω) and let vn = ξnun. Then there exists a subsequence {un} such that

(i) ‖un− vn‖H1 = o(1) as n→∞;
(ii)

∫
Ω b(x)|un|p =

∫
Ω b(x)|vn|p + o(1)= ∫Ω b∞|vn|p + o(1);

(iii)
∫
Ω |∇vn|2 + v2

n =
∫
Ω b

∞|vn|p + o(1);
(iv) {vn} is a (PS)β-sequence in H1

0 (Ω) for J∞0 .

Proof. By the fact that

∥∥un− vn∥∥2
H1 =

∥∥un∥∥2
H1 +

∥∥vn∥∥2
H1 − 2

〈
un,vn

〉
H1 , (3.3)

thus it suffices to show that 〈un,vn〉H1 = ‖un‖2
H1 + o(1)= ‖vn‖2

H1 + o(1). Since

〈
un,vn

〉
H1 =

∫
Ω
∇un∇vn +unvn =

∫
Ω
ξn
[∣∣∇un∣∣2

+u2
n

]
+
∫
Ω
un∇un∇ξn, (3.4)

|∇ξn| ≤ c/n and {un} is a (PS)β-sequence in H1
0 (Ω) for Jb0 , it follows that

∫
Ω
ξ
q
nun∇un∇ξn = o(1) for q > 0. (3.5)
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Hence,

〈
un,vn

〉
H1 =

∫
Ω
ξn
[∣∣∇un∣∣2

+u2
n

]
+ o(1). (3.6)

Similarly, we have

∥∥vn∥∥2
H1 =

∫
Ω
ξ2
n

[∣∣∇un∣∣2
+u2

n

]
+ o(1). (3.7)

Given r ≥ 1, since {ξrnun} is bounded in H1
0 (Ω), we have

o(1)= 〈(Jb0 )′(un),ξrnun〉

=
∫
Ω

(
ξrn
∣∣∇un∣∣2

+ rξr−1
n un∇ξn∇un + ξrnu

2
n

)−
∫
Ω
b(x)ξrn

∣∣un∣∣p.
(3.8)

From (3.5), we can conclude that
∫
Ω
ξrn
(∣∣∇un∣∣2

+u2
n

)=
∫
Ω
b(x)ξrn

∣∣un∣∣p + o(1). (3.9)

Since un⇀ 0 weakly in H1
0 (Ω) and b(x)→ b∞ as |x| →∞, there exists a subsequence {un}

such that un→ 0 strongly in L
p
loc(Ω), or there exists a subsequence {un} such that

∫
Q(n)

b(x)
∣∣un∣∣p = o(1), (3.10)

where Q(n)=Ω∩BN (0;n). Clearly,

∫
Ω
b(x)

∣∣un∣∣p =
∫
Ω
b(x)ξrn

∣∣un∣∣p + o(1)=
∫
Ω
b∞ξrn

∣∣un∣∣p + o(1). (3.11)

By (3.6), (3.7), (3.9), and (3.11),

〈
un,vn

〉
H1 =

∥∥un∥∥2
H1 + o(1)= ∥∥vn∥∥2

H1 + o(1),∫
Ω
b(x)

∣∣un∣∣p =
∫
Ω
b(x)

∣∣vn∣∣p + o(1)=
∫
Ω
b∞
∣∣vn∣∣p + o(1).

(3.12)

Therefore, ‖un − vn‖H1 = o(1) as n→∞. The results of (iii) and (iv), from (i), (ii) and
Lemmas 2.4, 2.5. �

We need the following compactness results.

Proposition 3.2. Suppose that the domain Ω satisfies the conditions (Ω1′)-(Ω2′). If {un}
is a (PS)β-sequence in H1

0 (Ω) for Jb0 with

αb0(Ω)≤ β <min
{
α∞0 (Ω) +αb0(Ω),α∞0

(
Ω1
)
,α∞0

(
Ω2
)
, . . . ,α∞0

(
Ωm

)}
, (3.13)

then there exist a subsequence {un} and u0 �= 0 such that un → u0 strongly in H1
0 (Ω) and

Jb0 (u0)= β.
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Proof. Let {un} be a (PS)β-sequence in H1
0 (Ω) for Jb0 with

