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The paper is devoted to general elliptic problems in the Douglis-Nirenberg sense. We
obtain a necessary and sufficient condition of normal solvability in the case of unbounded
domains. Along with the ellipticity condition, proper ellipticity and Lopatinsky condition
that determine normal solvability of elliptic problems in bounded domains, one more
condition formulated in terms of limiting problems should be imposed in the case of
unbounded domains.

1. Introduction

In this work we study normal solvability of general elliptic problems in the Douglis-
Nirenberg sense. If in the case of bounded domains with a sufficiently smooth boundary
the normal solvability is completely determined by the conditions of ellipticity, proper el-
lipticity, and Lopatinsky condition (see [2, 3, 19, 20]), then in the case of unbounded do-
mains one more condition related to behavior of solutions at infinity should be imposed.

If the coefficients of the operator have limits at infinity, and the domain is cylindrical
or conical at infinity, then the additional condition is determined by the invertibility of
limiting operators, that is of the operators with the limiting coefficients in the limiting
domain. This situation is studied in a number of works for differential [4, 11, 21, 25, 26]
and pseudodifferential operators [15, 17, 16].

If the coefficients do not have limits at infinity but the domain is the whole Rn, the
notion of limiting operators was used in [12, 13]. Previously it was used in the one-
dimensional case to study differential equations with quasi-periodic coefficients [6, 8, 9,
14] (see also [18]).

In the case of arbitrary domains, we need to introduce the notion of limiting domains
and limiting problems. In the case of general elliptic problems and Hölder spaces it is
done in [23]. In [22] we study scalar elliptic problems in Sobolev spaces (see below). We
obtain conditions of normal solvability in terms of uniqueness of solutions of limiting
problems. In this work we generalize these results to the case of systems.

We should note that the choice of function spaces plays important role. We intro-
duce a generalization of Sobolev-Slobodetskii spaces that will be essentially used in the
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subsequent works where we consider nonhomogeneous adjoint problems, obtain a priori
estimates for them and prove their normal solvability. These results are used to prove the
Fredholm property of general elliptic problems. For the scalar equation the solvability
conditions will be also formulated in terms of formally adjoint problems. We will use the
approach developed in [10] for scalar elliptic problems in bounded domains.

1.1. Function spaces. Sobolev spaces Ws,p proved to be very convenient in the study of
elliptic problems in bounded domains. But more flexible spaces are needed for elliptic
problems in unbounded domains. We need some generalization of the space Ws,p. More
exactly, we mean such spaces which coincide with Ws,p in bounded domains but have a
prescribed behavior at infinity in unbounded domains. It turns out that such spaces can
be constructed for arbitrary Banach spaces of distributions (not only Sobolev spaces) as
follows.

Consider first functions defined on Rn. As usual we denote by D the space of infinitely
differentiable functions with compact support and by D′ its dual. Let E ⊂D′ be a Banach
space, the inclusion is understood both in algebraic and topological sense. Denote by Eloc

the collection of all u ∈ D′ such that f u ∈ E for all f ∈ D. Let ω(x) ∈ D, 0 ≤ ω(x) ≤ 1,
ω(x)= 1 for |x| ≤ 1/2, ω(x)= 0 for |x| ≥ 1.

Definition 1.1. Eq (1≤ q ≤∞) is the space of all u∈ Eloc such that

‖u‖Eq :=
(∫

Rn

∥∥u(·)ω(·− y)
∥∥q
E dy

)1/q

<∞, 1≤ q <∞,

‖u‖E∞ := sup
y∈Rn

∥∥u(·)ω(·− y)
∥∥
E <∞.

(1.1)

It is proved that Eq is a Banach space. If Ω is a domain in Rn, then by definition Eq(Ω)
is the space of restrictions of Eq to Ω with the usual norm of restrictions. It is easy to see
that if Ω is a bounded domain, then

Eq(Ω)= E(Ω), 1≤ q ≤∞. (1.2)

In particular, if E =Ws,p, then we denote W
s,p
q = Eq (1≤ q ≤∞). It is proved that

W
s,p
p =Ws,p (s≥ 0, 1 < p <∞). (1.3)

Hence the spaces W
s,p
q generalize the Sobolev spaces (q <∞) and the Stepanov spaces

(q =∞) (see [8, 9, 14]).
If E = Lp, then L

p
q = Eq. It can be proved that if u belongs to Lp locally and |u(x)| ≤

K|x|−α for |x| sufficiently large, where K is a positive constant, and αq > n, then u∈ L
p
q .

Unlike the spaces Lp for which there is no embedding Lp(Rn) in Lp1 (Rn) for any 1 < p,
p1 <∞, p �= p1, it is easy to prove that

L
p
q
(
Rn
)⊂ Lp1

q1

(
Rn
) (

p ≥ p1, q ≤ q1
)
. (1.4)



A. Volpert and V. Volpert 735

1.2. Elliptic problems. Consider the operators

Aiu=
N∑
k=1

∑
|α|≤αik

aαik(x)Dαuk, i= 1, . . . ,N , x ∈Ω,

Bju=
N∑
k=1

∑
|β|≤βjk

b
β
jk(x)Dβuk, i= 1, . . . ,m, x ∈ ∂Ω,

(1.5)

where u = (u1, . . . ,uN ), Ω ⊂ Rn is an unbounded domain that satisfy certain conditions
given below. According to the definition of elliptic operators in the Douglis-Nirenberg
sense [5] we suppose that

αik ≤ si + tk, i,k = 1, . . . ,N , βjk ≤ σj + tk, j = 1, . . . ,m, k = 1, . . . ,N (1.6)

for some integers si, tk, σj such that si ≤ 0, max si = 0, tk ≥ 0.
Denote by E the space of vector-valued functions u= (u1, . . . ,uN ), where uj belongs to

the Sobolev space Wl+t j ,p(Ω), j = 1, . . . ,N , 1 < p <∞, l is an integer, l ≥max(0,σj + 1),
E =ΠN

j=1W
l+t j ,p(Ω). The norm in this space is defined as

‖u‖E =
N∑
j=1

∥∥uj∥∥Wl+t j ,p(Ω). (1.7)

The operatorAi acts from E toWl−si,p(Ω), the operator Bj acts from E toWl−σj−1/p,p(∂Ω).
Denote

L= (A1, . . . ,AN ,B1, . . . ,Bm
)
,

F =ΠN
i=1W

l−si,p(Ω)×Πm
j=1W

l−σj−1/p,p(∂Ω).
(1.8)

We will consider the operator L as acting from E∞ to F∞.
Throughout the paper we assume that the operator L satisfies the condition of uniform

ellipticity.

