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We describe a finite-dimensional reduction method to find solutions for a class of slightly
supercritical elliptic problems. A suitable truncation argument allows us to work in the
usual Sobolev space even in the presence of supercritical nonlinearities: we modify the
supercritical term in such a way to have subcritical approximating problems; for these
problems, the finite-dimensional reduction can be obtained applying the methods al-
ready developed in the subcritical case; finally, we show that, if the truncation is realized
at a sufficiently large level, then the solutions of the approximating problems, given by
these methods, also solve the supercritical problems when the parameter is small enough.

1. Introduction

Finite-dimensional reduction methods have been used in several contexts to find solu-
tions of differential equations. In problems where some concentration phenomena arise,
these methods are used to construct blowing-up solutions and to describe the effect of
the domain shape on the existence and on the number of solutions of this type.

This situation occurs, for example, in some nonlinear elliptic problems involving crit-
ical (or nearly critical) Sobolev exponents. In this case, these methods are used to point
out the role of Green’s and Robin’s functions to construct multispike solutions, and to de-
scribe the lack of compactness and the concentration phenomena related to the presence
of critical or nearly critical nonlinearities.

Several works have been devoted to the case of critical or subcritical nonlinear prob-
lems (see, e.g., [1, 2, 3, 5, 7, 11, 12, 13, 14, 15]).

More recently, the case of slightly supercritical nonlinearities has been also consid-
ered (see [6, 8, 9, 10] and the references therein). It is clear that for these problems, an
additional difficulty is due to the fact that the Sobolev embedding is no longer valid.

In [6], the authors consider directly the supercritical problem. So, in order to carry out
the finite-dimensional reduction, they need some uniform estimates in suitably chosen
spaces.

In the present paper, we describe a different approach: by a modification of the nonlin-
ear term at infinity, we approximate our problems by subcritical (indeed, asymptotically
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linear) problems. Then, we obtain the finite-dimensional reduction for the approximat-
ing problems, applying directly the methods already developed for the critical and sub-
critical cases (see, e.g., [1, 3, 13, 14, 15]). Finally, we show that the solutions of the approx-
imating problems, given by these methods, also solve the supercritical problems when the
parameter is small enough. In this way, we can work in the usual Sobolev space; we only
need estimates inH1

0 (indeed, one can also obtain, as a by-product, more careful uniform
estimates, but they are not required to carry out the finite-dimensional reduction).

A similar approach is used in [16] to find solutions for problems of this type in un-
bounded domains (see Remark 2.6).

2. Approximating problems and finite-dimensional reduction

Our aim is to find solutions of the following problem:

−∆u= u(n+2)/(n−2)+ε in Ω,

u > 0 in Ω,

u= 0 on ∂Ω,

(2.1)

where Ω is a bounded domain of Rn, n≥ 3, and ε is a small positive parameter.
We consider the functions

Ūξ,µ(x)= [n(n− 2)
](n−2)/4

(
µ

µ2 + |x− ξ|2
)(n−2)/2

∀ξ ∈R
n, µ > 0. (2.2)

Denote by Uξ,µ the projection of Ūξ,µ onto H1
0 (Ω), namely, the solution of the problem

−∆Uξ,µ = Ū (n+2)/(n−2)
ξ,µ in Ω,

Uξ,µ = 0 on ∂Ω.
(2.3)

For k ∈N and ε small enough, we look for solutions of (2.1) of the form

uk,ε(ξ,λ)=
k∑
i=1

Ui,ε(ξ,λ) + θk,ε(ξ,λ), (2.4)

where ξ = (ξ1, . . . ,ξk)∈Ωk, λ= (λ1, . . . ,λk)∈ (R+)k, Ui,ε(ξ,λ)=Uξi,(λ2
i ε)1/(n−2) , and θk,ε(ξ,λ)

→ 0 as ε→ 0.
For δ ∈ ]0,1[ small enough, consider the set

Mδ =
{

(ξ,λ)∈Ωk × (R+)k : dist
(
ξi,∂Ω

)
> δ,

δ < λi <
1
δ

,
∣∣ξi− ξj∣∣ > δ if i �= j (i, j = 1, . . . ,k)

}
.

(2.5)

We fix a constant c such that

c >
[
n(n− 2)

](n−2)/4 1
δ

(2.6)
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(notice that [n(n− 2)](n−2)/4(1/δ) =max Ūξ,δ2/(n−2) for all ξ ∈ Rn); then set tε = c/
√
ε and

define gε : R→R+ as follows:

gε(t)=




0 if t ≤ 0,

t(n+2)/(n−2)+ε if 0≤ t ≤ tε,
t(n+2)/(n−2)+ε
ε +

(
n+ 2
n− 2

+ ε
)
t4/(n−2)+ε
ε

(
t− tε

)
if t ≥ tε.

