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The paper is devoted to general elliptic problems in the Douglis-Nirenberg sense. We
obtain a necessary and sufficient condition of normal solvability in the case of unbounded
domains. Along with the ellipticity condition, proper ellipticity and Lopatinsky condition
that determine normal solvability of elliptic problems in bounded domains, one more
condition formulated in terms of limiting problems should be imposed in the case of
unbounded domains.

1. Introduction

In this work we study normal solvability of general elliptic problems in the Douglis-
Nirenberg sense. If in the case of bounded domains with a sufficiently smooth boundary
the normal solvability is completely determined by the conditions of ellipticity, proper el-
lipticity, and Lopatinsky condition (see [2, 3, 19, 20]), then in the case of unbounded do-
mains one more condition related to behavior of solutions at infinity should be imposed.

If the coefficients of the operator have limits at infinity, and the domain is cylindrical
or conical at infinity, then the additional condition is determined by the invertibility of
limiting operators, that is of the operators with the limiting coefficients in the limiting
domain. This situation is studied in a number of works for differential [4, 11, 21, 25, 26]
and pseudodifferential operators [15, 17, 16].

If the coefficients do not have limits at infinity but the domain is the whole R”, the
notion of limiting operators was used in [12, 13]. Previously it was used in the one-
dimensional case to study differential equations with quasi-periodic coefficients [6, 8, 9,
14] (see also [18]).

In the case of arbitrary domains, we need to introduce the notion of limiting domains
and limiting problems. In the case of general elliptic problems and Holder spaces it is
done in [23]. In [22] we study scalar elliptic problems in Sobolev spaces (see below). We
obtain conditions of normal solvability in terms of uniqueness of solutions of limiting
problems. In this work we generalize these results to the case of systems.

We should note that the choice of function spaces plays important role. We intro-
duce a generalization of Sobolev-Slobodetskii spaces that will be essentially used in the
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subsequent works where we consider nonhomogeneous adjoint problems, obtain a priori
estimates for them and prove their normal solvability. These results are used to prove the
Fredholm property of general elliptic problems. For the scalar equation the solvability
conditions will be also formulated in terms of formally adjoint problems. We will use the
approach developed in [10] for scalar elliptic problems in bounded domains.

1.1. Function spaces. Sobolev spaces W*? proved to be very convenient in the study of
elliptic problems in bounded domains. But more flexible spaces are needed for elliptic
problems in unbounded domains. We need some generalization of the space W*?. More
exactly, we mean such spaces which coincide with W*? in bounded domains but have a
prescribed behavior at infinity in unbounded domains. It turns out that such spaces can
be constructed for arbitrary Banach spaces of distributions (not only Sobolev spaces) as
follows.

Consider first functions defined on R". As usual we denote by D the space of infinitely
differentiable functions with compact support and by D’ its dual. Let E C D’ be a Banach
space, the inclusion is understood both in algebraic and topological sense. Denote by Ej,.
the collection of all u € D" such that fu € E forall f € D. Let w(x) € D, 0 < w(x) <1,
w(x) =1 for |x| <1/2, w(x) =0 for |x| > 1.

Definition 1.1. E,4 (1 < q < ) is the space of all u € Ej,. such that

1/q
lullg, = <JRW||u(-)w(-—y)IIZdy> <, l=g<oo,

lullg, := sup [Ju()w(- = y)|| < .
YER"

(1.1)

It is proved that E; is a Banach space. If Q) is a domain in R", then by definition E,(€2)
is the space of restrictions of E; to Q) with the usual norm of restrictions. It is easy to see
that if Q is a bounded domain, then

E (Q)=E(Q), 1=<gq<oo. (1.2)
In particular, if E = W*?, then we denote W;’P =E; (1 < q < o). Itis proved that
Wyl =WsP (520, 1< p<oo). (1.3)

Hence the spaces W;” generalize the Sobolev spaces (g < o) and the Stepanov spaces
(g = ) (see [8,9, 14]).

IfE=LP, then Lf = E,. It can be proved that if u belongs to L? locally and |u(x)| <
K|x|~% for |x| sufficiently large, where K is a positive constant, and aq > n, then u € Lg.
Unlike the spaces L? for which there is no embedding LP(R") in LP'(R") for any 1 < p,
p1 < o0, p# py,itiseasy to prove that

LY(R") c LR (R")  (p=p1, g <q). (1.4)



A. Volpert and V. Volpert 735

1.2. Elliptic problems. Consider the operators

N
Aju= Z Z aj(x)D*uy, i=1,...,N,x€Q,
k=1 la|<ajx

(1.5)

N
Bju = z Z bfk(x)Dﬂuk, i=1,...,m, x € 0Q,
k=11BI=<Bjk

where u = (uy,...,un), Q C R" is an unbounded domain that satisfy certain conditions
given below. According to the definition of elliptic operators in the Douglis-Nirenberg
sense [5] we suppose that

Ak <si+t, iLk=1,...,N, ﬁijO’j‘l’tk, j=1,...,m,k=1,...,N (1.6)

for some integers s;, t, 0; such that s; < 0, maxs; = 0, ; > 0.