1.3. Limiting problems. We recall that the operator is normally solvable with a finite
dimensional kernel if and only if it is proper, that is the inverse image of a compact set
is compact in any closed bounded set. In this work we obtain necessary and sufficient
conditions for a general elliptic operator to satisfy this property. Consider as example the
following operator

Lu= a(x)u′′ + b(x)u′ + c(x)u (1.9)

acting from H2(R) to L2(R). If we assume that there exist limits of the coefficients of the
operator at infinity, then we can define the operators

L±u= a±u′′ + b±u′ + c±u, (1.10)

where the subscripts + and− denote the limiting values at +∞ and−∞, respectively. As it
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is well known, the operator L satisfies the Fredholm property if and only if the equations
L±u= 0 do not have nonzero bounded solutions. We can easily write down this condition
explicitly:

−a±ξ2 + b±iξ + c± �= 0 (1.11)

if we look for solutions of this equations in the form u= exp(iξ).
This simple approach is not applicable for general elliptic problems where limits of

the coefficients may not exist and the domain can be arbitrary. In the next section we will
define limiting problems in the general case. Construction of limiting domains can be
briefly described as follows. Let xk ∈Ω be a sequence, which tends to infinity. Consider
the shifted domains Ωk corresponding to the shifted characteristic functions χ(x + xk),
where χ(x) is the characteristic function of the domain Ω. Consider a ball Br ⊂ Rn with
the center at the origin and with the radius r. Suppose that for all k there are points of
the boundaries ∂Ωk inside Br . If the boundaries are sufficiently smooth, we can expect
that from the sequence Ωk ∩ Br we can choose a subsequence that converges to some
limiting domain Ω∗. After that we take a larger ball and choose a convergent subsequence
of the previous subsequence. The usual diagonal process allows us to extend the limiting
domain to the whole space.

To define limiting operators we consider shifted coefficients aα(x+ xk), bαj (x+ xk) and

choose subsequences that converge to some limiting functions âα(x), b̂αj (x) uniformly in
every bounded set. The limiting operator is the operator with the limiting coefficients.
Limiting operators and limiting domains constitute limiting problems. It is clear that the
same problem can have a family of limiting problems depending on the choice of the
sequence xk and on the choice of both converging subsequences of domains and coeffi-
cients.

We note that in the case where Ω= Rn the limiting domain is also Rn. In this case the
limiting operators were introduced and used in [12, 13, 17, 18].

1.4. Normal solvability. The following condition determines normal solvability of ellip-
tic problems.

Condition NS. Any limiting problem

L̂u= 0, x ∈Ω∗, u∈ E∞
(
Ω∗
)

(1.12)

has only zero solution.
It is a necessary and sufficient condition for general elliptic operators considered in

Hölder spaces to be normally solvable with a finite dimensional kernel [23]. For scalar
elliptic problems in Sobolev spaces it was proved in [22]. In this work we generalize these
results for elliptic systems. More precisely, we prove that the elliptic operator L is normally

solvable and has a finite-dimensional kernel in the space W
l,p
∞ (1 < p <∞) if and only if

Condition NS is satisfied. Using this result it can be proved that the elliptic operator L

is Fredholm (if the limiting operators are invertible) in the space W
l,p
q for 1 < p <∞ and

some q. This result will be published elsewhere.
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It is easy to see how this condition is related to the condition formulated in terms of
the Fourier transform. In fact, for operator (1.9) the nonzero solution of the limiting
problem L±u = 0 has the form u0(x) = eiξx, where ξ is the value for which the essential
spectrum passes through 0. The function u0(x) belongs obviously to the Hölder spaces

and also to the space W
2,p
∞ (R). However it does not belong to the usual Sobolev space

W2,p(R). So Condition NS cannot be obtained in terms of usual Sobolev spaces (see also
[22] for counter-examples in Rn). This is one of the reasons why it is more convenient to
work with W

s,p
q spaces.

2. A priori estimates in the spaces W
s,p
∞

In this section, we define the spacesW
s,p
∞ and obtain a priori estimates of solutions, which

are similar to those in usual Sobolev spaces.

Denote by W
k,p
∞ (Ω) the space of functions defined as the closure of smooth functions

in the norm

‖u‖
W

k,p
∞ (Ω) = sup

y∈Ω
‖u‖Wk,p(Ω∩Qy). (2.1)

Here Ω is a domain in Rn, Qy is a unit ball with the center at y, ‖ · ‖Wk,p is the Sobolev

norm. We note that in bounded domains Ω the norms of the spacesWk,p(Ω) andW
k,p
∞ (Ω)

are equivalent. In the one-dimensional case with k = 0 similar spaces were used in [8, 9,
14]. This definition is equivalent to Definition 1.1.

We suppose that the boundary ∂Ω belongs to the Hölder space Ck+θ , 0 < θ < 1, and
that the Hölder norms of the corresponding functions in local coordinates are bounded

independently of the point of the boundary. Then we can define the space W
k−1/p,p
∞ (∂Ω)

of traces on the boundary ∂Ω of the domain Ω,

‖φ‖
W

k−1/p,p
∞ (∂Ω) = inf ‖v‖

W
k,p
∞ (Ω), (2.2)

where the infimum is taken with respect to all functions v ∈W
k,p
∞ (Ω) equal φ at the

boundary, and k > 1/p.

The spaceW
k,p
∞ (Ω) with k = 0 will be denoted by L

p
∞(Ω). We will use also the notations

E∞ =ΠN
j=1W

l+t j ,p
∞ (Ω),

F∞ =ΠN
i=1W

l−si,p∞ (Ω)×Πm
j=1W

l−σj−1/p,p
∞ (∂Ω).

(2.3)

We consider the operator L defined by (1.8) and denote l1 =max(0,σj + 1). We sup-
pose that the integer l in the definition of the spaces is such that l ≥ l1, and the boundary
∂Ω belongs to the class Cr+θ with r specified in Condition D below.

Theorem 2.1. Let u∈ΠN
j=1W

l1+t j ,p
∞ (Ω). Then for any l ≥ l1 we have u∈ E∞ and

‖u‖E∞ ≤ c
(
‖Lu‖F∞ +‖u‖Lp∞(Ω)

)
, (2.4)

where the constant c does not depend on u.
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Proof. Let ω(x) be an infinitely differentiable nonnegative function such that

ω(x)= 1, |x| ≤ 1
2

, ω(x)= 0, |x| ≥ 1. (2.5)

Denote ωy(x) = ω(x − y). Suppose u(x) is a function satisfying the conditions of the

theorem. Then ωyu ∈ ΠN
j=1W

l1+t j ,p
∞ (Ω). Since the support of this function is bounded,

we can use now a priori estimates of solutions [1]:

∥∥ωyu
∥∥
E ≤ c

(∥∥L(ωyu
)∥∥

F +
∥∥ωyu

∥∥
Lp(Ω)

)
, ∀y ∈ Rn, (2.6)

where the constant c does not depend on y. We now estimate the right-hand side of the
last inequality. We have

Ai
(
ωyu

)= ωyAiu+Ti, (2.7)

where

Ti =
N∑
k=1

∑
|α|≤αik

aαik
∑

β+γ≤α,|β|>0

cβγD
βωyD

γuk, (2.8)

and cβγ are some constants. If |τ| ≤ l− si, then

∥∥Dτ
(
ωyAiu

)∥∥
Lp(Ω) ≤M

∥∥Aiu∥∥Wl−si ,p∞ (Ω)
. (2.9)