αb0(Ω)≤ β <min
{
α∞0 (Ω) +αb0(Ω),α∞0

(
Ω1
)
,α∞0

(
Ω2
)
, . . . ,α∞0

(
Ωm

)}
. (3.14)

Since {un} is bounded, there exist a subsequence {un} and u0 inH1
0 (Ω) such that un⇀ u0

weakly in H1
0 (Ω) and un→ u0 a.e in Ω. Moreover, u0 is a solution of (1.5) in Ω. If u0 ≡ 0,

by Lemma 3.1 there exists a subsequence {un} such that {ξnun} is a (PS)β-sequence in
H1

0 (Ω) for J∞0 , where ξn is as in (3.2). Let vn = ξnun, and we obtain

J∞0
(
vn
)= β+ o(1),

(
J∞0
)′(
vn
)= o(1) in H−1(Ω). (3.15)

Since Ωi ∩Ω j is bounded for i �= j and Ωl is also bounded for m+ 1 ≤ l ≤ k, there ex-
ists n0 ∈ N such that vn = 0 in Ω(n0) for n > 2n0 and Ωl⊂Ω(n0) for all l ∈ {m+ 1,m+
2, . . . ,k}, where Ω(n) = Ω ∩ BN (0;n). Moreover, vn = v1

n + v2
n + ··· + vmn and for i =

1,2, . . . ,m,

vin(z)=
⎧⎨
⎩
vn(z) for z ∈Ωi,

0, for z /∈Ωi.
(3.16)

Then vin ∈H1
0 (Ωi) and

∫
Ωi

(∣∣∇vin
∣∣2

+
(
vin
)2
)
=
∫
Ωi

b∞
∣∣vin

∣∣p + o(1). (3.17)

By (3.15), we obtain

(
J∞0
)′(
vin
)= o(1) strongly in H−1(Ωi

)
for i= 1,2, . . . ,m,

β = J∞0
(
vn
)

+ o(1)=
m∑
i=1

J∞0
(
vin
)

+ o(1).
(3.18)

Assume that

J∞0
(
vin
)= ci + o(1) for i= 1,2, . . . ,m, (3.19)

then c1 + c2 + ···+ cm = β, since all of ci are (PS)-values in H1
0 (Ωi) for J∞0 and nonneg-

ative. Thus, there exists i0 ∈ {1,2, . . . ,m} such that ci0 are positive (PS)-values in H1
0 (Ωi)

for J∞0 and

α∞0
(
Ωi0

)≤ ci0 ≤ β, (3.20)

which contradicts (3.14). Consequently, u0 �≡ 0 and β ≥ Jb0 (u0) ≥ αb0(Ω). Let pn = un −
u0. By Lemma 2.4, {pn} is a (PS)(β−Jb0 (u0))-sequence in H1

0 (Ω) for J∞0 . Since β < α∞0 (Ω) +

αb0(Ω), Jb0 (u0)≥ αb0(Ω) and αb0(Ω) is a smallest positive (PS)-value in H1
0 (Ω) for Jb0 . Thus,

β− Jb0 (u0)= 0. This implies that un→ u0 strongly in H1
0 (Ω) and Jb0 (u0)= β. �
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Proposition 3.3. Suppose that the unbounded domain Ω satisfies the condition (Ω3′). If
{un} is a (PS)β-sequence in H1

0 (Ω) for Jb0 with

αb0(Ω)≤ β <min
{
α∞0 (Ω) +αb0(Ω), lim

r→∞α
∞
0

(
Ωc(r)

)}
, (3.21)

then there exist a subsequence {un} and u0 �= 0 such that un → u0 strongly in H1
0 (Ω) and

Jb0 (u0)= β.

