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The exact controllability of a semilinear wave equation in a bounded open domain of Rn,
with controls on a part of the boundary and in the interior, is shown. Feedback laws are
established.

1. Introduction

The purpose of this paper is to prove the existence of the exact controllability of a semi-
linear wave equation with both interior and boundary controls.

Let Ω be a bounded open subset of Rn with a smooth boundary, let f (y) be an accre-
tive mapping of L2(0,T ;H−1(Ω)) into L2(0,T ;H1

0 (Ω)) with respect to a duality mapping
J ,D( f ) = L2(0,T ;L2(Ω)) and having at most a linear growth in y. Consider the initial
boundary value problem

y′′ −∆y + f (y)= uχω in Ω× (0,T),

y(x, t)= 0 on Γ0× (0,T), y(x, t)= v(u) on Γ1× (0,T),

y(x,0)= α0, y′(x,0)= α1 in Ω,

(1.1)

with

Γ0

⋃
Γ1 = ∂Ω, Γ0

⋂
Γ1 =∅, Γ1 �= ∅. (1.2)

The characteristic function of the subset ω of Ω is χω and the control function u is in
a closed, bounded, convex subset � of L2(0,T ;L2(Ω)). Given T > T0 and

{α0,α1}; {β0,β1} in L2(Ω)×H−1(Ω), (1.3)

the aim of the paper is to prove the existence of an optimal {ũ,v(ũ)}∈�×L2(0,T ;L2(Γ1))
such that the solution ỹ of (1.1) satisfies

y(x,T)= β0, y′(x,T)= β1 in Ω. (1.4)
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The exact boundary controllability of the wave equation, using the Hilbert uniqueness
method of Lions [3, 4], has been extensively investigated, both theoretically and numeri-
cally. For the semilinear wave equation, the local controllability was established by Russell
[5] and others, using the implicit function theorem. More recently, Zuazua in [8, 9] in-
troduced a variant of the Hilbert uniqueness method and treated the exact boundary
controllability of the semilinear wave equation

(i) in the space L2(Ω)×H−1(Ω) for asymptotically linear mappings f in W1,∞
loc (R),

(ii) in the space
⋃
γ>0H

γ
0 (Ω)×Hγ−1(Ω) for mappings f with f ′ in L∞(R). The pair

{Γ0,T} is assumed to have the unique continuation property for the wave equa-
tion with zero potential.

In order to handle the nonlinear term, some compactness is needed and thus the in-
troduction in [9] of a smaller space for the exact controllability, where delicate estimates
based on interpolation are used. A different approach is taken in this paper, it is based on
the theory of accretive operators of Browder [1], Kato [2], and others. By assuming that
f is accretive in the appropriate spaces, the passage to the limit can be obtained and the
target space is still the largest one, namely, L2(Ω)×H−1(Ω). The accretiveness hypothesis
will replace the condition f ′ in L∞(R).

Exact controllability for the linear wave equation, with both controls in the interior
and on the boundary, has been studied by the author in [6] and feedback laws were given.
Dirichlet boundary exact controllability of the wave equation has been treated by Trig-
giani in [7].

Notations, the basic assumptions of the paper, and some preliminary results are given
in Section 2. The exact controllability of (1.1)–(1.4) is established in Section 3. Optimal
controls are shown in Section 4 and feedback laws are established in Section 5.

2. Notations, assumptions, preliminary results

Throughout the paper, we will denote by (·,·) the L2(Ω) inner product as well as the
pairing between H1

0 (Ω) and its dual H−1(Ω). Let J be the duality mapping of the Hilbert
space L2(0,T ;H−1(Ω)) into (L2(0,T ;H−1(Ω)))∗ = L2(0,T ;H1

0 (Ω)) with gauge function
Φ(r)= r. We have

‖J y‖L2(0,T ;H1
0 (Ω)) =Φ

(‖y‖L2(0,T ;H−1(Ω))
)= ‖y‖L2(0,T ;H−1(Ω)),∫ T

0
(J y, y)dt = ‖y‖2

L2(0,T ;H−1(Ω)), ∀y ∈ L2(0,T ;H−1(Ω)
)
.

(2.1)

Definition 2.1. Let g be a mapping in L2(0,T ;H−1(Ω)), with D(g)= L2(0,T ;L2(Ω)) and
values in L2(0,T ;H−1(Ω)), said to be accretive with respect to J if

∫ T
0

(g(y)− g(z), J(y− z))dt ≥ 0 ∀y,z ∈ L2(0,T ;H−1(Ω)
)
. (2.2)

We will consider mappings f of L2(0,T ;L2(Ω)) into L2(0,T ;L2(Ω)) satisfying the fol-
lowing assumption.
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Assumption 2.2. Let f be a Lipschitz continuous mapping of L2(0,T ;L2(Ω)) into
L2(0,T ;L2(Ω)). Suppose that

(i) ‖ f (y)‖L2(0,T ;L2(Ω)) ≤ C{1 +‖y‖L2(0,T ;L2(Ω))} for all y ∈ L2(0,T ;L2(Ω));
(ii) λI + f is accretive in the sense of Definition 2.1 for some λ > λ0 > 0.

Lemma 2.3. Let f be as in Assumption 2.2 and suppose that

{
yn, f

(
yn
)}−→ {y,ψ} (2.3)

in {L2(0,T ;H−1(Ω))∩ (L2(0,T ;L2(Ω)))weak}× (L2(0,T ;L2(Ω)))weak. Then ψ = f (y).