For any ε > 0 we have the estimate

∥∥Ti∥∥Wl−si ,p(Ω) ≤ ε
N∑
k=1

∥∥uk∥∥Wl+tk ,p(Ω∩Qy) +Cε
N∑
k=1

∥∥uk∥∥Lp(Ω∩Qy)

≤ ε‖u‖E∞ +Cε‖u‖Lp∞(Ω),

(2.10)

where Qy is a unit ball with the center at y.
Thus

∥∥Ai(ωyu
)∥∥

Wl−si ,p(Ω) ≤M
∥∥Aiu∥∥Wl−si ,p∞ (Ω)

+ ε‖u‖E∞ +Cε‖u‖Lp∞(Ω). (2.11)

Consider next the boundary operators in the right-hand side of (2.6). We have

Bj
(
ωyu

)= ωyΦ j + Sj , (2.12)

where Φ j = Bju,

Sj =
N∑
k=1

∑
|β|≤βjk

b
β
jk

∑
α+γ≤β,|α|>0

λαγD
αωy D

γuk, (2.13)

and λαγ are some constants.
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There exists a function v ∈Wl−σj ,p
∞ (Ω) such that v =Φi on ∂Ω and

‖v‖
W

l−σ j ,p
∞ (Ω)

≤ 2
∥∥Φ j

∥∥
W

l−σ j−1/p,p
∞ (∂Ω)

. (2.14)

Since v ∈Wl−σj ,p
∞ (Ω), then ωyv ∈Wl−σj ,p(Ω) and

∥∥ωyv
∥∥
Wl−σ j ,p(Ω) ≤M‖v‖Wl−σ j ,p

∞ (Ω)
(2.15)

with a constant M independent of v. Since ωyv = ωyΦ j on ∂Ω, then

∥∥ωjΦ j

∥∥
Wl−σ j−1/p,p(∂Ω) ≤M1

∥∥Φ j

∥∥
W

l−σ j−1/p,p
∞ (∂Ω)

. (2.16)

Further,

∥∥Sj∥∥Wl−σ j−1/p,p(∂Ω) ≤
∥∥Sj∥∥Wl−σ j ,p(Ω) ≤ ε

N∑
k=1

∥∥uk∥∥Wl+tk ,p(Ω∩Qy) +Cε
N∑
k=1

∥∥uk∥∥Lp(Ω∩Qy)

≤ ε‖u‖E∞ +Cε‖u‖Lp∞(Ω).

(2.17)

Thus

∥∥Bj(ωyu
)∥∥

Wl−σ j−1/p,p(∂Ω) ≤M
∥∥Φ j

∥∥
W

l−σ j−1/p,p
∞ (∂Ω)

+ ε‖u‖E∞ +Cε‖u‖Lp∞(Ω). (2.18)

From (2.6), (2.11), and (2.18) we obtain the estimate

∥∥ωyu
∥∥
E ≤ c

(
M2‖Lu‖F∞ + κε‖u‖E∞ +Cε‖u‖Lp∞(Ω)

)
(2.19)

with some constants M2 and κ. Taking ε > 0 sufficiently small, we obtain (2.4). The theo-
rem is proved. �

3. Limiting problems

In this section, we define limiting domains and limiting operators. They determine limit-
ing problems. We will restrict ourselves to the definitions and to the result, which we give
without proofs, that will be used below. More detailed presentation including the proofs
can be found in [22].

3.1. Limiting domains. In this section, we define limiting domains for unbounded do-
mains in Rn, show their existence and study some of their properties. We consider an
unbounded domain Ω⊂ Rn, which satisfies the following condition.

Condition D. For each x0 ∈ ∂Ω there exists a neighborhood U(x0) such that:
(1) U(x0) contains a sphere with the radius δ and the center x0, where δ is indepen-

dent of x0,
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(2) there exists a homeomorphism ψ(x;x0) of the neighborhood U(x0) on the unit
sphere B = {y : |y| < 1} in Rn such that the images of Ω

⋂
U(x0) and ∂Ω∩U(x0)

coincide with B+ = {y : yn > 0, |y| < 1} and B0 = {y : yn = 0, |y| < 1}, respec-
tively,

(3) the function ψ(x;x0) and its inverse belong to the Hölder space Cr+θ , 0 < θ < 1.
Their ‖ · ‖r+θ-norms are bounded uniformly in x0.

For definiteness we suppose that δ < 1. We assume also that

r ≥max
(
l+ ti, l− si, l− σj + 1

)
, i= 1, . . . ,N , j = 1, . . . ,m. (3.1)

The first expression in the maximum is used for a priori estimates of solutions, the second
and the third will allow us to extend the coefficients of the operator (see Section 3.3).

To define convergence of domains we use the following Hausdorff metric space. Let M
and N denote two nonempty closed sets in Rn. Denote

σ(M,N)= sup
a∈M

ρ(a,N), σ(N ,M)= sup
b∈N

ρ(b,M), (3.2)

where ρ(a,N) denotes the distance from a point a to a set N , and let

ρ(M,N)=max
(
σ(M,N),σ(N ,M)

)
. (3.3)

We denote by Ξ a metric space of bounded closed nonempty sets in Rn with the dis-
tance given by (3.3). We say that a sequence of domains Ωm converges to a domain Ω in
Ξloc if

ρ
(
Ω̄m∩ B̄R,Ω̄∩ B̄R

)−→ 0, m−→∞ (3.4)

for any R > 0 and BR = {x : |x| < R}. Here the bar denotes the closure of domains.

Definition 3.1. Let Ω⊂ Rn be an unbounded domain, xm ∈Ω, |xm| →∞ as m→∞; χ(x)
be the characteristic function of Ω, and Ωm be a shifted domain defined by the character-
istic function χm(x)= χ(x+ xm). We say that Ω∗ is a limiting domain of the domain Ω if
Ωm→Ω∗ in Ξloc as m→∞.

We denote by Λ(Ω) the set of all limiting domains of the domain Ω (for all sequences
xm). We will show below that if Condition D is satisfied, then the limiting domains exist
and also satisfy this condition.

Theorem 3.2. If a domain Ω satisfies Condition D, then there exists a function f (x) defined
in Rn such that:

(1) f (x)∈ Ck+θ(Rn), k ≥ r,
(2) f (x) > 0 if and only if x ∈Ω,
(3) |∇ f (x)| ≥ 1 for x ∈ ∂Ω,
(4) min(d(x),1)≤ | f (x)|, where d(x) is the distance from x to ∂Ω.

Let Ω be an unbounded domain satisfying Condition D and f (x) be a function satis-
fying conditions of Theorem 3.2. Consider a sequence xm ∈Ω, |xm| →∞. Denote

fm(x)= f
(
x+ xm

)
. (3.5)
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Theorem 3.3. Let fm(x)→ f∗(x) in Ckloc(Rn), where k is not greater than that in Theorem
3.2. Denote

Ω∗ =
{
x : x ∈ Rn, f∗(x) > 0

}
. (3.6)

Then
(1) f∗(x)∈ Ck+θ(Rn),
(2) Ω∗ is an nonempty open set.