Proof. Let {un} be a (PS)β-sequence in H1
0 (Ω) for Jb0 with

αb0(Ω)≤ β <min
{
α∞0 (Ω) +αb0(Ω), lim

r→∞α
∞
0

(
Ωc(r)

)}
. (3.22)

Since {un} is bounded, there exist a subsequence {un} and u0 inH1
0 (Ω) such that un⇀ u0

weakly in H1
0 (Ω) and un→ u0 a.e in Ω. Moreover, u0 is a solution of (1.5) in Ω. If u0 ≡ 0,

by Lemma 3.1 there exists a subsequence {un} such that {ξnun} is a (PS)β-sequence in
H1

0 (Ω) for J∞0 , where ξn is as in (3.2). Let vn = ξnun, we obtain vn ∈H1
0 (Ωc(n)) for each n,

J∞0
(
vn
)= β+ o(1),

(
J∞0
)′(
vn
)= o(1) in H−1(Ω). (3.23)

Moreover, there is an sn > 0 such that snvn ∈M∞(Ωc(n)) and sn = 1 + o(1). Then

J∞0
(
snvn

)≥ α∞0 (Ωc(n)
)
. (3.24)

By (3.23), (3.24), we obtain

β ≥ lim
n→∞α

∞
0

(
Ωc(n)

)
, (3.25)

which contradicts (3.22). Consequently, u0 �≡ 0 and β ≥ Jb0 (u0) ≥ αb0(Ω). Let pn = un −
u0. By Lemma 2.4, {pn} is a (PS)(β−Jb0 (u0))-sequence in H1

0 (Ω) for J∞0 . Since β < α∞0 (Ω) +

αb0(Ω), Jb0 (u0) ≥ αb0(Ω) and αb0(Ω) is smallest positive (PS)-value in H1
0 (Ω) for Jb0 . Thus,

β− Jb0 (u0)= 0. This implies that un→ u0 strongly in H1
0 (Ω) and Jb0 (u0)= β. �

Now, we begin to show the proof of Theorem 1.1: since the domain Ω satisfies the con-
ditions (Ω1′)-(Ω2′), we have (1.11), and there exists a ground-state solution u0 such that
J∞0 (u0)= α∞0 (Ω). Let s0 > 0 with s0u0 ∈Mb

0(Ω). Then

s20

∫
Ω

(∣∣∇u0
∣∣2

+u2
0

)
= sp0

∫
Ω
b(x)

∣∣u0
∣∣p. (3.26)

Since b(x) ≥ b∞(α∞0 (Ω)/min{α∞0 (Ω1),α∞0 (Ω2), . . . ,α∞0 (Ωm)})(p−2)/2 and b(x)→ b∞ as |x|
→∞, we apply (3.26) to obtain

s0 <

(
min

{
α∞0
(
Ω1
)
,α∞0

(
Ω2
)
, . . . ,α∞0

(
Ωm

)}
α∞0 (Ω)

)1/2

. (3.27)
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Thus,

αb0(Ω)≤ Jb0
(
s0u0

)=
(

1
2
− 1
p

)
s20

∫
Ω

(∣∣∇u0
∣∣2

+u2
0

)

<
min{α∞0

(
Ω1
)
,α∞0

(
Ω2
)
, . . . ,α∞0

(
Ωm

)}
α∞0 (Ω)

(
1
2
− 1
p

)∫
Ω

(∣∣∇u0
∣∣2

+u2
0

)

=min
{
α∞0
(
Ω1
)
,α∞0

(
Ω2
)
, . . . ,α∞0

(
Ωm

)}
.

(3.28)

By Proposition 3.2, (1.5) has a ground-state solution.
Now, we begin to show the proof of Theorem 1.3: since the domain Ω satisfies the con-

dition (Ω3′), we have (1.11) in Ω, and there exists a ground-state solution u0 such that
J∞0 (u0)= α∞0 (Ω). Let s0 > 0 with s0u0 ∈Mb

0(Ω). Then

s20

∫
Ω

(∣∣∇u0
∣∣2

+u2
0

)
= sp0

∫
Ω
b(x)

∣∣u0
∣∣p. (3.29)

Since b(x) ≥ b∞(α∞0 (Ω)/limr→∞α∞0 (Ωc(r)))(p−2)/2 and b(x) → b∞ as |x| → ∞, we apply
(3.29) to obtain

s0 <
(

limr→∞α∞0
(
Ωc(r)

)
α∞0 (Ω)

)1/2

. (3.30)

Thus,

αb0(Ω)≤ Jb0
(
s0u0

)=
(

1
2
− 1
p

)
s20

∫
Ω

(∣∣∇u0
∣∣2

+u2
0

)

<
limr→∞α∞0

(
Ωc(r)

)
α∞0 (Ω)

(
1
2
− 1
p

)∫
Ω

(∣∣∇u0
∣∣2

+u2
0

)

= lim
r→∞α

∞
0

(
Ωc(r)

)
.