Proof. (1) From the definition of accretiveness, we get

∫ T
0

(
λ(yn− z

)
+ f
(
yn
)− f (z), J

(
yn− z)

)
dt ≥ 0, ∀z ∈ L2(0,T ;L2(Ω)

)
. (2.4)

It is well known that the duality mapping J is monotone and continuous from the
strong topology of L2(0,T ;H−1(Ω)) to the weak topology of L2(0,T ;H1

0 (Ω)).Thus,

J
(
yn− z

)−→ J(y− z) in
(
L2(0,T ;H1

0 (Ω)
))

weak. (2.5)

On the other hand,∥∥J(yn− z)∥∥L2(0,T ;H1
0 (Ω))

= ∥∥yn− z∥∥L2(0,T ;H−1(Ω)) −→ ‖y− z‖L2(0,T ;H−1(Ω))

= ‖J(y− z)‖L2(0,T ;H1
0 (Ω)).

(2.6)

But L2(0,T ;H1
0 (Ω)) is a Hilbert space, and thus

J
(
yn− z

)−→ J(y− z) in L2(0,T ;H1
0 (Ω)

)
, ∀z ∈ L2(0,T ;H−1(Ω)

)
. (2.7)

(2) Since

∥∥yn− z∥∥2
L2(0,T ;H−1(Ω)) =

∫ T
0

(
yn− z, J

(
yn− z

))
dt, (2.8)

we obtain

∫ T
0

(
[λ+µ]

(
yn− z

)
+ f
(
yn
)− f (z)

)
, J
(
yn− z

)
dt

≥ µ∥∥yn− z∥∥2
L2(0,T ;H−1(Ω)), µ > 0, ∀z ∈ L2(0,T ;L2(Ω)

)
.

(2.9)

Let n→∞, and we have

∫ T
0

(
[λ+µ](y− z) +ψ− f (z), J(y− z)

)
dt

≥ µ‖y− z‖2
L2(0,T ;H−1(Ω)), ∀z ∈ L2(0,T ;L2(Ω)

)
.

(2.10)
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Since f is Lipschitz continuous, a simple argument using the method of successive ap-
proximations shows that R([λ+µ]I + f )= L2(0,T ;L2(Ω)) for large λ > 0, and ([λ+µ]I +
f ) is 1-1. Therefore, ([λ+µ]I + f )−1 exists and maps L2(0,T ;L2(Ω)) into L2(0,T ;L2(Ω)).
Thus for a given α∈ L2(0,T ;L2(Ω)), there exists a unique zε such that

zε = ([λ+µ]I + f )−1{[λ+µ]y +ψ− εα}. (2.11)

Then (2.9), with z = zε, becomes

∫ T
0

(
εα, J

(
y− zε

))
dt ≥ 0, ∀α∈ L2(0,T ;L2(Ω)

)
. (2.12)

We have

([λ+µ]I + f )−1(y +ψ− εα)= zε −→ ([λ+µ]I + f )−1(y +ψ) (2.13)

in L2(0,T ;H−1(Ω))∩ (L2(0,T ;L2(Ω)))weak as

µ
∥∥zε− zν

∥∥2
L2(0,T ;H−1(Ω)) ≤ (ε+ ν)‖α‖L2(0,T ;L2(Ω))

∥∥J(zε− zν)
∥∥
L2(0,T ;H1

0 (Ω))

≤ (ε+ ν)‖α‖L2(0,T ;L2(Ω))
∥∥zε− zν

∥∥
L2(0,T ;H−1(Ω)).

(2.14)

We get

lim
ε→0

∫ T
0

(
α, J(y− zε)

)
dt = lim

ε−→0

∫ T
0

(
α, J
(
y− ([λ+µ]I + f

)−1(
[λ+µ]y +ψ− εα)))dt

=
∫ T

0

(
α, J
(
y− ([λ+µ]I + f

)−1(
[λ+µ]y +ψ

)))
dt

≥ 0, ∀α∈ L2(0,T ;L2(Ω)
)
.

(2.15)

Therefore,

y = ([λ+µ]I + f )−1([λ+µ]y +ψ), i.e., [λ+µ]y + f (y)= [λ+µ]y +ψ; f (y)= ψ.
(2.16)

The lemma is proved. �

Remark 2.4. Suppose that f is a continuous mapping of L2(0,T ;L2(Ω)) into itself and
that f ′ is in L∞(R) with

sup
R
| f ′| ≤ c. (2.17)
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Then (λI + f ) is accretive in L2(0,T ;H−1(Ω)), with respect to the duality mapping J ,
for λ > c. Indeed, we have

∫ T
0

(λ(y− z) + f (y)− f (z), J(y− z))dt

≥
∫ T

0
(λ(y− z), J(y− z))dt

− c‖y− z‖L2(0,T ;H−1(Ω))‖J(y− z)‖L2(0,T ;H1
0 (Ω))

≥ (λ− c)
∫ T

0
(y− z, J(y− z))dt

= (λ− c)‖y− z‖2
L2(0,T ;H−1(Ω)) ≥ 0

(2.18)

for all y,z in L2(0,T ;L2(Ω)).

3. Existence theorem

The main result of the section is the following theorem.

Theorem 3.1. Let f be as in Assumption 2.2, let

α= {α0,α1
}

, β = {β0,β1
}

be in L2(Ω)×H−1(Ω); u in �. (3.1)

Then for T ≥ T0, there exists a solution y of (1.1)–(1.4). Moreover,

‖y‖C(0,T ;L2(Ω)) +‖y′‖C(0,T ;H−1(Ω)) ≤�(u,α,β) (3.2)

with

�(u;α,β)=
{
‖u‖L2(0,T ;L2(Ω)) +

∥∥α0
∥∥
L2(Ω) +

∥∥α1
∥∥
H−1(Ω) +

∥∥β0
∥∥
L2(Ω) +

∥∥β1
∥∥
H−1(Ω)

}
.