If Ω∗ �= Rn, then
(3) |∇ f∗(x)|∂Ω∗ ≥ 1,
(4) min(d∗(x),1)≤ | f∗(x)|, where d∗(x) is the distance from x to ∂Ω∗.

Theorem 3.4. If fm(x)→ f∗(x) in Ckloc as m→∞, then ∂Ωm→ ∂Ω∗ in Ξloc. Moreover, the
limiting domain Ω∗ either satisfies Condition D or Ω∗ = Rn.

Theorem 3.5. Let Ω be an unbounded domain satisfying Condition D, xm ∈Ω, |xm| →∞,
and f (x) be the function constructed in Theorem 3.2.

Then there exists a subsequence xmi and a function f∗(x) such that

fmi(x)≡ f
(
x+ xmi

)−→ f∗(x) (3.7)

in Ckloc(Rn), and the domain Ω∗ = {x : f∗(x) > 0} either satisfies Condition D or Ω∗ = Rn.
Moreover, Ω̄mi → Ω̄∗ in Ξloc, where Ωmi = {x : fmi(x) > 0}.

3.2. Convergence. In the previous section we have introduced limiting domains. Here
we define the corresponding limiting problems.

Let Ω be a domain satisfying Condition D and χ(x) be its characteristic function. Con-
sider a sequence xm ∈Ω, |xm| → ∞ and the shifted domains Ωm defined by the shifted
characteristic functions χm(x)= χ(x+ xm). We suppose that the sequence of domains Ωm

converge in Ξloc to some limiting domain Ω∗. In this section we suppose that 0≤ k ≤ r.
Definition 3.6. Let um ∈W

k,p
∞ (Ωm), m = 1,2, . . . . We say that um converges to a limit-

ing function u∗ ∈W
k,p
∞ (Ω∗) in W

k,p
loc (Ωm → Ω∗) if there exists an extension vm(x) ∈

W
k,p
∞ (Rn) of um(x), m = 1,2, . . . and an extension v∗(x) ∈W

k,p
∞ (Rn) of u∗(x) such that

vm→ v∗ in W
k,p
loc (Rn).

Definition 3.7. Let um ∈W
k−1/p,p
∞ (∂Ωm), k > 1/p, m= 1,2, . . . . We say that um converges

to a limiting function u∗ ∈W
k−1/p,p
∞ (∂Ω∗) in W

k−1/p,p
loc (∂Ωm → ∂Ω∗) if there exists an

extension vm(x)∈Wk,p
∞ (Rn) of um(x), m= 1,2, . . . and an extension v∗(x)∈Wk,p

∞ (Rn) of
u∗(x) such that vm→ v∗ in W

k,p
loc (Rn).

Definition 3.8. Let um(x) ∈ Ck(Ωm), m = 1,2, . . . . We say that um(x) converges to a lim-
iting function u∗(x) ∈ Ck(Ω∗) in Ckloc(Ωm → Ω∗) if there exists an extension vm(x) ∈
Ck(Rn) of um(x), m= 1,2, . . . and an extension v∗(x)∈ Ck(Rn) of u∗(x) such that

vm −→ v∗ in Ckloc

(
Rn
)
. (3.8)
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Definition 3.9. Let um(x)∈ Ck(∂Ωm), m= 1,2, . . . . We say that um(x) converges to a lim-
iting function u∗(x)∈ Ck(∂Ω∗) in Ckloc(∂Ωm→ ∂Ω∗) if there exists an extension vm(x)∈
Ck(Rn) of um(x), m= 1,2, . . . and an extension v∗(x)∈ Ck(Rn) of u∗(x) such that

vm −→ v∗ in Ckloc

(
Rn
)
. (3.9)

Theorem 3.10. The limiting function u∗(x) in Definitions 3.6–3.9 does not depend on the
choice of extensions vm(x) and v∗(x).

Theorem 3.11. Suppose that 0 < k ≤ r− 1. Let

um ∈Wk+1,p
∞

(
Ωm

)
,

∥∥um∥∥Wk+1,p
∞ (Ωm) ≤M, (3.10)

where the constant M does not depend on m. Then there exists a function u∗ ∈Wk+1,p
∞ (Ω∗)

and a subsequence umi such that umi → u∗ in W
k,p
loc (Ωm→Ω∗).

Theorem 3.12. Suppose that 0 < k ≤ r− 1. Let um ∈Wk+1−1/p,p
∞ (∂Ωm),

∥∥um∥∥Wk+1−1/p,p
∞ (∂Ωm) ≤M, (3.11)

where the constant M does not depend on m. Then there exists a function

u∗ ∈Wk+1−1/p,p
∞

(
∂Ω∗

)
(3.12)

and a subsequence umi such that

umi −→ u∗ in W
k+1−ε−1/p,p
loc

(
∂Ωm −→ ∂Ω∗

)
, (3.13)

where 0 < ε < k+ 1− 1/p.

Theorem 3.13. Let um ∈ Ck+θ(Ωm), ‖um‖Ck+θ ≤M, where the constant M is independent
ofm. Then there exists a function u∗ ∈ Ck+θ(Ω∗) and a subsequence umk such that umk → u∗
in Ckloc(Ωmk →Ω∗).

Let um ∈ Ck+θ(∂Ωm), ‖um‖Ck+θ ≤M. Then there exists a function u∗ ∈ Ck+θ(∂Ω∗) and
a subsequence umk such that umk → u∗ in Ckloc(∂Ωmk → ∂Ω∗).

3.3. Limiting operators. Suppose that we are given a sequence {xν}, ν = 1,2, . . ., xν ∈
Ω, |xν| → ∞. Consider the shifted domains Ων with the characteristic functions χν(x) =
χ(x+ xν) where χ(x) is the characteristic function of Ω, and the shifted coefficients of the
operators Ai and Bj :

aαik,ν(x)= aαik
(
x+ xν

)
, b

β
jk,ν(x)= bβjk

(
x+ xν

)
. (3.14)

We suppose that

aαik(x)∈ Cl−si+θ(Ω̄), b
β
jk(x)∈ Cl−σj+θ(∂Ω), (3.15)
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where 0 < θ < 1, and that these coefficients can be extended to Rn:

aαik(x)∈ Cl−si+θ(Rn), b
β
jk(x)∈ Cl−σj+θ(Rn). (3.16)

Therefore

∥∥aαik,ν(x)
∥∥
Cl−si+θ(Rn) ≤M,

∥∥∥bβjk,ν(x)
∥∥∥
Cl−σ j+θ(Rn)

≤M (3.17)

with some constant M independent of ν. It follows from Theorem 3.5 that there exists
a subsequence of the sequence Ων, for which we keep the same notation, such that it
converges to a limiting domain Ω∗. From (3.17) it follows that this subsequence can be
chosen such that

aαik,ν −→ âαik in Cl−si
(
Rn
)

locally, b
β
jk,ν −→ b̂

β
jk in Cl−σj

(
Rn
)

locally, (3.18)

where âαik and b̂
β
jk are limiting coefficients,

âαik ∈ Cl−si+θ
(
Rn
)
, b̂

β
jk ∈ Cl−σj+θ

(
Rn
)
. (3.19)

We have constructed limiting operators:

Âiu=
N∑
k=1

∑
|α|≤αik

âαik(x)Dαuk, i= 1, . . . ,N , x ∈Ω∗,

B̂ ju=
N∑
k=1

∑
|β|≤βjk

b̂
β
jk(x)Dβuk, i= 1, . . . ,m, x ∈ ∂Ω∗,

L̂= (Â1, . . . ,ÂN , B̂1, . . . , B̂m
)
.