Denote by E the space of vector-valued functions u = (uy,...,uy), where u; belongs to
the Sobolev space WP (Q), j=1...,N, 1< p<oo,lisan integer, | > max(0,0; + 1),
E= H?’: | WH:P(Q). The norm in this space is defined as

N

Hu”E = z ||uj||WlHj’P(Q)' (1.7)
j=1

The operator A; acts from E to W'=P(Q), the operator Bj acts from E to Wa=Vpr(9Q)).
Denote
L= (Ai,...,AN,B1,...,Bn),

1.8
F =TI, WP (Q) X IT7L W= VPP (9Q). (18)
We will consider the operator L as acting from E to Fo,.

Throughout the paper we assume that the operator L satisfies the condition of uniform
ellipticity.

1.3. Limiting problems. We recall that the operator is normally solvable with a finite
dimensional kernel if and only if it is proper, that is the inverse image of a compact set
is compact in any closed bounded set. In this work we obtain necessary and sufficient
conditions for a general elliptic operator to satisfy this property. Consider as example the
following operator

Lu=a(x)u” +b(x)u’ +c(x)u (1.9)

acting from H2(R) to L*(R). If we assume that there exist limits of the coefficients of the
operator at infinity, then we can define the operators

Liu=a.u +b.u +ciu, (1.10)

where the subscripts + and — denote the limiting values at +oc0 and — o, respectively. As it
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is well known, the operator L satisfies the Fredholm property if and only if the equations
L.u = 0 do not have nonzero bounded solutions. We can easily write down this condition
explicitly:

—a. 84+ b.il+c £0 (1.11)

if we look for solutions of this equations in the form u = exp(if).

This simple approach is not applicable for general elliptic problems where limits of
the coefficients may not exist and the domain can be arbitrary. In the next section we will
define limiting problems in the general case. Construction of limiting domains can be
briefly described as follows. Let xx € Q be a sequence, which tends to infinity. Consider
the shifted domains Q corresponding to the shifted characteristic functions y(x + xx),
where x(x) is the characteristic function of the domain Q. Consider a ball B, C R" with
the center at the origin and with the radius r. Suppose that for all k there are points of
the boundaries 0Q) inside B,. If the boundaries are sufficiently smooth, we can expect
that from the sequence Q N B, we can choose a subsequence that converges to some
limiting domain Q. After that we take a larger ball and choose a convergent subsequence
of the previous subsequence. The usual diagonal process allows us to extend the limiting
domain to the whole space.

To define limiting operators we consider shifted coefficients a*(x + xx), b‘]’-‘(x + xx) and

choose subsequences that converge to some limiting functions d*(x), l;‘])-‘(x) uniformly in
every bounded set. The limiting operator is the operator with the limiting coefficients.
Limiting operators and limiting domains constitute limiting problems. It is clear that the
same problem can have a family of limiting problems depending on the choice of the
sequence xx and on the choice of both converging subsequences of domains and coeffi-
cients.

We note that in the case where () = R" the limiting domain is also R". In this case the
limiting operators were introduced and used in [12, 13, 17, 18].

1.4. Normal solvability. The following condition determines normal solvability of ellip-
tic problems.

Condition NS. Any limiting problem

=~

u=0, x€ Q4 ucEs(Qy) (1.12)

has only zero solution.

It is a necessary and sufficient condition for general elliptic operators considered in
Holder spaces to be normally solvable with a finite dimensional kernel [23]. For scalar
elliptic problems in Sobolev spaces it was proved in [22]. In this work we generalize these
results for elliptic systems. More precisely, we prove that the elliptic operator L is normally
solvable and has a finite-dimensional kernel in the space we (1< p < co)ifand only if
Condition NS is satisfied. Using this result it can be proved that the elliptic operator L
is Fredholm (if the limiting operators are invertible) in the space Wé’p for 1 < p < o and
some g. This result will be published elsewhere.
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It is easy to see how this condition is related to the condition formulated in terms of
the Fourier transform. In fact, for operator (1.9) the nonzero solution of the limiting
problem L.u = 0 has the form uy(x) = e**, where £ is the value for which the essential
spectrum passes through 0. The function uy(x) belongs obviously to the Holder spaces
and also to the space W2 (R). However it does not belong to the usual Sobolev space
W?2P(R). So Condition NS cannot be obtained in terms of usual Sobolev spaces (see also
[22] for counter-examples in R"). This is one of the reasons why it is more convenient to
work with Wy* spaces.

2. A priori estimates in the spaces W/

In this section, we define the spaces Wa’ and obtain a priori estimates of solutions, which
are similar to those in usual Sobolev spaces.

Denote by we? (Q) the space of functions defined as the closure of smooth functions
in the norm

el ) = sup llullwrrana,)- (2.1)
yeQ
Here Q) is a domain in R", Qy is a unit ball with the center at y, || - ||y, is the Sobolev

norm. We note that in bounded domains Q the norms of the spaces W*?(Q2) and wh? (@)

are equivalent. In the one-dimensional case with k = 0 similar spaces were used in [8, 9,
14]. This definition is equivalent to Definition 1.1.

We suppose that the boundary 0Q belongs to the Holder space C<*%, 0 < 6 < 1, and
that the Holder norms of the corresponding functions in local coordinates are bounded
independently of the point of the boundary. Then we can define the space ws P (50)
of traces on the boundary 0Q of the domain Q,

181 yt-vor gy = F IV sy (22)

where the infimum is taken with respect to all functions v € wh? (Q) equal ¢ at the
boundary, and k > 1/p.
The space whp (Q) with k = 0 will be denoted by L2, (Q). We will use also the notations

Ee =TI, Wa""(Q),

N I=si,p m l-0j=1/p,p (2.3)
Foo =TI We 7(Q) X ITTL Weo (0Q).