(3.31)

By Proposition 3.3, (1.5) has a ground-state solution.

4. Nonhomogeneous problems

4.1. Existence of a local minimum. First, we establish the existence of a local minimum.
Similar as the proof of Lemma 1.4 by Adachi and Tanaka in [21], we have the following
lemma.
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Lemma 4.1. If ‖h‖H−1 < (p− 2)(1/(p− 1))(p−1)/(p−2)[bsupSp(Ω)]1/(2−p), then
(i) Mb+

h (Ω)⊂ B(0;r0);
(ii) Jbh (u) is strictly convex in B(0;r0),

where B(0;r0)= {u∈H1(Ω) | ‖u‖H1 < r0} and r0 = [(p− 1)bsupSp(Ω)]1/(2−p).

Furthermore, we have the following theorem.

Theorem 4.2. If r0 is as in Lemma 4.1, then the functional Jbh has a unique critical point
umin in B(0;r0) and it satisfies

(i) umin ∈Mb+
h (Ω) and Jbh (umin)= αb+

h (Ω)= αbh(Ω);
(ii) umin is a positive solution of (1.1).

Proof. Similar as the proof of Theorem 2.1 by Cao and Zhu in [18], there is a umin ∈
Mb+

h (Ω) which is a critical point for Jbh such that Jbh (umin) = αb+
h = αbh, since Mb+

h (Ω) ⊂
B(0;r0) and Jbh (u) is strictly convex in B(0;r0), so that umin is a unique critical point of
Jbh in B(0;r0). Since umin is a unique critical point of Jbh in B(0;r0), we have that umin is a
nonnegative solution of (1.1). By the maximum principle, umin is positive. �

4.2. Multiple positive solutions. Throughout this section, we let umin be the local mini-
mum for Jbh in H1

0 (Ω) in Theorem 4.2 and

‖h‖H−1 < (p− 2)
(

1
p− 1

)(p−1)/(p−2)[
bsupS

p(Ω)
]1/(2−p)

. (4.1)

Then we have the following restricted (PS) conditions.

Proposition 4.3. Suppose that the domain Ω satisfies the conditions (Ω1′)-(Ω2′). If {un}
is a (PS)β-sequence in H1

0 (Ω) for Jbh with

β < αbh(Ω) + min
{
α∞0
(
Ω1
)
,α∞0

(
Ω2
)
, . . . ,α∞0

(
Ωm

)}
, (4.2)

then there exist a subsequence {un} and u inH1
0 (Ω) such that un→ u strongly inH1

0 (Ω) and
Jbh (u)= β.

Proof. Let {un} be a (PS)β-sequence in H1
0 (Ω) for Jbh . By Lemma 2.8(ii), {un} is bounded.

Then there exist a subsequence {un} and a nonzero solution u of (1.1) such that un⇀ u
weakly inH1

0 (Ω). Suppose that un � u strongly inH1
0 (Ω). Letwn = un−u for n= 1,2, . . . .

Then, by Lemma 2.4, {wn} is a (PS)β−Jbh (u)-sequence in H1
0 (Ω) for J∞0 , since wn⇀ 0 and

wn � 0 strongly in H1
0 (Ω). Similar as the proof of Proposition 3.2,

β− Jbh (u)≥min
{
α∞0
(
Ω1
)
,α∞0

(
Ω2
)
, . . . ,α∞0

(
Ωm

)}
, (4.3)

which is a contradiction. Thus un→ u strongly in H1
0 (Ω). �

Proposition 4.4. Suppose that the domain Ω satisfies the condition (Ω3′). If {un} is a
(PS)β-sequence in H1

0 (Ω) for Jbh with

β < αh(Ω) + lim
r→∞α

∞
0

(
Ωc(r)

)
, (4.4)
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then there exist a subsequence {un} and u inH1
0 (Ω) such that un→ u strongly inH1

0 (Ω) and
Jbh (u)= β.