(3.3)

The constant C is independent of u, α, β.

Consider the exact controllability of the linear wave equation

y′′1 −∆y1 = uχω in Ω× (0,T),

y1(x, t)= 0 on Γ0× (0,T), y1(x, t)= v1(u) on Γ1× (0,T),

y1(x,0)= α0, y′1(x,0)= α1 in Ω,

y1(x,T)= β0, y1(x,T)= β1 in Ω.

(3.4)

The following result has been proved by the author in [6].

Lemma 3.2. Let u ∈� and let {α,β} be in L2(Ω)×H−1(Ω),then for T ≥ T0, there exist
v1(u)∈ L2(0,T ;L2(Γ1)) and a unique solution y1 of (3.4). Moreover,

∥∥y1
∥∥
C(0,T ;L2(Ω)) +

∥∥y′1∥∥C(0,T ;H−1(Ω)) +
∥∥v1
∥∥
L2(0,T ;L2(Γ1)) ≤ C�(u;α,β). (3.5)

The constant C is independent of u, α, β.
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Consider the initial boundary value problem

y′′2 −∆y2 = 0 in Ω× (0,T),

y2(x, t)= 0 on Γ0× (0,T), y2(x, t)= v2 on Γ1× (0,T),

y2(x,0)= 0, y′2(x,0)= 0 in Ω,

(3.6)

where v2 = n ·∇ϕwith ϕ being the unique solution of the initial boundary value problem

ϕ′′ −∆ϕ= 0 in Ω× (0,T),

ϕ= 0 on ∂Ω× (0,T),

ϕ(x,T)= g0, ϕ′(x,T)= g1 in Ω.

(3.7)

We have the following known result.

Lemma 3.3. Let {g0,g1} be inH1
0 (Ω)×L2(Ω), then there exists a unique solution y2 of (3.6).

Moreover,

∥∥y2
∥∥
C(0,T ;L2(Ω)) +

∥∥y′2∥∥C(0,T ;H−1(Ω)) +
∥∥v2
∥∥
L2(0,T ;L2(Γ1)) ≤ C

{∥∥g0
∥∥
H1

0 (Ω) +
∥∥g1
∥∥
L2(Ω)

}
. (3.8)

The constant C is independent of g0, g1.

Let Λ be the mapping of H1
0 (Ω)×L2(Ω) into its dual H−1(Ω)×L2(Ω), defined by

Λ(g)= {y′2(x,T),−y2(x,T)
}
. (3.9)

It is well known in the Hilbert uniqueness method that Λ is an isomorphism of
H1

0 (Ω)×L2(Ω) onto H−1(Ω)×L2(Ω).
We now consider the nonlinear initial boundary value problem

y′′3 −∆y3 =− f (y1 + y2 + y3) in Ω× (0,T),

y3(x, t)= 0 on ∂Ω× (0,T),

y3(x,0)= 0, y′3(x,0)= 0 in Ω.

(3.10)

Lemma 3.4. Let f be as in Assumption 2.2 and let {y1, y2} be as in Lemmas 3.2 and 3.3.
Then there exists a solution y3 of (3.10). Moroever,

∥∥y3
∥∥
C(0,T ;H1

0 (Ω)) +
∥∥y′3∥∥C(0,T ;L2(Ω)) ≤ C

{
�(u;α,β) +

∥∥g0
∥∥
H1

0 (Ω) +
∥∥g1
∥∥
L2(Ω)

}
. (3.11)

The constant C is independent of u, α, β0, g.
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Proof. (1) Consider the system

y′′ −∆y =− f (y1 + y2 + z
)

in Ω× (0,T),

y = 0 on ∂Ω× (0,T),

y(x,0)= 0, y′(x,0)= 0 in Ω.

(3.12)

Let z be an element of the set

�C =
{
z : ‖z‖L2(0,t;H1(Ω)) +‖z′‖L2(0,t;L2(Ω))

≤ C
{

�(u;α,β) +
∥∥g0
∥∥
H1

0 (Ω) +
∥∥g1
∥∥
L2(Ω)

}
exp(Ct); t ∈ [0,T]

}
.

(3.13)

Clearly, there exists a unique solution y of the above initial boundary value problem
with

‖y(·, t)‖H1
0 (Ω) +‖y′(·, t)‖L2(Ω)

≤ C
{∥∥y1

∥∥
L2(0,t;L2(Ω)) +

∥∥y2
∥∥
L2(0,t;L2(Ω)) +‖z‖L2(0,t;L2(Ω))

}
.

(3.14)

Taking into account the estimates of Lemmas 3.2 and 3.3, we obtain

‖y(·, t)‖H1
0 (Ω) +‖y′(·, t)‖L2(Ω)

≤ C
{

�(u;α,β) +‖g1‖L2(Ω) +
∫ t

0
‖z(·,s)‖L2(Ω)ds

}
.