We consider the operator L defined by (1.8) and denote /; = max(0,0; + 1). We sup-
pose that the integer / in the definition of the spaces is such that [ > [}, and the boundary
0Q belongs to the class C™*? with r specified in Condition D below.

THEOREM 2.1. Letu € H?’ZIWiiHj'p(Q). Then for any | = I, we have u € E, and

lulle, < c(ILulle, +lull 2 q))» (2.4)

where the constant ¢ does not depend on u.
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Proof. Let w(x) be an infinitely differentiable nonnegative function such that
wkx)=1, |x|=<= wx)=0, |x|=1. (2.5)

Denote w,(x) = w(x — y). Suppose u(x) is a function satisfying the conditions of the

theorem. Then wyu € H;Llwié”f ?(Q). Since the support of this function is bounded,

we can use now a priori estimates of solutions [1]:

lwyullg < C(”L(‘Uy”)HF"' ||w)’u||LP(Q))’ Vy€eR", (2.6)

where the constant ¢ does not depend on y. We now estimate the right-hand side of the
last inequality. We have

Ai(wyu) = w,Aju+T;, (2.7)

where

N
Ti=> al, > cpyDPw,DVuy, (2.8)
k=1 la|<aix Bry<a,|B1>0

and cg, are some constants. If |7| < [~ s;, then

ID™ (wy Ait) |l () = MI|Asul[sr - (2.9)
For any € > 0 we have the estimate
N N
||Ti||wlfs,wz>(o) =€ Z ||uk||wl*’k’P(QnQy) +Ce Z ||uk||LP(QmQ),)
P k1 (2.10)
< ellullg, +Cellull 2 o)
where Q, is a unit ball with the center at y.
Thus
||Ai(w};u) ||W”SI’P(Q) < M”Ail/l”wi;s,-,p(ﬂ) + E”M”Eoo + Cg ||u||L€c(Q) (2.11)
Consider next the boundary operators in the right-hand side of (2.6). We have
Bj(wyu) Zqu)j-f—sj', (2.12)
where ®; = Bju,
S :
Si=> > Yy > AyD0,Dlu (2.13)
k=1 |Bl<Bjk a+y<p,|al>0

and A, are some constants.
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There exists a function v € Wi? %k (Q) such that v = ®; on Q) and

||v||ng,.,p(Q) < 2||q>j||wggj4/,,,p(am. (2.14)
Since v € Wigaj’p(ﬂ), then w,v € W-9?(Q) and
[y vllyyiese iy < MIVIL oy (2.15)
with a constant M independent of v. Since w,v = w,®; on d(2, then
||wj(DjHWl’”j’l/1’*P(aQ) < Ml”q)j”Wi;anl/p,p(aQ). (216)
Further,
N N
HSj”W’*”rVPvF(aQ) = ||S]'HWI’”J"P(Q) =€ Z Huk”WHtk’P(QﬁQy) +Ce Z ||uk||LP(QﬂQy) (2.17)
k=1 k=1 .
<€llullg, + Cellull iz, q)-
Thus
||B]' (wyl/{)”Wlfnj—l/p,p(aQ) < M||®j||wgaj—1/p,p(aﬂ) + E||1/l||13oo +Ce ”u”Lfo(Q)’ (2.18)
From (2.6), (2.11), and (2.18) we obtain the estimate
llwyullp < c(MallLullr, + ke llullp, + Cellull 2 q)) (2.19)

with some constants M, and «. Taking € > 0 sufficiently small, we obtain (2.4). The theo-
rem is proved. |

3. Limiting problems

In this section, we define limiting domains and limiting operators. They determine limit-
ing problems. We will restrict ourselves to the definitions and to the result, which we give
without proofs, that will be used below. More detailed presentation including the proofs
can be found in [22].

3.1. Limiting domains. In this section, we define limiting domains for unbounded do-
mains in R”, show their existence and study some of their properties. We consider an
unbounded domain Q C R", which satisfies the following condition.

Condition D. For each xy € 0Q) there exists a neighborhood U(xp) such that:
(1) U(xp) contains a sphere with the radius & and the center x,, where ¢ is indepen-
dent of xg,
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(2) there exists a homeomorphism y(x;x0) of the neighborhood U(xy) on the unit
sphere B = {y:|y| <1} in R" such that the images of Q| U(x,) and 0Q N U(x)
coincide with By = {y: , >0, |yl <1} and By = {y : ¥, = 0, |y| < 1}, respec-

tively,
(3) the function y(x;x) and its inverse belong to the Holder space C™*%, 0 < 6 < 1.
Their || - ||;+-norms are bounded uniformly in x,.

For definiteness we suppose that § < 1. We assume also that
r=max (I +t,l-s,l—0j+1), i=1,..,N,j=1,.,m (3.1)

The first expression in the maximum is used for a priori estimates of solutions, the second
and the third will allow us to extend the coefficients of the operator (see Section 3.3).

To define convergence of domains we use the following Hausdorff metric space. Let M
and N denote two nonempty closed sets in R”. Denote

¢(M,N) = supp(a,N), ¢(N,M) = supp(b,M), (3.2)

aeM beN

where p(a,N) denotes the distance from a point a to a set N, and let
o(M,N) = max (¢(M,N),¢(N,M)). (3.3)

We denote by E a metric space of bounded closed nonempty sets in R” with the dis-
tance given by (3.3). We say that a sequence of domains Q,, converges to a domain Q in

E'loc if
Q(QmﬁBR,QﬂBR) — 0, m— o (34)
for any R >0 and Bg = {x: |x| < R}. Here the bar denotes the closure of domains.