The proof is similar to the proof of Proposition 4.3.

Lemma 4.5. Suppose that the domain Ω satisfies the conditions (Ω1′)-(Ω2′) and the coef-
ficient b(x) satisfies the condition (b1). Let u be a positive solution of (1.11) in Ω such that
J∞0 (u)= α∞0 (Ω) and let umin be a local minimum in Theorem 4.2. Then

sup
t≥0

Jbh
(
umin + tu

)
< Jbh

(
umin

)
+ min

{
α∞0
(
Ω1
)
,α∞0

(
Ω2
)
, . . . ,α∞0

(
Ωm

)}
. (4.5)

Proof. Since umin is a positive solution of (1.1). Let f (s) = sp−1 for s ≥ 0 and Fb(u) =∫
Ω b(x)

∫ u
0 f (s)dsdx = (1/p)

∫
Ω b(x)up, then

Jbh
(
umin + tu

)= Jbh
(
umin

)
+ Jb0 (tu) + t

(∫
Ω
b(x)u

p−1
0 u+h(x)u

)
−
∫
Ω
h(x)tu

+
1
p

[∫
Ω
b(x)u

p
0 +

∫
Ω
b(x)|tu|p−

∫
Ω
b(x)

∣∣u0 + tu
∣∣p]

= Jbh
(
umin

)
+ Jb0 (tu)−

∫
Ω
b(x)

{∫ tu
0

[
f
(
u0 + s

)− f (s)− f
(
u0
)]
ds
}
.

(4.6)

For v > 0 and w > 0, we have

f (v+w)= (v+w)p−1

= (v+w)p−2v+ (v+w)p−2w

> vp−1 +wp−1 = f (v) + f (w).

(4.7)

Thus, Jbh (umin + tu)≤ Jbh (umin) + Jb0 (tu). Since Jb0 (tu)→−∞ as t→∞, there is a t0 > 0 such
that Jbh (umin + tu) < Jbh (u0) for t ≥ t0. Hence,

sup
t≥0

Jbh
(
umin + tu

)= sup
0≤t≤t0

Jbh
(
umin + tu

)
. (4.8)

Let g1(t)= Jbh (umin + tu) for t ≥ 0. By the continuity of g1(t), given

ε = 1
2

min
{
α∞0
(
Ω1
)
,α∞0

(
Ω2
)
, . . . ,α∞0

(
Ωm

)}
> 0, (4.9)

there exists t1 ∈ (0, t0) such that

g1(t) < g1(0) +
1
2

min
{
α∞0
(
Ω1
)
,α∞0

(
Ω2
)
, . . . ,α∞0

(
Ωm

)}
for t ∈ [0, t1

)
. (4.10)

Then

sup
0≤t≤t1

Jbh
(
umin + tu

)≤ Jbh
(
umin

)
+

1
2

min
{
α∞0
(
Ω1
)
,α∞0

(
Ω2
)
, . . . ,α∞0

(
Ωm

)}

< Jbh
(
umin

)
+ min

{
α∞0
(
Ω1
)
,α∞0

(
Ω2
)
, . . . ,α∞0

(
Ωm

)}
.

(4.11)
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Now, we only need to show that

sup
t1≤t≤t0

Jbh
(
umin + tu

)
< Jbh

(
umin

)
+ min

{
α∞0
(
Ω1
)
,α∞0

(
Ω2
)
, . . . ,α∞0

(
Ωm

)}
. (4.12)

Let g2(t)= Jb0 (tu) for t ≥ 0. Then

g′2(t)= t
∫
Ω

(|∇u|2 +u2)− tp−1
∫
Ω
b(x)up,

g′′2 (t)=
∫
Ω

(|∇u|2 +u2)− (p− 1)tp−2
∫
Ω
b(x)up.

(4.13)

There is a unique t = [
∫
Ω(|∇u|2 +u2)/

∫
Ω b(x)up]1/(p−2) such that g′2(t)= 0 and g′′2 (t) < 0.