(3.15)

Since z is in �C, it follows that

‖y(·, t)‖H1
0 (Ω) +‖y′(·, t)‖L2(Ω)

≤ C
{

�(u;α,β) +
∥∥g0
∥∥
H1

0 (Ω) +
∥∥g1
∥∥
L2(Ω)

}
exp(Ct)

(3.16)

for all t ∈ [0,T], and thus y ∈�C.
(2) Let � be the nonlinear mapping of �C, considered as a closed convex subset of

L2(0,T ;L2(Ω)) into L2(0,T ;L2(Ω)) defined by

�(z)= y. (3.17)

We will show that � satisfies the hypotheses of the Schauder fixed point theorem.
Let {zn} be in �C and let yn =�(zn). From Aubin’s theorem we get subsequences,

denoted again by {yn,zn} such that {yn,zn} → {y,z} in

{
L2(0,T ;L2(Ω)

)∩ (L∞(0,T ;H1(Ω)
))

weak∗
}2
. (3.18)

Since f is a continuous mapping of L2(0,T ;L2(Ω)) into L2(0,T ;L2(Ω)), we get �(z)=
y. It follows from the Schauder fixed point theorem that there exists y3 in �C, solution
of (3.10). With f being Lipschitz continuous, the solution is unique and the lemma is
proved. �
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Let � be the nonlinear mapping of H1
0 (Ω)×L2(Ω) into H−1(Ω)×L2(Ω) defined by

�
({
g0,g1

})=�(g)= {− y′3(x,T), y3(x,T)
}
. (3.19)

Since Λ is an isomorphism of H1
0 (Ω)×L2(Ω) onto H−1(Ω)×L2(Ω), its inverse Λ−1 is

well defined. We consider the nonlinear mapping

�=Λ−1�. (3.20)

It is clear that � is a nonlinear mapping of H1
0 (Ω)× L2(Ω) into H1

0 (Ω)× L2(Ω). We
will now show that � has a fixed point

�(g)= g, i.e., �(g)=Λ(g), (3.21)

and thus

{− y′3(x,T), y3(x,T)
}= {y′2(x,T),−y2(x,T)

}
. (3.22)

Let �Ĉ be the set

�Ĉ =
{

g : g= {g0,g1
}

;
∥∥g0
∥∥
H1

0 (Ω) +
∥∥g1
∥∥
L2(Ω) ≤�(u;α,β)

}
. (3.23)

It follows from the Sobolev embedding theorem that �Ĉ is a compact convex subset of
L2(Ω)×H−1(Ω).

Since Λ is an isomorphism of H1
0 (Ω)×L2(Ω) onto H−1(Ω)×L2(Ω), we have

c‖h‖H1
0 (Ω)×L2(Ω) ≤ ‖Λ(h)‖H−1(Ω)×L2(Ω) ≤ C‖h‖H1

0 (Ω)×L2(Ω) (3.24)

for all h∈H1
0 (Ω)×L2(Ω).

Lemma 3.5. Let � be as in (3.20), then it maps �Ĉ into �Ĉ with

Ĉ = sup
{
c−1C�(u;α,β),C�(u;α,β)

}
. (3.25)

Proof. (1) Let g be in �Ĉ, then

�(g)= {− y′3(x,T), y3(x,T)
}

, (3.26)

and we obtain from the estimates of Lemma 3.4

‖�(g)‖H−1(Ω)×L2(Ω) ≤ C�(u;α,β). (3.27)

Thus, ∥∥Λ−1�(g)
∥∥
H1

0 (Ω)×L2(Ω) ≤ c−1‖�(g)‖L2(Ω)×H−1(Ω)

≤ c−1C�(u;α,β)≤ Ĉ. (3.28)

�
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Lemma 3.6. Let � be given by (3.20), then it has a fixed point in �Ĉ.

Proof. In view of Lemma 3.5, it suffices to show that � is a continuous mapping of
L2(Ω)×H−1(Ω) into L2(Ω)×H−1(Ω) as the set �Ĉ is a compact convex subset of L2(Ω)×
H−1(Ω).

Let gn ∈�Ĉ, then there exists a subsequence such that

gn −→ g̃ in L2(Ω)∩ (H1
0 (Ω)

)
weak×H−1(Ω)∩ (L2(Ω)

)
weak. (3.29)

Set

�gn = {− y′3,n(·,T), y3,n(·,T)
}

, (3.30)

where y3,n is the solution of (3.10), y2,n is the solution of (3.6) with g= gn.
It follows from the estimates of Lemmas 3.3 and 3.4 that

{
y2,n, y′2,n,v2,n

}−→ {y2, y′2,v2
}

(3.31)

in

C
(
0,T ;H−1(Ω)

)∩ (L∞(0,T ;L2(Ω)
))

weak∗ ×
(
L∞
(
0,T ;H−1(Ω)

))
weak∗

× (L2(0,T ;L2(Γ1)
))

weak

(3.32)

and {y3,n, y′3,n} → {y3, y′3} in

C
(
0,T ;L2(Ω)

)∩ (L∞(0,T ;H1
0 (Ω)

))
weak∗ ×

(
L∞
(
0,T ;L2(Ω)

))
weak∗

∩L2(0,T ;H−1(Ω)).
(3.33)

It is trivial to check that y2 is the solution of (3.6). We now use Assumption 2.2 to
show that y3 is the solution of (3.10). Indeed,

y2,n + y3,n −→ y2 + y3 in L2(0,T ;H−1(Ω)
)∩ (L2(0,T ;L2(Ω)

))
weak (3.34)

and f (y1 + y2,n + y3,n) → ψ weakly in L2(0,T ;L2(Ω)). Since f is accretive in L2(0,T ;
H−1(Ω)), it follows from Lemma 2.3 that ψ = f (y1 + y2 + y3), and hence

�gn −→�g in L2(Ω)∩ (H1
0 (Ω)

)
weak×H−1(Ω)∩ (L2(Ω)