Definition 3.1. Let Q) C R" be an unbounded domain, x,, € Q, |x;,| — 0 as m — o0; x(x)
be the characteristic function of 2, and (), be a shifted domain defined by the character-
istic function y,, (x) = x(x +x,,). We say that Q. is a limiting domain of the domain Q if
Q= Qy In Bjoc as m — oo,

We denote by A(Q) the set of all limiting domains of the domain Q (for all sequences
Xm). We will show below that if Condition D is satisfied, then the limiting domains exist
and also satisfy this condition.

THEOREM 3.2. Ifa domain Q) satisfies Condition D, then there exists a function f (x) defined
in R" such that:

(1) f(x) € CKO(R"), k=1,

(2) f(x)>0ifandonly if x € Q,

(3) IVf(x)| =1 for x € 0},

(4) min(d(x),1) < | f(x)|, where d(x) is the distance from x to 0.

~— — ~— ~—

Let Q) be an unbounded domain satisfying Condition D and f(x) be a function satis-
fying conditions of Theorem 3.2. Consider a sequence x,, € Q, |x;,] — . Denote

Sn() = f(x+x). (3.5)
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THEOREM 3.3. Let fi(x) — fi(x) in CIOC(R”), where k is not greater than that in Theorem
3.2. Denote

Qu ={x:x€R", fi(x)>0}. (3.6)

Then
(1 f* Ck+9 R")
(2) Q* is an nonempty open set.
If Q. # R, then
(3) IVfx(®)laq, = 1,
(4) min(dy(x),1) < | fi(x)|, where ds (x) is the distance from x to 0Q.

THEOREM 3.4. If fiu(x) — fi(x) in Clkoc as m — oo, then 0Q),, — 0Qy in Ejoc. Moreover, the
limiting domain Q. either satisfies Condition D or Q4 = R".

THEOREM 3.5. Let Q) be an unbounded domain satisfying Condition D, X,y € Q, |Xp| — 0,
and f(x) be the function constructed in Theorem 3.2.
Then there exists a subsequence x,,, and a function f. (x) such that

S (%) = f(x+%xm) — fu(x) (3.7)

in CIOC(R”) and the domain Q4 = {x: fi(x) > 0} either satisfies Condition D or Qs = R".
Moreover, Q, — Qy in Bioc, where Qp, = {x: f,(x) > 0}.

3.2. Convergence. In the previous section we have introduced limiting domains. Here
we define the corresponding limiting problems.

Let Q) be a domain satisfying Condition D and y(x) be its characteristic function. Con-
sider a sequence x,, € Q, |x,,] — oo and the shifted domains Q,, defined by the shifted
characteristic functions y,, (x) = y(x +x,,). We suppose that the sequence of domains Q,,
converge in Zjo. to some limiting domain Q. In this section we suppose that 0 < k < r.

Definition 3.6. Let u,, € W!;’P(Qm), m = 1,2,.... We say that u,, converges to a limit-
ing function uy € whp (Qy) in Wl];f (O — Q) if there exists an extension v,,(x) €
Wfo’P(R”) of u,,(x), m =1,2,... and an extension v (x) € Wfo’p(R”) of uy(x) such that
Vim = V4 In W{;’f(R”).

Definition 3.7. Let u,, € Wk ”"P(aﬂm) k>1/p, m =1,2,.... We say that u,, converges
to a limiting functlon Uy € whver (0Q4) in llf)c Vpp (0Q,,, — 0Q) if there exists an
extension v,,(x) € whp (R") of u,,(x), m = 1,2,... and an extension v4 (x) € Wfo’p(R”) of

uy(x) such that v, — vy in W{;’f(R").

Definition 3.8. Let up(x) € CK(Qp), m = 1,2,.... We say that u,,(x) converges to a lim-
iting function uy(x) € CK(Q) in C{;C(Qm — Q) if there exists an extension v,,(x) €
CK(R™) of uy(x), m = 1,2,... and an extension v, (x) € C*(R") of u4(x) such that

Vi — v in CE_(R"). (3.8)
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Definition 3.9. Let t,(x) € CK(0Q,), m = 1,2,.... We say that u,,(x) converges to a lim-
iting function uy (x) € C*(dQy) in Cﬁ)c(éﬂm — 0Q)) if there exists an extension v,,(x) €
CK(R") of uy(x), m = 1,2,... and an extension vx (x) € CK(R") of us (x) such that

Vi — v in CE_(R"). (3.9)
TaEOREM 3.10. The limiting function uy (x) in Definitions 3.6-3.9 does not depend on the
choice of extensions vy, (x) and vy (x).
THEOREM 3.11. Suppose that 0 <k <r — 1. Let

k+1,
um € W' P (Qu)y lttmll oo, < M, (3.10)

. . k+1,

where the constant M does not depend on m. Then there exists a function uy, € We " (Qy)
Lok,

and a subsequence Uy, such that u,,, — uy in Wlof(Qm - QOy).

THEOREM 3.12. Suppose that 0 <k <r—1. Let u,, € WETVPE (B0,
||um||Wfo+171/p,p(an) <M, (3.11)

where the constant M does not depend on m. Then there exists a function

uy € WETTVPP (30, (3.12)

and a subsequence u,,, such that

U — e in WETTEYPP (B0 90),), (3.13)

i loc

where0 <€ <k+1—-1/p.