Thus, g2(t) has an absolutely maximum at t. Since

b(x)≥ b∞
(

α∞0 (Ω)
min

{
α∞0
(
Ω1
)
,α∞0

(
Ω2
)
, . . . ,α∞0

(
Ωm

)}
)(p−2)/2

, (4.14)

we have

t ≤
(

min
{
α∞0
(
Ω1
)
,α∞0

(
Ω2
)
, . . . ,α∞0

(
Ωm

)}
α∞0 (Ω)

)1/2

. (4.15)

Therefore,

sup
t≥0

Jb0 (tu)= Jb0 (tu)=
(

1
2
− 1
p

)
t

2
∫
Ω

(|∇u|2 +u2)

≤min
{
α∞0
(
Ω1
)
,α∞0

(
Ω2
)
, . . . ,α∞0

(
Ωm

)}
.

(4.16)

By (4.6), (4.7), and (4.16), we obtain

sup
t1≤t≤t0

Jbh
(
umin + tu

)

≤ Jbh
(
umin

)
+ min

{
α∞0
(
Ω1
)
,α∞0

(
Ω2
)
, . . . ,α∞0

(
Ωm

)}

− inf
t1≤t≤t0

∫
Ω
b(x)

{∫ tu
0

[
f
(
umin + s

)− f (s)− f
(
umin

)]
ds
}

< Jbh
(
umin

)
+ min

{
α∞0
(
Ω1
)
,α∞0

(
Ω2
)
, . . . ,α∞0

(
Ωm

)}
.

(4.17)

Thus, supt≥0 J
b
h (umin + tu) < Jbh (umin) + min{α∞0 (Ω1),α∞0 (Ω2), . . . ,α∞0 (Ωm)}. �

Lemma 4.6. Suppose that the domain Ω satisfies the condition (Ω3′) and the coefficient
b(x) satisfies the condition (b2). Let u be a positive solution of (1.11) in Ω such that J∞0 (u)=
α∞0 (Ω) and let umin be the local minimum in Theorem 4.2. Then

sup
t≥0

Jbh
(
umin + tu

)
< Jbh

(
umin

)
+ lim
r→∞α

∞
0

(
Ωc(r)

)
. (4.18)

The proof is similar to the proof of Lemma 4.5.
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Now, we begin to show the proof of Theorem 1.6: for u ∈ H1
0 (Ω) with ‖u‖H1 = 1, by

Lemma 2.7 there is a unique t−(u) > 0 such that t−(u), u∈Mb−
h (Ω) and

Jbh
(
t−(u)u

)= max
t≥tmax

Jbh (tu). (4.19)

By Lemma 2.7(ii) and (iii), we have that t−(u) is a continuous function for nonzero u and

Mb−
h (Ω)=

{
u∈H1

0 (Ω)\{0} | 1
‖u‖H1

t−
(

u

‖u‖H1

)
= 1

}
. (4.20)

Let

A1 =
{
u∈H1

0 (Ω)\{0} | 1
‖u‖H1

t−
(

u

‖u‖H1

)
> 1

}
∪{0},

A2 =
{
u∈H1

0 (Ω)\{0} | 1
‖u‖H1

t−
(

u

‖u‖H1

)
< 1

}
.

(4.21)

Then Mb−
h (Ω) disconnects H1

0 (Ω) in two connected components A1 and A2 and H1
0 (Ω)\

Mb−
h (Ω)= A1∪A2. For each u∈Mb+

h (Ω), we have

1 < tmax(u) < t−(u). (4.22)

Since t−(u) = (1/‖u‖H1 )t−(u/‖u‖H1 ), then Mb+
h (Ω) ⊂ A1. In particular, umin ∈ A1. We

claim that there exists t0 > 0 such that umin + t0u ∈ A2. First, we find a constant c > 0
such that 0 < t−((umin + tu)/‖umin + tu‖H1 ) < c for each t ≥ 0. Otherwise, there exists
a sequence {tn} such that tn →∞ and t−((umin + tnu)/‖umin + tnu‖H1 ) →∞ as n→∞.
Let vn = (umin + tnu)/‖umin + tnu‖H1 . Since t−(vn), vn ∈ Mb−

h (Ω) ⊂ Mb
h(Ω), and by the

Lebesgue dominated convergence theorem,

∫
Ω
b(x)v

p
n = 1∥∥umin + tnu

∥∥p
H1

∫
Ω
b(x)

(
umin + tnu

)p

= 1∥∥umin/tn +u
∥∥p
H1

∫
Ω
b(x)

(
umin

tn
+u

)p
−→

∫
Ω b(x)up

‖u‖pH1

as n−→∞.
(4.23)

We have

Jbh
(
t−
(
vn
)
vn
)= 1

2

[
t−
(
vn
)]2− 1

p

[
t−
(
vn
)]p ∫

Ω
b(x)v

p
n

− t−(vn)
∫
Ω
hvn −→−∞ as n−→∞.