(3.20)

We consider them as acting from E∞(Ω∗) to F∞(Ω∗).

4. A priori estimates with condition ns

In Section 5, we will prove that Condition NS (Section 1.4) is necessary and sufficient in
order for the operator L to be normal solvable with a finite dimensional kernel. In this
section we will use it to obtain a priori estimates of solutions stronger than those given
by Theorem 2.1. Estimates of this type are first obtained in [12, 13] for elliptic operators
in the whole Rn.

Theorem 4.1. Let Condition NS be satisfied. Then there exist numbersM0 and R0 such that
the following estimate holds:

‖u‖E∞ ≤M0

(
‖Lu‖F∞ +‖u‖Lp(ΩR0 )

)
, ∀u∈ E∞. (4.1)

Here ΩR0 =Ω∩{|x| ≤ R0}.
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Proof. Suppose that the assertion of the theorem is not right. Let Mk →∞ and Rk →∞ be
given sequences. Then there exists uk ∈ E∞ such that

∥∥uk∥∥E∞ >Mk

(∥∥Luk∥∥F∞ +
∥∥uk∥∥Lp(ΩRk

)

)
. (4.2)

We can suppose that

∥∥uk∥∥E∞ = 1. (4.3)

Then

∥∥Luk∥∥F∞ +
∥∥uk∥∥Lp(ΩRk

) <
1
Mk

−→ 0 as k −→∞. (4.4)

From Theorem 2.1 we obtain

∥∥Luk∥∥F∞ +
∥∥uk∥∥Lp∞(Ω) ≥

1
c
. (4.5)

It follows from (4.4) that ‖Luk‖F∞ → 0. Hence

∥∥uk∥∥Lp∞(Ω) >
1
2c

for k ≥ k0 (4.6)

with some k0. Since

∥∥uk∥∥Lp∞(Ω) = sup
y∈Ω

∥∥uk∥∥Lp(Qy∩Ω), (4.7)

then it follows from (4.6) that there exists yk ∈Ω such that

∥∥uk∥∥Lp(Qyk
∩Ω) >

1
2c
. (4.8)

From (4.4)

∥∥uk∥∥Lp(ΩRk
) −→ 0. (4.9)

This convergence and (4.8) imply that |yk| →∞.
Denote

Luk = fk. (4.10)

From (4.4) we get

∥∥ fk∥∥F∞ −→ 0 as k −→∞. (4.11)

Denote next x = y + yk,

wk(y)= uk
(
y + yk

)
. (4.12)
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We rewrite (4.10) in the detailed form

N∑
h=1

∑
|α|≤αih

aαih(x)Dαuhk = fik, i= 1, . . . ,N , x ∈Ω,

N∑
h=1

∑
|β|≤βjh

b
β
jh(x)Dβuhk = f bj k, i= 1, . . . ,m, x ∈ ∂Ω,

(4.13)

where

fk =
(
f1k, . . . , fN k, f b1 k, . . . , f bmk

)
, uk =

(
u1k, . . . ,uNk

)
. (4.14)

Denoting

aih
α
k(y)= aαih

(
y + yk

)
, bjh

β
k(y)= bβjh

(
y + yk

)
, (4.15)

we obtain from (4.13)

N∑
h=1

∑
|α|≤αih

aih
α
k(y)Dαwhk(y)= fik

(
y + yk

)
, i= 1, . . . ,N , x ∈Ωk, (4.16)

N∑
h=1

∑
|β|≤βjh

b jh
β
k(y)Dβwhk(y)= f bj k

(
y + yk

)
, i= 1, . . . ,m, x ∈ ∂Ωk, (4.17)

Ωk is the shifted domain. From (4.3) we have

∥∥wk

∥∥
E∞(Ωk) = 1. (4.18)

We have wk = (w1k, . . . ,wNk), and (4.18) can be written in the form

N∑
i=1

∥∥wik

∥∥
W

l+ti ,p∞ (Ωk)
= 1. (4.19)

We suppose that wik are extended to Rn such that their W
l+ti,p∞ (Rn)-norms are uniformly

bounded. Passing to a subsequence and retaining the same notation, we can suppose that

wik −→wi0 in Wl+ti−ε,p(Rn) locally, (ε > 0), (4.20)

wik −→wi0 in Wl+ti,p
(
Rn
)

locally weakly (4.21)

for some wi0 as k→∞, and

wi0 ∈Wl+ti,p∞
(
Rn
)
, i= 1, . . . ,N. (4.22)
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Denote w0 = (w10, . . . ,wN 0). We prove that

L̂w0 = 0 (4.23)

for a limiting operator L̂. To do this we pass to the limit in (4.16), (4.17) by a subsequence
of k. We choose this subsequence such that Ωk converges to a limiting domain, Ωk →Ω∗,
and keep for it the same notation.

We begin with (4.16). For any x0 ∈Ω∗ we take a neighborhood U in such a way that
U ⊂Ωk for k sufficiently large. For any φ ∈D with the support in U we get from (4.16):

∫
U

N∑
h=1

∑
|α|≤αih

aih
α
k(y)Dαwhk(y)φ(y)dy =

∫
U
fik
(
y + yk

)
φ(y)dy. (4.24)

We can suppose, passing to a subsequence, that

aαih,k(y)−→ âαih(y) in Cl−si
(
Rn
)

locally (4.25)

(see (3.17)), where âαih(y) are the coefficients of the limiting operator. It follows from
(4.21) that Dαwhk (|α| ≤ αih) converges locally weakly in Wl−si,p to Dαwh0 as k →∞.
Hence we can pass to the limit in (4.24).