THEOREM 3.13. Let u,, € C*9(Q,), llumll oo < M, where the constant M is independent
of m. Then there exists a function u, € C**9(Q.,) and a subsequence u,, such that t,, — u
in Cf, (Qum, — Q).

Let tiyy € C**9(0Q), |ltimllcie < M. Then there exists a function u, € C**9(9Q) and
a subsequence iy, such that uy, — s in CK_(9Q, — 0Qy).

3.3. Limiting operators. Suppose that we are given a sequence {x,}, v =1,2,..., x, €
Q, |x,| — co. Consider the shifted domains Q, with the characteristic functions y,(x) =
x(x+x,) where y(x) is the characteristic function of ), and the shifted coefficients of the
operators A; and Bj:

a%,(0) = af(x+x,), b, =t (x+x,). (3.14)

We suppose that

ag(x) € C=H(Q), bl e Ctq), (3.15)
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where 0 < 0 < 1, and that these coefficients can be extended to R™:

a%(x) € CHORY),  B(x) e CorO(RY), (3.16)
Therefore
e levoer = Me [V 0| 50y =M (3.17)

with some constant M independent of v. It follows from Theorem 3.5 that there exists
a subsequence of the sequence Q,, for which we keep the same notation, such that it
converges to a limiting domain Q.. From (3.17) it follows that this subsequence can be
chosen such that

a%, — a5 inC9(R") locally,  bf,, — b inCO(R") locally,  (3.18)

where a3, and bfk are limiting coefficients,

as € Cl-sito (R"), l;fk c Cl-o+0 (R"). (3.19)

We have constructed limiting operators:

N
Aiuzz Z ag.(x)D%uy, i=1,...,N, x € Qy,

k=1 |a|<aix

N
R A 3.20
Bju = Z Z bfk(x)Dﬁuk, i=1,...,m, x € 0Qy, ( )

k=1 I8l =psi

A

L=(Ay,...,AN,B1,...,By).
We consider them as acting from Ec (Q4) to Foo (Qy).

4. A priori estimates with condition ns

In Section 5, we will prove that Condition NS (Section 1.4) is necessary and sufficient in
order for the operator L to be normal solvable with a finite dimensional kernel. In this
section we will use it to obtain a priori estimates of solutions stronger than those given
by Theorem 2.1. Estimates of this type are first obtained in [12, 13] for elliptic operators
in the whole R".

THEOREM 4.1. Let Condition NS be satisfied. Then there exist numbers My and Ry such that
the following estimate holds:

lulle, < Mo(IILullp, + lullieay))> Vi€ Ee. (4.1)

Here Qgr, = QN {|x| < Ro}.
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Proof. Suppose that the assertion of the theorem is not right. Let My — co and Ry — o be

given sequences. Then there exists ux € E such that
g, > MLl + el )
We can suppose that

e[, = 1.

Then

1
||LUk||Fm +||uk||LP(QRk) <— —0 ask— oo.

My

From Theorem 2.1 we obtain

o=

1Lu] g, + [url] 2 ) =

It follows from (4.4) that ||Lug||r, — 0. Hence
1
||uk||Lgo(Q) > Z for k = ko
with some k. Since
||“k||L’;(Q) = Sup”uk”LP(Qme)’
yeQ

then it follows from (4.6) that there exists yx € Q such that

1
||“k||LP(QYka) > 2%

From (4.4)

||“k||LP(QRk) -

This convergence and (4.8) imply that |y | — .
Denote

Lug = fi.
From (4.4) we get
Ifillp, — 0 ask— oo,
Denote next x = y + yx,

wi(y) = u (¥ + yi)-

(4.2)

(4.3)

(4.4)

(4.5)

(4.6)

(4.7)

(4.8)

(4.9)

(4.10)

(4.11)

(4.12)
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We rewrite (4.10) in the detailed form

N
> > ad(x)D%pg = fy, i=1,....N,x€Q,

h=1 |a|<aj
. (4.13)
S Y B Dbu = fF, i=1...m x €00,
h=1|BI<Bjn
where
ﬁc:(flk)-'-aka:flbkau-afnl:k)a uk:(ulka-uauNk)' (4°14)
Denoting
anf(y) = aS(y+y)s  bik(y) = B (r+ ), (4.15)
we obtain from (4.13)
Z z aing(P)D*wni(y) = fir (¥ +y1)» i=1,...,N, x € O, (4.16)
h=1|a|<ain
N
Z Z bk NDPwie(y) = f2, (y+ i)y i=1oooom, x € 9, (4.17)
Qy is the shifted domain. From (4.3) we have
lwillg. 0y = 1- (4.18)
We have wy = (Wik,...,Wni), and (4.18) can be written in the form
N
> lwikllyyrenr o, = 1. (4.19)
i=1

R .
We suppose that w;; are extended to R” such that their We P (R")-norms are uniformly
bounded. Passing to a subsequence and retaining the same notation, we can suppose that

Wik — wip in W62 (R) locally, (€ >0), (4.20)
Wix — wig in WP (R") locally weakly (4.21)

for some w;, as k — oo, and

wip € Wa™P(RY), i=1,...,N. (4.22)
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Denote wy = (w1,...,Wng). We prove that
Lwg=0 (4.23)

for a limiting operator L. To do this we pass to the limit in (4.16), (4.17) by a subsequence
of k. We choose this subsequence such that Q converges to a limiting domain, Q — Q,
and keep for it the same notation.