)
weak. (3.35)

Let

�gn =Λ−1�(gn)= hn, (3.36)

then

Λ(hn)=�
(

gn
)= {− y′3,n(·,T), y3,n(·,T)

}= { ŷ′2,n(·,T),− ŷ2,n(·,T)
}

(3.37)

and ŷ2,n is the unique solution of (3.6) with g= hn.
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With hn ∈�Ĉ and with the estimates of Lemma 3.3, we get

{
hn, ŷ2,n, ŷ′2,n

}−→ {h, ŷ2, ŷ′2
}

(3.38)

in (
H1

0 (Ω)
)

weak∩L2(Ω)× (L2(Ω)
)

weak∩H−1(Ω)× (L∞(0,T ;L2(Ω)
))

weak∗

× (L∞(0,T ;H−1(Ω)
))

weak∗ .
(3.39)

Furthermore,

{
ŷ2,n(·,T), ŷ′2,n(·,T)

}−→ { ŷ2(·,T), ŷ′2(·,T)
}

in H−1(Ω)×H−2(Ω). (3.40)

Moreover, Λ(h)= { ŷ′2(·,T),− ŷ2(·,T)}. It follows that

Λ(h)= { ŷ′2(·,T),− ŷ2(·,T)
}= {− y′3(·,T), y3(·,T)

}=�(g). (3.41)

Hence,

hn =Λ−1�gn =�gn −→ h=Λ−1�(g)=�g (3.42)

in (L2(Ω)) × (H−1(Ω)). The nonlinear mapping � satisfies the hypotheses of the
Schauder fixed point theorem, and thus there exists g̃∈�Ĉ such that

�g̃=Λ−1�g̃= g̃. (3.43)
�

Proof of Theorem 3.1. In view of Lemma 3.6, there exists g̃∈�Ĉ such that

{− y′3(·,T), y3(·,T)
}= {y′2(·,T),−y2(·,T)

}
(3.44)

with y2, y3 being the unique solution of (3.6), (3.10), respectively, and with g= g̃.
Let u∈�, then it is clear that

ỹ = y1 + y2 + y3, ṽ(u)= v1 + v2 (3.45)

are a solution of (1.1)–(1.4). The estimate of the theorem is an immediate consequence
of those of Lemmas 3.2–3.6. �

4. Optimal control

We associate with (1.1)–(1.4) the cost function

�(y;u;α;β)=
∫ T

0

∫
Ω
|y(x, t)|dxdt, (4.1)

where y is a solution of (1.1)–(1.4) given by Theorem 3.1. The main result of the section
is the following theorem.
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Theorem 4.1. Let f be as in Assumption 2.2, let

{
α0,α1

}
,
{
β0,β1

}
be in L2(Ω)×H−1(Ω), (4.2)

then for T > T0, there exists ũ∈�, and

{ ỹ, ỹ′, ṽ(ũ)} ∈ C(0,T ;L2(Ω)
)×C(0,T ;H−1(Ω)

)×L2(0,T ;L2(Γ1)
)

(4.3)

such that

V(α,β)=�( ỹ; ũ;α,β)= inf
{
�(y;u;α,β) :∀u∈�

}
. (4.4)

Proof. (1) Let {un,vn, yn} be a minimizing sequence of the optimization problem (4.4)
with

�(yn;un;α,β)≤V(α,β) + 1/n. (4.5)

From the estimates of Theorem 3.1, we have

∥∥yn∥∥C(0,T ;L2(Ω)) +
∥∥y′n∥∥C(0,T ;H−1(Ω)) +

∥∥vn∥∥L2(0,T ;L2(Γ1)) ≤ C�
(
un;α,β

)
≤ C{1 + �(u;α,β)}, (4.6)

as � is a bounded subset of L2(0,T ;L2(Ω)). Thus there exists a subsequence such that

{
yn, y′n,un,vn

}−→ { ỹ, ỹ′, ũ, ṽ} (4.7)

in

C
(
0,T ;H−1(Ω)

)∩ (L∞(0,T ;L2(Ω)
))

weak∗ ×
(
L∞
(
0,T ;H−1(Ω)

))
weak∗ ,

C
(
0,T ;H−2(Ω)

)× (L2(0,T ;L2(Ω)
))

weak×
(
L2(0,T ;L2(Γ1)

))
weak.

(4.8)

We now show that { ỹ, ũ, ṽ} is a solution of (1.1)–(1.4) and it is clear that it suffices to
prove that

f
(
yn
)−→ f ( ỹ) in

(
L2(0,T ;L2(Ω)

))
weak. (4.9)

Since f (yn)→ ψ weakly in L2(0,T ;L2(Ω)) and since f is accretive in L2(0,T ;H−1(Ω)),
it follows from Lemma 2.3 that ψ = f ( ỹ). The theorem is now an immediate consequence
of (3.7). �

Lemma 4.2. Let V be as the value function associated with (1.1)–(1.4) and the cost function
(4.1). Then,

|V(α;β)−V(γ;β)| ≤ C
{∥∥α0− γ0

∥∥
L2(Ω) +

∥∥α1− γ1
∥∥
H−1(Ω)

}
(4.10)

for all α, β, γ in L2(Ω)×H−1(Ω). The constant C is independent of α, β, γ.
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Proof. Let α, β be in L2(Ω)×H−1(Ω), then it follows from Theorem 4.1 that

V(α,β)=�( ỹ; ũ; ṽ(ũ);α,β). (4.11)

Then,

V(γ,β)−V(α,β)≤�(z; ũ, v̂(ũ),γ,β)−�( ỹ; ũ, ṽ(ũ),γ,β)

≤
∫ T

0

∫
Ω
{|z|− | ỹ|}dxdt

≤
∫ T

0

∫
Ω
|z− ỹ|dxdt

≤ C‖z− ỹ‖L2(0,T ;L2(Ω)).