(4.24)

But Jbh is bounded below on Mb
h(Ω), a contradiction. Let

t0 =
∣∣c2−∥∥umin

∥∥2
H1

∣∣1/2

‖u‖H1
+ 1. (4.25)
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Then

∥∥umin + t0u
∥∥2
H1 =

∥∥umin
∥∥2
H1 + t20

∥∥u∥∥2
H1 + 2t0

〈
umin,u

〉

>
∥∥umin

∥∥2
H1 +

∣∣c2−∥∥umin
∥∥2
H1

∣∣+ 2
∫
Ω
b∞up−1umin

> c2 >

[
t−
(

umin + t0u∥∥umin + t0u
∥∥
H1

)]2

,

(4.26)

that is, umin + t0u∈A2. Define a path γ(s)= umin + st0u for s∈ [0,1], then

γ(0)= umin ∈ A1, γ(1)= umin + t0u∈ A2, (4.27)

and there exists s0 ∈ (0,1) such that umin + s0t0u∈Mb−
h (Ω). Thus, by Lemma 4.5,

α−h (Ω)≤ Jbh
(
umin + s0t0u

)≤ max
s∈[0,1]

Jbh
(
γ(s)

)

< Jbh
(
umin

)
+ min

{
α∞0
(
Ω1
)
,α∞0

(
Ω2
)
, . . . ,α∞0

(
Ωm

)}
.

(4.28)

By the Ekeland variational principle [25], there exists a sequence {un} in Mb−
h (Ω) such

that

Jbh
(
un
)= αb−h (Ω) + o(1),

(
Jbh
)′(
un
)= o(1) strongly in H−1(Ω).

(4.29)

Then by Proposition 4.3, there exist a subsequence {un} and u0 ∈Mb
h(Ω) such that un→

u0 strongly in H1
0 (Ω), u0 is a solution of (1.1), and Jbh (u0) = αb−h (Ω). By the Sobolev

imbedding theorem, we have un→ u0 strongly in Lp(Ω). Thus,

∥∥u0
∥∥2
H1 − (p− 1)

∫
Ω
b(x)

∣∣u0
∣∣p ≤ 0. (4.30)

Then u0 ∈Mb−
h (Ω) and

Jbh
(
u0)= αb−h (Ω). (4.31)

This implies that umin and u0 are distinct. Finally, since h≥ 0, by Lemma 2.7 there exists
t−(|u0|) > 0 such that

t−
(∣∣u0

∣∣)∣∣u0
∣∣∈Mb−

h (Ω), t−
(∣∣u0

∣∣) > tmax
(∣∣u0

∣∣)= tmax
(
u0),

αb−h (Ω)≤ Jbh
(
t−
(∣∣u0

∣∣)∣∣u0
∣∣)≤ Jbh

(
t−
(∣∣u0

∣∣)u0)
≤ max

t≥tmax(u0)
Jbh
(
tu0)= Jbh

(
u0)= αb−h (Ω).

(4.32)

Thus,

Jbh
(
t−
(∣∣u0

∣∣)∣∣u0
∣∣)= Jbh

(
t−
(∣∣u0

∣∣)u0)= αb−h (Ω). (4.33)
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We concluded that
∫
Ωhu

0 = ∫Ωh|u0|. Let

u0
+ =max

{
u0,0

}
, u0

− =max
{−u0,0

}
, (4.34)

then
∫
Ωhu

0− = 0. Since h ≥ 0 and u0− ≥ 0, we have u0− = 0. Hence, u0 is nonnegative. By
the maximum principle, u0 is positive. We complete the proof of Theorem 1.6.

Remark 4.7. The proof of Theorem 1.7 similar to Theorem 1.6.
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