(2.7)

Let Jε :H1
0 (Ω)→R be the functional defined by

Jε(u)= 1
2

∫
Ω
|∇u|2dx−

∫
Ω
Gε(u)dx, (2.8)

where Gε(t)=
∫ t

0 gε(τ)dτ.

Remark 2.1. Notice that Gε(t) has subcritical growth at infinity for all ε > 0; so Jε is a
well-defined C2 functional in H1

0 (Ω). Therefore, we can work in the usual Sobolev spaces
and apply the finite-dimensional reduction methods already developed for critical or sub-
critical problems; in particular, taking also into account the choice of the constant c, we
can obtain the following two lemmas (indeed, these methods have been first applied to
problems with homogeneous nonlinearities, but all the arguments still work if the homo-
geneous nonlinear terms are replaced by gε(u)).

Lemma 2.2. There exists εk > 0 such that, for each ε ∈ ]0,εk[, there exists a smooth map
θk,ε : Mδ →H1

0 (Ω) satisfying the following property: the function uk,ε(ξ,λ) (see (2.4)), with
(ξ,λ)∈Mδ , is a critical point for Jε if and only if (ξ,λ) is a critical point for the function

Fk,ε(ξ,λ)= Jk,ε
(
uk,ε(ξ,λ)

)
. (2.9)

Moreover,

lim
ε→0

sup
{∥∥θε(ξ,λ)

∥∥
H1

0 (Ω) : (ξ,λ)∈Mδ
}= 0. (2.10)

The proof is similar to the proof of [16, Proposition 3.2]. An asymptotic expansion of
the finite-dimensional reduced functional Fk,ε is given in the following lemma which can
be proved arguing as in [3, 15] (with ε replaced by −ε).

Lemma 2.3. Let Fk,ε :Mδ →R be the function defined by (2.9). Then

Fk,ε(ξ,λ)= kSn + kānε lgε+ ε
[
kb̄n + c̄nψk(ξ,λ)

]
+ϕk,ε(ξ,λ), (2.11)

where Sn, ān, b̄n, and c̄n are suitable constants depending only on n, ε−1ϕk,ε → 0 in C1(Mδ)
as ε→ 0, and

ψk(ξ,λ)= p̄n
2

[ k∑
i=1

H
(
ξi,ξi

)
λ2
i − 2

∑
1≤i< j≤k

G
(
ξi,ξj

)
λiλj

]
+

k∑
i=1

lgλi, (2.12)

where p̄n is a positive constant depending only on n, G(x, y) denotes the Green function of
−∆ with zero Dirichlet condition on the boundary of Ω, and H(x, y) is its regular part.
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Remark 2.4. As a consequence of Lemmas 2.2 and 2.3, every critical point for ψk, which
persists with respect to small C1 perturbations, for ε small enough, gives rise to a solution
of the form (2.4) for the equation −∆u= gε(u). Indeed, for ε small enough, this solution
also solves problem (2.1), as we can infer from the following proposition.

Proposition 2.5. Assume that there exists ε̄k > 0 such that, for all ε ∈ ]0, ε̄k[, the function
Fk,ε has a critical point (ξε,λε)∈Mδ . Then there exists ε′k > 0 such that

sup
Ω
uk,ε
(
ξε,λε

)
< tε ∀ε ∈ ]0, ε̄′k[ (2.13)

(tε appeared in the definition of gε).

Proof. For all ε > 0, set Ωε = ε−1/(n−2)Ω and

vε(y)= ε2/(4+(n−2)ε)uk,ε
(
ξε,λε

)(
ε1/(n−2)y

) ∀y ∈Ωε. (2.14)

Clearly, our assertion is equivalent to proving that, for ε small enough, supΩε
vε < τε,

where τε = tεε2/(4+(n−2)ε).
Notice that vε ∈H1

0 (Ωε) and solves the problem

−∆vε = g̃ε
(
vε
)

in Ωε,

vε = 0 on ∂Ωε,
(2.15)

where

g̃ε(τ)=




0 if τ ≤ 0,

τ(n+2)/(n−2)+ε if 0≤ τ ≤ τε,
τ(n+2)/(n−2)+ε
ε +

(
n+ 2
n− 2

+ ε
)
τ4/(n−2)+ε
ε

(
τ − τε

)
if τ ≥ τε.

(2.16)

Moreover, we have

lim
ε→0

τε = c. (2.17)

Because of the choice of c (see (2.6)), we can choose another constant c1 such that

1
δ

[
n(n− 2)

](n−2)/4
< c1 < c. (2.18)

Since θk,ε(ξε,λε) → 0, as ε → 0, in H1
0 (Ω) (hence also in L2n/(n−2)(Ω)) and since c1 >

(1/δ)[n(n− 2)](n−2)/4, from the definition of vε, it follows that limε→0 meas(Aε)= 0, where
Aε = {x ∈Ωε : vε(x) > c1}.