We begin with (4.16). For any x € Q. we take a neighborhood U in such a way that
U c Q for k sufficiently large. For any ¢ € D with the support in U we get from (4.16):

[,

We can suppose, passing to a subsequence, that

Gt (Y)D%wie () (y)dy = jUf,-k(y+ 7)$()dy. (4.24)

h=1 |a|<(xh

i (y) — af(y)  in C(R") locally (4.25)

(see (3.17)), where aj,(y) are the coefficients of the limiting operator. It follows from
(4.21) that D*wpx (lal < ag) converges locally weakly in W/=of to D*wyy as k — oo,
Hence we can pass to the limit in (4.24).

From (4.11) it follows that

[ fi -+ lyyisin ) — 0 ask — oo, (4.26)

Hence the right-hand side in (4.24) tends to zero. Passing to the limit in this equation, we
obtain

N
> > 45D Wie(y) =0, y€E Q.. (4.27)

Consider now (4.17). From (4.20) it follows that Dfwy (18] < Bi) tends to DPwyg in
W!=9=62(R") locally. Hence (3.17) implies that

N N
Z z LDPwi(y) — > S B (n)DFwio(y) (4.28)
h=1|BI=p h=11B1<Bjn

in WIIOCU’ “P(R). Therefore this convergence takes place also in Wllc,lgj ““?(Q4) and, con-

. l-gi—e=1/p,
sequently, in Wlocg’ PP B0, ) In other words, we have proved that the convergence

(4.28) is in WIOCU] < ”"P(agk 0Q.) (see Definition 3.7).
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Consider next the right-hand side in (4.17). According to (4.11) we have

Hfﬂ( ' +y")Hwi;"f’”"’P(an) — 0 ask— e (4.29)

We can extend fﬁ(( ¥+ yi) to the whole R” in such a way that

Fo(4y) — 0 in WP (RY). (4.30)
Therefore
FoCap) — 0 inwy” P a0y — aq). (4.31)

loc

From this and convergence (4.28) it follows

N
>3 W ()DPwie(y) =0, y €00, (4.32)
h=11BI<Bjn

From (4.22) it follows that the left-hand side of this equality belongs to whomver (0Q).
Hence it can be regarded as an equality in wa” _1/P’p(8Q* ).

From (4.27) and (4.32) we conclude that wy is a solution of the limiting problem
(4.23). We prove now that wy # 0. From (4.8) and (4.12) we have

1
||Wk||L17(kaQO) > 3 (4.33)

where Qy is the unit ball with the center at the origin. We prove that

1
||W0||LP(Q*mQ0) Z 2 (4.34)
Indeed, from (4.20),
W — Wy in Lf;C(R”). (4.35)

Denote Sx = Qr N Qo, Sx = Qi N Q. Then

‘ HwkHLP(Sk) - ||W0||LP(S*)
(4.36)

= ‘ HwkHLP(Sk) - ||WO||Lp(sk) ‘ + ‘ ||W0||Lp(sk) - ||W0||Lp(s*)
= Ay + By.
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Further

N

Ay < |[wx _WOHLP(Sk) = ZHWik - Wio||Lp(sk)
i=1

N 1/p
:Z<J |Wik_Wi0|pdx) — 0 ask— oo,
‘ Sk

. (4.37)
By < ‘HWI'OHLP(Sk) —[lwiollpss,)
i=1
N 1/p
SMZ(J |wi0|de> —0 ask— o
i=1 Sk ASk
since the measure of the symmetric difference Sx AS.. converges to 0.
We have proved that
1wl e aunan — 11wolliria. nay) (4.38)

and (4.34) follows from (4.33).
Thus there exists a limiting problem with a nonzero solution. This contradicts Condi-
tion NS. The theorem is proved. O

Denote

W, = etV I (4.39)

where y is a real number.

THEOREM 4.2. Let Condition NS be satisfied. Then there exist numbers My >0, Ry >0 and
po >0 such that for all y, 0 < p < yy the following estimate holds:

lwuul|g, < M0(||a),,Lu||Fw + ||w/4u||LP(QR0)>’ Vu € Ee. (4.40)

More complete proof of this theorem is given in [24].

Proof. According to (4.1) we have
llwaullz, < M(||L(wut) |5, + ||w,uu||LP(QRO))' (4.41)

By (1.8), L = (A1,...,AN,Bi,...,Bwm). Consider first the operator
N
Ai(wuu) = Z ag (x)D*(wuuk), i=1,...,N. (4.42)

We have

Ai(wuu) = w,Ai(u) + ;, (4.43)
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where

N
=2 Z > a%(x)eg, DPw,Duy, (4.44)

k=1 aix fry=a,|B1>0
and cg, are some constants. Direct calculations give the following estimate
||(D,'||Wi;s,-,p = Ml/’le}luHEm(Q)' (4.45)

For the boundary operators we have
N
u) = Z z (x)Dﬁ (wpug). (4.46)
k=1 |Bl<p

As above we get

Bj(w,u) = w,Bj(u) +¥;,

4.47
11 o om0 = Mottt o (447

From (4.43), (4.45), and (4.47) we obtain
L (wuu) |5, < llwuLullp, +Mul|w,ullg, . (4.48)

The assertion of the theorem follows from this estimate and (4.41). The theorem is
proved. O

CoROLLARY 4.3. If 0 <y < o, u € Ew, and w,Lu € F, then w,u € Ew. In particular, if
u € Eq and Lu = 0, then w,u € Ex.