(4.12)

On the other hand, we have

(z− ỹ)′′ −∆(z− ỹ)= f ( ỹ)− f (z) in Ω× (0,T),

z− ỹ = 0 on Γ0× (0,T), z− ỹ = v̂− ṽ on Γ1× (0,T),

z− ỹ|t=0 = γ0−α0, (z− ỹ)′|t=0 = γ1−α1 in Ω,

z− ỹ|t=0 = 0= (z− ỹ)′|t=0 in Ω.

(4.13)

Applying Theorem 3.1 with

y = z− ỹ, v∗ = v̂− ṽ, (4.14)

we have

V(γ,β)−V(α,β)≤ C
{∥∥α0− γ0

∥∥
L2(Ω) +

∥∥α1− γ1
∥∥
H−1(Ω)

}
. (4.15)

Thus,

V(γ,β)−V(α,β)≤ C
{∥∥α0− γ0

∥∥
L2(Ω) +

∥∥α1− γ1
∥∥
H−1(Ω)

}
. (4.16)

Reversing the role played by α, γ, we get the stated result. �

Consider the following initial boundary value poblem for the heat equation

ϕ′ −∆ϕ= h in Ω× (0,T),

ϕ(x, t)= 0 on ∂Ω× (0,T), ϕ(x,0)= 0 in Ω.
(4.17)

Let S be the linear mapping of L2(0,T ;H−1(Ω)) into L2(0,T ;H1
0 (Ω)) given by

Sh= ϕ, (4.18)

where ϕ is the unique solution of (4.17). Then S is a compact linear mapping of L2(0,T ;
H−1(Ω)) into L2(0,T ;L2(Ω)) and

‖ϕ‖C(0,T ;L2(Ω)) = ‖Sh‖C(0,T ;L2(Ω)) ≤ C‖h‖L2(0,T ;H−1(Ω)). (4.19)
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Set

�(α,β)=V(Sα0,Sα1;β). (4.20)

The following lemma will be needed in the establishment of the feedback laws.

Lemma 4.3. Let α(τ), β be in L2(Ω) ×H−1(Ω) and let �(·;τ) be as in (4.20). Then
∂0�(α0(τ),α1(τ);β;τ), the subgradient of � with respect to Sα0, exists and is a set-valued
mapping of L2(Ω) into the closed convex subsets of L2(Ω). Moreover,

∥∥p(α(τ);β;·)∥∥L2(Ω) ≤ C, ∀p ∈ ∂0�
(
α0(τ),α1(τ);β;τ

)
. (4.21)

Proof. From Lemma 4.2, we have∣∣V(Sα0(τ),Sα1(τ);β;τ
)−V(Sγ0,Sα1;β;τ

)∣∣≤ C∥∥Sα0(·,τ)− Sγ0(·,τ)
∥∥
L2(Ω)

≤ C∥∥α0(τ)− γ0(τ)
∥∥
L2(Ω).

(4.22)

The constant C is independent of τ, α, β. Hence, the generalized Clarke subgradient
∂0�(α0,α1;β;τ) with respect to Sα0 exists and is a set-valued mapping of L2(Ω) into the
closed convex subsets of L2(Ω). Furthermore,

∥∥p(α(τ),β;·)∥∥L2(Ω) ≤ C, ∀p ∈ ∂0�(α0(τ),α1(τ);β;τ). (4.23)

The lemma is proved. �

With γ ∈ C(0,T ;L2(Ω))×C(0,T ;H−1(Ω)), we have ∂0�(γ0;γ1;β;τ) in L2(0,T ;L2(Ω)).

5. Feedback laws

In order to establish the feedback laws, we will first consider a nonlinear semilinear wave
equation. Let f be as in Assumption 2.2 and let � be as in Lemma 4.3. Consider the
problem

y′′ −∆y + f (y)=	p(y;α,β; t)χω in Ω× (0,T),

y(x, t)= 0 on Γ0× (0,T), y(x, t)= v(y) on Γ1× (0,T),

y(x,0)= α0, y′(x,0)= α1 in Ω,

y(x,T)= β0, y′(x,T)= β1 in Ω,

(5.1)

where p(y;α,β; t) is the element of minimum L2(0,T ;L2(Ω))-norm of the closed convex
set ∂0�(y(·, t), y′(·, t);β; t) and v(y)∈ L2(0,T ;L2(Γ1)). The projection of L2(0,T ;L2(Ω))
onto the closed bounded convex set � is denoted by 	.

Theorem 5.1. Let f be as in Assumption 2.2 and let {α,β} be in L2(Ω)×H−1(Ω). Then
for T > T0, there exists

{ ỹ, ỹ′,v(y)} ∈ C(0,T ;L2(Ω)
)×C(0,T ;H−1(Ω)

)×L2(0,T ;L2(Γ1
))

, (5.2)

solution of (5.1).
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Let c = inf�{‖u‖L2(0,T ;L2(Ω))} and set

�(C̃) =
{
y : ‖y‖C(0,T ;L2(Ω)) +‖y′‖C(0,T ;H−1(Ω))

≤ C
{
c+
∥∥α0

∥∥
L2(Ω) +

∥∥α1
∥∥
H−1(Ω) +

∥∥β0
∥∥
L2(Ω) +

∥∥β1
∥∥
H−1(Ω)

}}
.