From (4.11) it follows that

∥∥ fik( ·+yk
)∥∥

W
l−si ,p∞ (Ωk)

−→ 0 as k −→∞. (4.26)

Hence the right-hand side in (4.24) tends to zero. Passing to the limit in this equation, we
obtain

N∑
h=1

∑
|α|≤αih

âαih(y)Dαwh0(y)= 0, y ∈Ω∗. (4.27)

Consider now (4.17). From (4.20) it follows that Dβwhk (|β| ≤ βih) tends to Dβwh0 in
Wl−σj−ε,p(Rn) locally. Hence (3.17) implies that

N∑
h=1

∑
|β|≤βjh

b jh
β
k(y)Dβwhk(y)−→

N∑
h=1

∑
|β|≤βjh

b̂
β
jh(y)Dβwh0(y) (4.28)

in W
l−σj−ε,p
loc (Rn). Therefore this convergence takes place also in W

l−σj−ε,p
loc (Ω∗) and, con-

sequently, in W
l−σj−ε−1/p,p
loc (∂Ω∗). In other words, we have proved that the convergence

(4.28) is in W
l−σj−ε−1/p,p
loc (∂Ωk → ∂Ω∗) (see Definition 3.7).
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Consider next the right-hand side in (4.17). According to (4.11) we have

∥∥∥ f bjk( ·+yk
)∥∥∥

W
l−σ j−1/p,p
∞ (∂Ωk)

−→ 0 as k→∞. (4.29)

We can extend f bjk(y + yk) to the whole Rn in such a way that

f bjk
( ·+yk

)−→ 0 in W
l−σj ,p
∞

(
Rn
)
. (4.30)

Therefore

f bjk
( ·+yk

)−→ 0 in W
l−σj−1/p,p
loc

(
∂Ωk −→ ∂Ω∗

)
. (4.31)

From this and convergence (4.28) it follows

N∑
h=1

∑
|β|≤βjh

b̂
β
jh(y)Dβwh0(y)= 0, y ∈ ∂Ω∗. (4.32)

From (4.22) it follows that the left-hand side of this equality belongs toW
l−σj−1/p,p
∞ (∂Ω∗).

Hence it can be regarded as an equality in W
l−σj−1/p,p
∞ (∂Ω∗).

From (4.27) and (4.32) we conclude that w0 is a solution of the limiting problem
(4.23). We prove now that w0 �= 0. From (4.8) and (4.12) we have

∥∥wk

∥∥
Lp(Ωk∩Q0) >

1
2c

, (4.33)

where Q0 is the unit ball with the center at the origin. We prove that

∥∥w0
∥∥
Lp(Ω∗∩Q0) ≥

1
2c
. (4.34)

Indeed, from (4.20),

wk −→w0 in L
p
loc

(
Rn
)
. (4.35)

Denote Sk =Ωk ∩Q0, S∗ =Ω∗ ∩Q0. Then

∣∣∣∥∥wk

∥∥
Lp(Sk)−

∥∥w0
∥∥
Lp(S∗)

∣∣∣
≤
∣∣∣∥∥wk

∥∥
Lp(Sk)−

∥∥w0
∥∥
Lp(Sk)

∣∣∣+
∣∣∣∥∥w0

∥∥
Lp(Sk)−

∥∥w0
∥∥
Lp(S∗)

∣∣∣
≡Ak +Bk.

(4.36)
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Further

Ak ≤
∥∥wk −w0

∥∥
Lp(Sk) =

N∑
i=1

∥∥wik −wi0

∥∥
Lp(Sk)

=
N∑
i=1

(∫
Sk

∣∣wik −wi0

∣∣pdx)1/p

−→ 0 as k −→∞,

Bk ≤
N∑
i=1

∣∣∣∥∥wi0

∥∥
Lp(Sk)−

∥∥wi0

∥∥
Lp(S∗)

∣∣∣

≤M
N∑
i=1

(∫
Sk�S∗

∣∣wi0
∣∣pdx)1/p

−→ 0 as k −→∞

(4.37)

since the measure of the symmetric difference Sk�S∗ converges to 0.
We have proved that

∥∥wk

∥∥
Lp(Ωk∩Q0) −→

∥∥w0
∥∥
Lp(Ω∗∩Q0) (4.38)

and (4.34) follows from (4.33).
Thus there exists a limiting problem with a nonzero solution. This contradicts Condi-

tion NS. The theorem is proved. �

Denote

ωµ = eµ
√

1+|x|2 , (4.39)

where µ is a real number.

Theorem 4.2. Let Condition NS be satisfied. Then there exist numbers M0 > 0, R0 > 0 and
µ0 > 0 such that for all µ, 0 < µ < µ0 the following estimate holds:

∥∥ωµu∥∥E∞ ≤M0

(∥∥ωµLu∥∥F∞ +
∥∥ωµu∥∥Lp(ΩR0 )

)
, ∀u∈ E∞. (4.40)

More complete proof of this theorem is given in [24].

Proof. According to (4.1) we have

∥∥ωµu∥∥E∞ ≤M(∥∥L(ωµu)∥∥F∞ +
∥∥ωµu∥∥Lp(ΩR0 )

)
. (4.41)

By (1.8), L= (A1, . . . ,AN ,B1, . . . ,Bm). Consider first the operator

Ai
(
ωµu

)= N∑
k=1

∑
|α|≤αik

aαik(x)Dα
(
ωµuk

)
, i= 1, . . . ,N. (4.42)

We have

Ai
(
ωµu

)= ωµAi(u) +Φi, (4.43)
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where

Φi =
N∑
k=1

∑
|α|≤αik

∑
β+γ=α,|β|>0

aαik(x)cβγDβωµD
γuk, (4.44)

and cβγ are some constants. Direct calculations give the following estimate

∥∥Φi

∥∥
W

l−si ,p∞
≤M1µ

∥∥ωµu∥∥E∞(Ω). (4.45)

For the boundary operators we have

Bj
(
ωµu

)= N∑
k=1

∑
|β|≤βjk

b
β
jk(x)Dβ

(
ωµuk

)
. (4.46)

As above we get

Bj
(
ωµu

)= ωµBj(u) +Ψ j ,∥∥Ψ j

∥∥
W

l−σ j−1/p,p
∞

≤M2µ
∥∥ωµu∥∥E∞(Ω).

(4.47)

From (4.43), (4.45), and (4.47) we obtain

∥∥L(ωµu)∥∥F∞ ≤ ∥∥ωµLu∥∥F∞ +Mµ
∥∥ωµu∥∥E∞ . (4.48)

The assertion of the theorem follows from this estimate and (4.41). The theorem is
proved. �

Corollary 4.3. If 0 < µ < µ0, u ∈ E∞, and ωµLu ∈ F∞, then ωµu ∈ E∞. In particular, if
u∈ E∞ and Lu= 0, then ωµu∈ E∞.

5. Normal solvability

We recall that an operator L acting in Banach spaces is normally solvable if its range is
closed. It is called n-normally solvable if it is normally solvable and has a finite dimen-
sional kernel (see, e.g., [7])

Theorem 5.1. Let Condition NS be satisfied. Then the elliptic operator L : E∞(Ω)→ F∞(Ω)
is normally solvable and has a finite dimensional kernel.

Proof. It is known that a linear operator has a finite dimensional kernel and a closed range
if and only if its restriction to any bounded closed set is proper.