5. Normal solvability

We recall that an operator L acting in Banach spaces is normally solvable if its range is
closed. It is called n-normally solvable if it is normally solvable and has a finite dimen-
sional kernel (see, e.g., [7])

THEOREM 5.1. Let Condition NS be satisfied. Then the elliptic operator L : E(Q) — Foo ()
is normally solvable and has a finite dimensional kernel.

Proof. Itis known that a linear operator has a finite dimensional kernel and a closed range
if and only if its restriction to any bounded closed set is proper.

Let Luy = fu, uy € Ex(Q), fu € Fo(Q). Suppose that |lu, ||z, <M and f, is convergent.
It is sufficient to prove that the sequence u, is compact. This follows from Theorem 4.1.
The theorem is proved. O

In the next theorem we prove that Condition NS is necessary for the operator L to
be normally solvable with a finite dimensional kernel. To simplify the construction we
impose a stronger regularity condition on the boundary of the domain, 0Q € C"+1*9, We
will use the following lemma.
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LemMa 5.2. Let Qk and Q. be a shifted and a limiting domains, respectively. Then for any
N there exists ko such that for k > ko there exists a diffeomorphism

he(x) : Qi () By — Qu By (5.1)
satisfying the condition
||hk(x) _x”CI*"O(QkﬂBN) —0 (5.2)

ask — oco. Here 0 < 0y < 6.
The proof is given in [22]

THEOREM 5.3. Suppose that a limiting problem for the operator L has a nonzero solution.
Then the operator L is not n-normally solvable.

Explanation. To prove the theorem we construct a sequence u, such that it is not compact
in E«(Q) but Lu, converges to zero in F.(Q). The idea of the construction is rather
simple but its technical realization is rather long. This is why we preface the proof by a
short description of the construction.

Let us consider a ball Bg(xx) of a fixed radius R with the center at x;. From the defini-
tion of limiting problems it follows that we can choose the sequence xi in such a way that
inside Bgr(xx) the domain Q is close to the limiting domain, and the coefficients of the
operator are close to the coefficients of the limiting operator. Moreover, the domain and
the coefficients converge to their limits as k — oco. Thus we move the ball Br(x) to infinity
and superpose it on the domain  in the places where the operator and the domain are
close to their limits and converge to them.

If up is a nonzero solution of the limiting problem, then we shift it to the ball Br(xx).
Denote the shifted function by ux. Then inside Br(xx), Luk tends to zero as k — oo. The
sequence uj is not compact.

If uy had a bounded support, the construction would be finished. Since it is not nec-
essarily the case, we multiply u by an infinitely differentiable function ¢ with a bounded
support. Of course, this product is not an exact solution of the limiting problem any
more. However, all terms of the difference L(¢uo) — ¢Lug contain derivatives of ¢. If the
support of ¢ is sufficiently large, then the derivatives of ¢ can be done sufficiently small.
Hence when we move the ball Br(xx) to infinity, we should also increase its radius and
also increase supports of functions ¢y.

Proof. Suppose that there exists a limiting operator L such that
Lug =0, wup€ Eu(Q), ug #0. (5.3)

Consider an infinitely differentiable function ¢(x), x € R"” such that 0 < ¢(x) < 1,
¢(x) =1 for x| <1, (x) = 0 for |x| > 2. If {xx} is the sequence for which the limiting
operator L is defined, denote

Pr(x) = <p<f), (5.4)

Tk
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where r; — oo and rx < |xx|/3. Some other conditions on the sequence r will be formu-
lated below.

Let V; ={y:y € R", |yl < j}, j = 1,2,.... Denote by n; a number such that for k > n;
the diffeomorphism /; defined in Lemma 5.2 can be constructed in Qx () Vj41 and

() = yll v o, vy < 6 (5.5)

where § > 0 is taken so small that |k —I| < 1/2, hy, is the Jacobian matrix and I is the
identity matrix.
For arbitrary k; > n; we take ry, = min(j/2, |x, |/3). Let

viy (7) = @k (7)o (hiy () for y € Oy (Vi

. (5.6)
vk, () =0 forye O, [yl=j+1.
Denote
ug;(x) = v, (x —xx,), x€Q. (5.7)
It is easy to see that uy, € E(Q) and
||ukj||Eoo(Q) =M, (5.8)
where M does not depend on k;. Indeed, obviously
¢k (y) =0 (5.9)
for y outside V;. Therefore to prove (5.8) it is sufficient to show that
||ij||Ew(ijﬂ Vi) =M, (5.10)
or
[0 (i (D)., ;00 = Mos (5.11)

where M; and M, do not depend on k;. This follows from (5.5) and the fact that u, €
Eo(Qy).
We prove now that the choice of k; in (5.7) can be specified in such a way that
(i) Lu;, — 0in Fo (Q) as kj — oo,
(i) the sequence {uy;} is not compact in E« ().
The assertion of the theorem will follow from this.
(i) We consider first the operators A;, i=1,...,N, and then the operator Bj, j = 1,...,m
For any k = k; > n; we have

Ajug =A,-1uk +A?uk, (5.12)

where

2

Alug(x) = g (x —x) D Z x)D%ug, (hi (x — xx)), x€Q, (5.13)

r=1a|<w;
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and A? contains derivatives of ¢;. Obviously

||A12uk||wic’5i’f’(0) —0 (514)

as k — .
Denote y = x — x. From (5.13) we obtain

Alue(y+xc) = o Ti(y), vy €, (5.15)
where
N
T => > azrk (»)D%uor (i (), ¥ € Qs (5.16)
r=1 |a|<q;

airg(y) = aj(y +xx). We prove that for any fixed j

|| T —0 (5.17)

il N V)

as k — co. Indeed, by the definition of u, the following equality holds:

N
Z Z a2 (x)D%ug,(x) = 0, x € Q. (5.18)

Here d;,(x) are the limiting coefficients. Hence

N
zk(}/ Z Z [ 1rk(y +Pzrk()’)] (5-19)
where
Sirf(y) = airf () DSuor (h(3)) = D (he(9)) ], (5.20)
Pii(y) = [airi(y) = a% (hi(y) | DEuor (i(y)). (5.21)

The first factor in the right-hand side of (5.20) is bounded in the norm C'~ () since
lairgll s o = Nafllcrs - (5.22)

From Lemma 5.2 it follows that the second factor tends to 0 in the norm W ™7 QNVjs1)
as k — co. Consequently,

|ISirk

Ay, —0 sk (529
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Consider (5.21). Using (5.5) we easily prove that
||D;§u0(hk(y))||Wi;si,p(gmvjﬂ) <M; (5.24)

with M3 independent of k.
To prove (5.17) it remains to show that

lairf () —ag (he(+)) ||Cl_5i(QkﬂVj+]) — 0 ask— . (5.25)
We recall that it is supposed that a;;(y) and a;,(y) are defined for y € R",
@ikl ci-srogny < M (5.26)
with M independent of k, 4, (y) € Cl=s*9(R") and
airg(y) — 4 (y) (5.27)
in C},7(R") as k — co. We have

||alfz(y) - d?; (hk(y))HCI’si(QkﬂVjH)

R " (5.28)
< |laif(y) - air(y)”cHi(QkﬂVjH) +

as(y) —as(he(») HCI*Si(QkﬂVﬁl)'

The first term on the right tends to zero as k — o according to (5.27). The second term
tends to zero by the properties of the function 4f, mentioned above, by Lemma 5.2 and
by inequality (5.5). Thus (5.17) is proved.

Now we specify the choice of k; in (5.7). According to (5.17) for any j we can take p;
in such a way that

1
||Tik||w£;"’"’(0kﬂvj+1) < ; (5.29)

for k = p;. We put k; = max(n;, p;). Then obviously
198, T |y g ) — 0 sk — o, (5.30)

Consider now the boundary operators B;. According to our assumptions, the coeffi-

cients bg(x) of the operators B; (i = 1,...,m) are defined in the domain Q and belong
to the space C'-?*9(Q). By the same arguments, which we used for the operator A;, we
prove that

|| Btk ||y t-ci-ven pq) — O as kj — oo, (5.31)

We repeat the same construction as above and obtain the following operator:

N
Ty = > > bak(0DPuo (h(y)),  y € Qu, (5.32)
h=1 1BI<Bi
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where b,-hf(y) = bf;h(y + xx). We prove that

||Tik||Wi;ai71/p,p(aﬂkﬂvj+l) - 0 (5.33)
Indeed, denote
gilx) = Z Z blhﬁ YDPug(x),  x € Qy. (5.34)
h=1|B|=Bin

This expression equals 0 only at the boundary 0Q. Therefore instead of what is written
above for the operator A;, we have now

Ti(y) = Qu(y) + & (hi(y)), (5.35)
where
N
Q= > [Suf()+Puk(»)]: (5.36)
h=1 |B|=<Bin

Here S and P are the same as for the operator A but the coefficients a are replaced by b.
Exactly as we have done for the operator A we prove that

||Qk||Wio’Ui»P(QkﬂVjH) — 0 ask— oo, (5.37)
It follows that
||Qk||W£;0i*1/P>P(anmVjH) — 0 ask— . (5.38)

Since for y € 0 we have hi(y) € dQ., we have g;(hr(y)) = 0 for y € 9Q. From this,
(5.35) and (5.38) we get (5.33). Thus the assertion (i) is proved.

(ii) We prove now that sequence (5.7) does not have a convergent subsequence. Obvi-
ously Uk, (x) =0 for |x| < rk; and, consequently,

| @wxdx — o (539)

as kj — oo for any continuous w(x) with a compact support.
For any subsequence s; of k; there exists N such that

L | ug,(x) | dx = p (5.40)
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for s; > N and some p > 0. Indeed, let y = x — x,,. Then

T}EngwxxHde:_[_Iwiyﬂpdy

Si

- 5 h Pd
meijMﬂin y (5.41)
ZJ |”0(hs,'()’))|pdy'

Qsiﬂvrst

We do the change of variables y = h;!(x) in the last integral. Then

dh;,' (x)

dx dx, (5.42)

Tizjﬂ*m 5 luo(x)|p’

i

where W, = hy, (V).
Since |lugllreq,) # 0, there exists a ball B = {x: |x| <[} and a number py > 0 such that

J o () | Pddx = po. (5.43)
Q* ﬂBl

Increasing N, if necessary, we can suppose that B; C Wy, and |dh; ' (x)/dx| = ¢ for x € B
and some € > 0. The last inequality follows from the fact that according to (5.5) the deriva-
tives of h;,(y) are uniformly bounded. By (5.43) we get T; > ¢py and (5.40) is proved.

If (5.7) has a convergent subsequence: us, — uy in E(Q), then this convergence is also
in LP(Q). From (5.39) it follows that us = 0 which contradicts (5.40). Thus the sequence
(5.7) is not compact in E(Q). The theorem is proved. O
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