(5.3)

Let z ∈�C̃ and consider the exact controllability problem

y′′ −∆y + f (y)=	p(z;α,β; t)χω in Ω× (0,T),

y(x, t)= 0 on Γ0× (0,T), y(x, t)= v(z) on Γ1× (0,T),

y(x,0)= α0, y′(x,0)= α1 in Ω,

y(x,T)= β0, y′(x,T)= β1 in Ω.

(5.4)

Lemma 5.2. Suppose the hypotheses of Theorem 5.1 are satisfied and let z be in �C̃, then for
T > T0, there exist v(z)∈ L2(0,T ;L2(Γ1)) and a unique y, solution of (5.4). Moreover,

‖y‖C(0,T ;L2(Ω)) +‖y′‖C(0,T ;H−1(Ω)) ≤ C̃ (5.5)

with

C̃ = C
{
c+
∥∥α0

∥∥
L2(Ω) +

∥∥α1
∥∥
H−1(Ω) +

∥∥β0
∥∥
L2(Ω) +

∥∥β1
∥∥
H−1(Ω)

}
. (5.6)

Furthermore,

‖v(z)‖L2(0,T ;L2(Γ1)) ≤ C(α,β). (5.7)

The constants C are independent of z, α, β.

Proof. With u=	p(z;α,β), the lemma follows from Theorem 3.1. �

Let � be the nonlinear mapping of �C̃, considered as a subset of L2(0,T ;H−1(Ω)) into
L2(0,T ;H−1(Ω)) defined by

�z = y, (5.8)

where y is the unique solution of (5.4). It is clear that �C̃ is a compact, convex subset of
L2(0,T ;H−1(Ω)). We now show that � has a fixed point.

Lemma 5.3. The nonlinear mapping � given by (5.8) maps �C̃ into �C̃.

Proof. The lemma is obvious. �

Lemma 5.4. Let � be as in (5.8), then it is continuous from L2(0,T ;H−1(Ω)) into L2(0,T ;
H−1(Ω)).
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Proof. (1) Let zn ∈�C̃ and let yn =�zn. Then we have

‖yn‖C(0,T ;L2(Ω)) +‖y′n‖C(0,T ;H−1(Ω)) +‖v(zk)‖L2(0,T ;L2(Γ1))

+‖p(zn;α,β)‖L2(0,T ;L2(Ω)) ≤M. (5.9)

The constant M is independent of n. We obtain, by taking subsequences,

{
yn,zn, y′n,z′n, p

(
zn;α,β

)}−→ {y,z, y′,z′Ψ} (5.10)

in

{
L2(0,T ;H−1(Ω)

)∩ (L∞(0,T ;L2(Ω)
))

weak∗
}2×

{
(L∞

(
0,T ;H−1(Ω)

))
weak∗

}2

× (L2(0,T ;L2(Ω)
))

weak.
(5.11)

Furthermore,

v
(
zn
)−→ ṽ in

(
L2(0,T ;L2(Γ1

)))
weak, (5.12){

Szn,Sz′n
}−→ {Sz,Sz′

}
in
(
L2(0,T ;L2(Ω)

))2
. (5.13)

(2) Since f is accretive in L2(0,T ;H−1(Ω)) and

yn −→ y in L2(0,T ;H−1(Ω)
)∩ (L∞(0,T ;L2(Ω)

))
weak∗ , (5.14)

it follows from Lemma 2.3 that

f
(
yn
)−→ f (y) in

(
L2(0,T ;L2(Ω)

))
weak. (5.15)

(3) We now show that Ψ= p(z;α,β) with p(z;α,β) being the unique element of mini-
mum L2(0,T ;L2(Ω))-norm of the closed convex set ∂0�(z0,z1;β). From the definition of
a subgradient, we obtain

∫ T
0

{
V
(
Sγ,Sz′n;β; t

)−V(Szn,Sz′n;β, t
)}
dt ≥

∫ T
0

(
p
(
zn,z′n;β

)
,Sγ− Szn

)
dt (5.16)

for all γ ∈ L2(0,T ;L2(Ω)). We have

∫ T
0
V
(
Sγ,Sz′n;β, t

)
dt −→

∫ T
0
V
(
Sγ,Sz′;β, t

)
dt (5.17)

since

∫ T
0

∣∣V(Sγ,Sz′n;β, t
)−V(Sγ,Sz′;β, t

)∣∣dt ≤ C∥∥Sz′n− Sz′∥∥L2(0,T ;L2(Ω)). (5.18)
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Hence,

∫ T
0

(Ψ,Sγ− Sz)dt ≤ liminf
∫ T

0

{
V
(
Sγ,Sz′n;β

)−V(Szn,Sz′n;β
)}
dt

≤
∫ T

0
V(Sγ,Sz′;β)dt− limsup

∫ T
0
V
(
Szn,Sz′n;β

)
dt

≤
∫ T

0
V(Sγ,Sz′;β)dt− limsup

∫ T
0

�
(
xn;Szn,Sz′n;β

)
dt

≤
∫ T

0
V(Sγ,Sz′;β)dt−

∫ T
0

�(x;Sz,Sz′;β)dt

≤
∫ T

0

{
V(Sγ,Sz′;β)−V(Sz,Sz′;β)

}
dt

(5.19)

for all γ ∈ L2(0,T ;L2(Ω)). Hence Ψ∈ ∂0�(z0,z1;β, t). We have applied Theorem 4.1, and
note that