Let Lun = fn, un ∈ E∞(Ω), fn ∈ F∞(Ω). Suppose that ‖un‖E∞ ≤M and fn is convergent.
It is sufficient to prove that the sequence un is compact. This follows from Theorem 4.1.
The theorem is proved. �

In the next theorem we prove that Condition NS is necessary for the operator L to
be normally solvable with a finite dimensional kernel. To simplify the construction we
impose a stronger regularity condition on the boundary of the domain, ∂Ω∈ Cr+1+θ . We
will use the following lemma.
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Lemma 5.2. Let Ωk and Ω∗ be a shifted and a limiting domains, respectively. Then for any
N there exists k0 such that for k > k0 there exists a diffeomorphism

hk(x) : Ω̄k

⋂
BN −→ Ω̄∗

⋂
BN (5.1)

satisfying the condition

∥∥hk(x)− x∥∥Cl+θ0 (Ω̄k
⋂
BN ) −→ 0 (5.2)

as k→∞. Here 0 < θ0 < θ.

The proof is given in [22]

Theorem 5.3. Suppose that a limiting problem for the operator L has a nonzero solution.
Then the operator L is not n-normally solvable.

Explanation. To prove the theorem we construct a sequence un such that it is not compact
in E∞(Ω) but Lun converges to zero in F∞(Ω). The idea of the construction is rather
simple but its technical realization is rather long. This is why we preface the proof by a
short description of the construction.

Let us consider a ball BR(xk) of a fixed radius R with the center at xk. From the defini-
tion of limiting problems it follows that we can choose the sequence xk in such a way that
inside BR(xk) the domain Ω is close to the limiting domain, and the coefficients of the
operator are close to the coefficients of the limiting operator. Moreover, the domain and
the coefficients converge to their limits as k→∞. Thus we move the ball BR(xk) to infinity
and superpose it on the domain Ω in the places where the operator and the domain are
close to their limits and converge to them.

If u0 is a nonzero solution of the limiting problem, then we shift it to the ball BR(xk).
Denote the shifted function by uk. Then inside BR(xk), Luk tends to zero as k→∞. The
sequence uk is not compact.

If u0 had a bounded support, the construction would be finished. Since it is not nec-
essarily the case, we multiply u0 by an infinitely differentiable function φ with a bounded
support. Of course, this product is not an exact solution of the limiting problem any
more. However, all terms of the difference L̂(φu0)−φL̂u0 contain derivatives of φ. If the
support of φ is sufficiently large, then the derivatives of φ can be done sufficiently small.
Hence when we move the ball BR(xk) to infinity, we should also increase its radius and
also increase supports of functions φk.

Proof. Suppose that there exists a limiting operator L̂ such that

L̂u0 = 0, u0 ∈ E∞(Ω), u0 �= 0. (5.3)

Consider an infinitely differentiable function ϕ(x), x ∈ Rn such that 0 ≤ ϕ(x) ≤ 1,
ϕ(x) = 1 for |x| < 1, ϕ(x) = 0 for |x| > 2. If {xk} is the sequence for which the limiting
operator L̂ is defined, denote

ϕk(x)= ϕ
(
x

rk

)
, (5.4)



A. Volpert and V. Volpert 751

where rk →∞ and rk ≤ |xk|/3. Some other conditions on the sequence rk will be formu-
lated below.

Let Vj = {y : y ∈ Rn, |y| < j}, j = 1,2, . . . . Denote by nj a number such that for k ≥ nj
the diffeomorphism hk defined in Lemma 5.2 can be constructed in Ωk

⋂
Vj+1 and

∥∥hk(y)− y
∥∥
Cl+θ0 (Ωk

⋂
Vj+1) < δ, (5.5)

where δ > 0 is taken so small that |h′k − I| < 1/2, h′k is the Jacobian matrix and I is the
identity matrix.

For arbitrary kj ≥ nj we take rkj =min( j/2,|xkj |/3). Let

vkj (y)= ϕkj (y)u0
(
hkj (y)

)
for y ∈Ωkj

⋂
Vj+1,

vkj (y)= 0 for y ∈Ωkj , |y| ≥ j + 1.
(5.6)

Denote

ukj (x)= vkj
(
x− xkj

)
, x ∈Ω. (5.7)

It is easy to see that ukj ∈ E∞(Ω) and
∥∥ukj∥∥E∞(Ω) ≤M, (5.8)

where M does not depend on kj . Indeed, obviously

ϕkj (y)= 0 (5.9)

for y outside Vj . Therefore to prove (5.8) it is sufficient to show that
∥∥vkj∥∥E∞(Ωk j

⋂
Vj+1) ≤M1, (5.10)

or
∥∥u0

(
hkj (y)

)∥∥
E∞(Ωk j

⋂
Vj+1) ≤M2, (5.11)

where M1 and M2 do not depend on kj . This follows from (5.5) and the fact that u0 ∈
E∞(Ω∗).

We prove now that the choice of kj in (5.7) can be specified in such a way that
(i) Lukj → 0 in F∞(Ω) as kj →∞,

(ii) the sequence {ukj} is not compact in E∞(Ω).
The assertion of the theorem will follow from this.

(i) We consider first the operatorsAi, i=1, . . . ,N , and then the operator Bj , j = 1, . . . ,m.
For any k = kj ≥ nj we have

Aiuk = A1
i uk +A2

i uk, (5.12)

where

A1
i uk(x)= ϕk

(
x− xk

) N∑
r=1

∑
|α|≤αir

aαir(x)Dαu0r
(
hk
(
x− xk

))
, x ∈Ω, (5.13)
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and A2
i contains derivatives of ϕk. Obviously

∥∥A2
i uk

∥∥
W

l−si ,p∞ (Ω)
−→ 0 (5.14)

as k→∞.
Denote y = x− xk. From (5.13) we obtain

A1
i uk

(
y + xk

)= ϕk(y)Tik(y), y ∈Ωk, (5.15)

where

Tik(y)=
N∑
r=1

∑
|α|≤αir

air
α
k(y)Dαu0r

(
hk(y)

)
, y ∈Ωk, (5.16)

air
α
k(y)= aαir(y + xk). We prove that for any fixed j

∥∥Tik∥∥Wl−si ,p∞ (Ωk
⋂
Vj+1)

−→ 0 (5.17)

as k→∞. Indeed, by the definition of u0 the following equality holds:

N∑
r=1

∑
|α|≤αir

âαir(x)Dαu0r(x)= 0, x ∈Ω∗. (5.18)

Here âαir(x) are the limiting coefficients. Hence

Tik(y)=
N∑
r=1

∑
|α|≤αir

[
Sir

α
k(y) +Pir

α
k(y)

]
, (5.19)

where

Sir
α
k(y)= airαk(y)

[
Dα
yu0r

(
hk(y)

)−Dα
xu0r

(
hk(y)

)]
, (5.20)

Pir
α
k(y)=

[
air

α
k(y)− âαir

(
hk(y)

)]
Dα
xu0r

(
hk(y)

)
. (5.21)

The first factor in the right-hand side of (5.20) is bounded in the norm Cl−si(Ωk) since

∥∥airαk∥∥Cl−si (Ωk) =
∥∥aαir∥∥Cl−si (Ω). (5.22)