If Aε =∅ for ε small enough, then the assertion is proved (because limε→0 τε = c > c1).
On the contrary, if meas(Aε) > 0 for ε small (up to a subsequence), set v̂ε = vε− c1 and

notice that v̂ε satisfies

−∆v̂ε = g̃ε
(
c1 + v̂ε

)
in Aε,

v̂ε = 0 on ∂Aε.
(2.19)
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Now, observe that, for ε small enough (so that c1 ≤ τε), we have

g̃ε
(
c1 + τ̂

)≤ c(n+2)/(n−2)+ε
1 +

(
n+ 2
n− 2

+ ε
)
τ4/(n−2)+ε
ε τ̂ ∀τ̂ ≥ 0, (2.20)

which implies supAε v̂ε ≤ supBε ṽε, where Bε is a ball in Rn such that meas(Bε)=meas(Aε)
and ṽε is the solution of the problem

−∆ṽε = c(n+2)/(n−2)+ε
1 +

(
n+ 2
n− 2

+ ε
)
τ4/(n−2)+ε
ε ṽε in Bε,

ṽε = 0 on ∂Bε.
(2.21)

Notice that, since meas(Bε)→ 0 while c(n+2)/(n−2)+ε
1 and ((n+ 2)/(n− 2) + ε)τ4/(n−2)+ε

ε re-
main bounded as ε → 0, problem (2.21) has indeed a unique solution ṽε for ε small
enough and, moreover, limε→0 supBε ṽε = 0.

Therefore, since τε → c as ε→ 0 and c > c1, for ε small enough, we have supΩε
vε < τε,

which is our claim. �

Remark 2.6. In [16], Yan uses a similar method to find solutions of problems of the form

−∆u=Q(y)u(n+2)/(n−2)+ε in R
n,

u > 0 in R
n,

u(y)−→ 0 as |y| −→∞,

(2.22)

where n ≥ 3 and Q : Rn → R is a positive continuous function. The aim is to construct
high-energy solutions concentrating on a strict local minimum point y0 of Q(y).

In order to have the corresponding variational functional well defined in �1,2(Rn),
the nonlinear term u(n+2)/(n−2)+ε in [16] is replaced by a nonhomogeneous term fε(y,u),
where the function fε is defined as follows. Let γε : R→R be a C1 function such that

γε(t)≥ 0 ∀t ≥ 0, γε(t)= 0 ∀t ≥ 2,

γε(t)= t(n+2)/(n−2)+ε ∀t ∈ [0,1], γε(t)=−γε(−t) ∀t ∈R,
(2.23)

and set

γ̄ε(y, t)= 1
|y|n+2+(n−2)ε

γε
(|y|n−2t

) ∀y ∈R
n, ∀t ∈R. (2.24)

For a constant K > 0 to be chosen later, let hε : R→R be the C1 function defined by

hε(t)=



t(n+2)/(n−2)+ε if 0≤ t ≤ ε−Kn,

aεt(n+2)/(n−2) + bε if t ≥ ε−Kn,

−hε(−t) if t ≤ 0,

(2.25)

where

aε =
(

1 +
ε(n− 2)
n+ 2

)
ε−Knε, bε = ε(2−n)

n+ 2
ε−Kn((n+2)/(n−2)+ε). (2.26)
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Then the modified nonlinearity fε(y, t) is defined by

fε(y, t)= 1BR(0)hε(t) + 1Rn\BR(0)γ̄ε(y, t) ∀y ∈R
n, ∀t ∈R, (2.27)

where, for any set A, 1A denotes the characteristic function of A, and the radius R is
chosen large enough so that BR(0) contains y0 (the strict local minimum point of Q(y)).

Notice that, for all ε > 0, the variational functional related to the problem

−∆u=Q(y) fε(y,u) in R
n,

u > 0 in R
n, u∈�1,2(

R
n
)
,

(2.28)

is well defined and differentiable in �1,2(Rn).
Under suitable assumptions onQ(y), in [16], it is obtained a k-peak solution for prob-

lem (2.28) by using a finite-dimensional reduction method. Then it is shown that, if in
the definition of the function hε the constant K is chosen large enough, this solution also
solves the original problem (2.22) when ε is small enough.

We remark that the approximating problem (2.28) has critical growth for all ε > 0;
moreover, a Harnack inequality (see [4]) is used in [16] to obtain uniform estimates
which guarantee that the solution obtained for problem (2.28) is actually a solution for
problem (2.22) too, when ε is small enough.
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