V
(
Szn,Sz′n;β

)= �
(
xn;un,vn

(
un
)
;Szn,Sz′n;β

)
. (5.20)

(4) We now show that Ψ is the unique element of ∂0�(z,z′;β) with minimum L2(0,T ;
L2(Ω))-norm. Let

�ε(z)=
{
zε : zε ∈�C,

∥∥zε− zn∥∥L∞(0,T ;L2(Ω)) +
∥∥z′ε− z′n∥∥L∞(0,T ;H−1(Ω)) ≤ ε

}
. (5.21)

Then,

⋂
ε

{
∂0�

(
zε,z′ε;β

)
: zε ∈�ε(z)

}⊂ ∂0�(z,z′;β) (5.22)

as zn ∈�ε(z) for n≥ n0. Thus,

∥∥p(zn,z′n;β
)∥∥

L2(0,T ;L2(Ω)) ≤ ‖p(z,z′;β)‖L2(0,T ;L2(Ω)), ∀p(z,z′;β)∈ ∂0�(z,z′;β).
(5.23)

Hence

‖Ψ‖L2(0,T ;L2(Ω)) ≤ ‖p(z,z′;β)‖L2(0,T ;L2(Ω)), ∀p ∈ ∂0�(z,z′;β). (5.24)

Since ∂0�(z,z′;β) is a closed, convex subset of L2(0,T ;L2(Ω)), there exists a unique
element of minimum norm of the set and the lemma is proved. �

Proof of Theorem 5.1. It follows from Lemmas 5.3-5.4 that the nonlinear mapping � sat-
isfies all the hypotheses of the Schauder fixed point theorem. Hence, there exists ỹ ∈�C̃

such that

� ỹ = ỹ. (5.25)

The theorem is proved. �
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The following theorem gives us the feedback laws.

Theorem 5.5. Let {α,β} be in L2(Ω)×H−1(Ω), let f be as in Assumption 2.2, and let

ũ=	p( ỹ, ỹ′;β), ṽ = v( ỹ, ỹ′;β), (5.26)

where { ỹ, ṽ} is as in Theorem 5.1. Then

V(α,β)=�( ỹ; ũ, ṽ;α,β). (5.27)

Proof. Let ỹ be as in Theorem 5.1 and consider the problem

y′′ −∆y + f (y)= uχω in Ω× (t,T),

y(x,s)= 0 on Γ0× (t,T), y(x,s)= v(u) on Γ1× (t,T),

y(x, t)= ỹ(x, t), y′(x,s)|s=t = ỹ(x, t) in Ω,

y(x,T)= β0, y′(x,T)= β1 in Ω.

(5.28)

Applying Theorem 4.1, we obtain

V( ỹ(·, t), ỹ′(·, t);β; t)= inf
{∫ T

t

∫
Ω
|y(x,s)|dxds y solution of (5.28),∀u∈�

}
=�

(
y∗;u∗,v∗;β; t

)
,

(5.29)

where y∗ is the solution of (5.28) for some {u∗,v∗} in L2(0,T ;L2(Ω))×L2(0,T ;L2(Γ1)).
The solution y∗ depends on t through its interval of definition.

The dynamic programming principle gives

V
(
ỹ(t), ỹ′(t);β; t

)
= inf

{
V
(
y(t+h); y′(t+h);β; t+h

)

+
∫ t+h
t

∫
Ω

∣∣y(x,s)
∣∣dxds y solution of (5.28),∀u∈�

}
.

(5.30)

It follows that

V( ỹ(t), ỹ′(t);β, t)=�(y∗;u∗,v∗;β, t)

≤V(y∗(t+h), y′∗(t+h);β, t+h
)

+
∫ t+h
t

∫
Ω
|y∗(x,s)|dxds.

(5.31)

Therefore,

∫ T
t+h

∫
Ω

∣∣y∗(x,s)
∣∣dxds≤V(y∗(t+h), y′∗(t+h);β; t+h

)
. (5.32)
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From the definition of the value function, we deduce that

V
(
y∗(t+h), y′∗(t+h);β, t+h

)= ∫ T
t+h

∫
Ω

∣∣y∗(x,s)
∣∣dxds. (5.33)

Since {y∗(·, t), y′∗(·, t)} = { ỹ(·, t), ỹ′(·, t)} in Ω, we get

V( ỹ(t), ỹ′(t);β, t)=V(y∗(t), y′∗(t);β, t
)
. (5.34)

Hence,

V
(
y∗(t), y′∗(t);β; t

)−V(y∗(t+h), y′∗(t+h);β, t+h
)

=
∫ t+h
t

∫
Ω

∣∣y∗(x,s)
∣∣dxds. (5.35)

Thus,

lim
h−→0+

h−1
{
V
(
y∗(t), y′∗(t);β, t

)−V(y∗(t+h), y′∗(t+h),β, t+h
)}

= lim
h−→0+

h−1
∫ t+h
t

∫
Ω

∣∣y∗(x,s)
∣∣dxds (5.36)

It follows that

− d

dt

{
V
(
y∗(t), y′∗(t);β; t

)}= ∫
Ω
|y∗(x, t)|dx =

∫
Ω
| ỹ(x, t)|dx. (5.37)

Hence,

V
(
y∗(t), y′∗(t);β; t

)=V( ỹ(t), ỹ′(t);β; t)=
∫ T
t

∫
Ω
| ỹ(x,s)|dxds. (5.38)

Thus,

V
(
α0,α1;β

)= ∫ T
0

∫
Ω
| ỹ(x, t)|dxdt. (5.39)

The theorem is proved. �
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