From Lemma 5.2 it follows that the second factor tends to 0 in the normW
l−si,p∞ (Ωk

⋂
Vj+1)

as k→∞. Consequently,

∥∥Sirαk∥∥Wl−si ,p∞ (Ωk
⋂
Vj+1)

−→ 0 as k −→∞. (5.23)
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Consider (5.21). Using (5.5) we easily prove that

∥∥Dα
xu0

(
hk(y)

)∥∥
W

l−si ,p∞ (Ωk
⋂
Vj+1)

≤M3 (5.24)

with M3 independent of k.
To prove (5.17) it remains to show that

∥∥airαk(·)− âαir
(
hk(·))∥∥Cl−si (Ωk

⋂
Vj+1) −→ 0 as k→∞. (5.25)

We recall that it is supposed that airαk(y) and âαir(y) are defined for y ∈ Rn,

∥∥airαk∥∥Cl−si+θ(Rn) ≤M (5.26)

with M independent of k, âαir(y)∈ Cl−si+θ(Rn) and

air
α
k(y)−→ âαir(y) (5.27)

in Cl−siloc (Rn) as k→∞. We have

∥∥airαk(y)− âαir
(
hk(y)

)∥∥
Cl−si (Ωk

⋂
Vj+1)

≤ ∥∥airαk(y)− âαir(y)
∥∥
Cl−si (Ωk

⋂
Vj+1) +

∥∥âαir(y)− âαir
(
hk(y)

)∥∥
Cl−si (Ωk

⋂
Vj+1).

(5.28)

The first term on the right tends to zero as k→∞ according to (5.27). The second term
tends to zero by the properties of the function âαir mentioned above, by Lemma 5.2 and
by inequality (5.5). Thus (5.17) is proved.

Now we specify the choice of kj in (5.7). According to (5.17) for any j we can take pj
in such a way that

∥∥Tik∥∥Wl−si ,p∞ (Ωk
⋂
Vj+1)

<
1
j

(5.29)

for k ≥ pj . We put kj =max(nj , pj). Then obviously

∥∥ϕkjTikj∥∥Wl−si ,p∞ (Ωk j )
−→ 0 as k −→∞. (5.30)

Consider now the boundary operators Bi. According to our assumptions, the coeffi-

cients b
β
ih(x) of the operators Bi (i = 1, . . . ,m) are defined in the domain Ω and belong

to the space Cl−σi+θ(Ω). By the same arguments, which we used for the operator Ai, we
prove that

∥∥Biukj∥∥Wl−σi−1/p,p
∞ (∂Ω)

−→ 0 as kj −→∞. (5.31)

We repeat the same construction as above and obtain the following operator:

Tik(y)=
N∑
h=1

∑
|β|≤βih

bih
β
k(y)Dβu0h

(
hk(y)

)
, y ∈Ωk, (5.32)
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where bih
β
k(y)= bβih(y + xk). We prove that

∥∥Tik∥∥Wl−σi−1/p,p
∞ (∂Ωk

⋂
Vj+1)

−→ 0. (5.33)

Indeed, denote

gi(x)=
N∑
h=1

∑
|β|≤βih

b̂ihβ(y)Dβu0h(x), x ∈Ω∗. (5.34)

This expression equals 0 only at the boundary ∂Ω∗. Therefore instead of what is written
above for the operator Ai, we have now

Tik(y)=Qik(y) + gi
(
hk(y)

)
, (5.35)

where

Qik(y)=
N∑
h=1

∑
|β|≤βih

[
Sih

β
k(y) +Pih

β
k(y)

]
. (5.36)

Here S and P are the same as for the operator A but the coefficients a are replaced by b.
Exactly as we have done for the operator A we prove that

∥∥Qk

∥∥
W

l−σi ,p∞ (Ωk
⋂
Vj+1)

−→ 0 as k −→∞. (5.37)

It follows that

∥∥Qk

∥∥
W

l−σi−1/p,p
∞ (∂Ωk

⋂
Vj+1)

−→ 0 as k −→∞. (5.38)

Since for y ∈ ∂Ωk we have hk(y) ∈ ∂Ω∗, we have gi(hk(y)) = 0 for y ∈ ∂Ωk. From this,
(5.35) and (5.38) we get (5.33). Thus the assertion (i) is proved.

(ii) We prove now that sequence (5.7) does not have a convergent subsequence. Obvi-
ously ukj (x)= 0 for |x| < rkj and, consequently,

∫
Ω
ukj (x)ω(x)dx −→ 0 (5.39)

as kj →∞ for any continuous ω(x) with a compact support.
For any subsequence si of kj there exists N such that

∫
Ω

∣∣usi(x)
∣∣pdx ≥ ρ (5.40)
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for si > N and some ρ > 0. Indeed, let y = x− xsi . Then

Ti ≡
∫
Ω

∣∣usi(x)
∣∣pdx =

∫
Ωsi

∣∣vsi(y)
∣∣pdy

=
∫
Ωsi

⋂
Vj+1

∣∣ϕsi(y)u0
(
hsi(y)

)∣∣pdy
≥
∫
Ωsi

⋂
Vrsi

∣∣u0
(
hsi(y)

)∣∣pdy.
(5.41)

We do the change of variables y = h−1
si (x) in the last integral. Then

Ti ≥
∫
Ω∗

⋂
Wsi

∣∣u0(x)
∣∣p∣∣∣∣dh

−1
si (x)

dx

∣∣∣∣dx, (5.42)

where Wsi = hsi(Vrsi
).

Since ‖u0‖Lp(Ω∗) �= 0, there exists a ball Bl = {x : |x| < l} and a number ρ0 > 0 such that
∫
Ω∗

⋂
Bl

∣∣u0(x)
∣∣pdx ≥ ρ0. (5.43)

Increasing N , if necessary, we can suppose that Bl ⊂Wsi and |dh−1
si (x)/dx| ≥ ε for x ∈ Bl

and some ε > 0. The last inequality follows from the fact that according to (5.5) the deriva-
tives of hsi(y) are uniformly bounded. By (5.43) we get Ti ≥ ερ0 and (5.40) is proved.

If (5.7) has a convergent subsequence: usi → u∗ in E(Ω), then this convergence is also
in Lp(Ω). From (5.39) it follows that u∗ = 0 which contradicts (5.40). Thus the sequence
(5.7) is not compact in E(Ω). The theorem is proved. �
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51 (1928), 31–81 (French).

[7] S. G. Kreı̆n, Linear Differential Equations in Banach Space, Translations of Mathematical Mono-
graphs, vol. 29, American Mathematical Society, Rhode Island, 1971, translated from the
Russian by J. M. Danskin.

[8] B. M. Levitan, Almost Periodic Functions, Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow, 1953.
[9] B. M. Levitan and V. V. Zhikov, Almost Periodic Functions and Differential Equations, Cambridge

University Press, New York, 1982, translated from the Russian by L. W. Longdon.



756 Normal solvability of general linear elliptic problems
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