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For the higher-order abstract differential equation u(n)(t)= Au(t) + f (t), t ∈R,
we give a new definition of mild solutions. We then characterize the regular ad-
missibility of a translation-invariant subspace � of BUC(R,E) with respect to
the above-mentioned equation in terms of solvability of the operator equation
AX −X�n = C. As applications, periodicity and almost periodicity of mild so-
lutions are also proved.

1. Introduction

The qualitative theory of mild solutions on the whole line of the differential
equation of type

u′(t)= Au(t) + f (t), t ∈R, (1.1)

where A is a closed operator on a Banach space E, has been of increasing interest
in the last decades. If A is a bounded operator on E, mild solutions of (1.1),
which are the same as the classical solutions, are defined by

u(t)= eAtu(0) +
∫ t

0
eA(t−s) f (s)ds, t ∈R. (1.2)

In [4], Dalec’kiı̆ and Kreı̆n made a systematic study on the asymptotic behavior
of solutions of the form (1.2). For unbounded operator A, where the situation
changes dramatically, the first question is, which solutions of (1.1) are consid-
ered as mild solutions? If A is the generator of a C0-semigroup T(t), t ≥ 0, it is
logical to define mild solutions of (1.1) by

u(t)= T(t− s)u(s) +
∫ t

s
T(t− τ) f (τ)dτ, t ≥ s. (1.3)
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With this definition in hand, many authors investigated the qualitative behavior
of (1.3) in different ways (see [10, 12, 13, 14, 17] and references therein). The
second-order differential equation u′′(t)= Au(t) + f (t), where A is the genera-
tor of a cosine family (C(t)), and for which mild solutions are defined by

u(t)= C(t− s)u(s) + S(t− s)u′(s) +
∫ t

s
S(t− τ) f (τ)dτ, (1.4)

has been also studied in [3, 8, 18].
Recently, Arendt and Batty [1], Schweiker [20], and Schüler and Phóng [19]

studied the first- and second-order differential equations, in which A is not
the generator of a C0-semigroup or of a cosine family, respectively. Although
their definitions of mild solutions are slightly different, they all showed that the
existence and uniqueness of mild solutions, which belong to a subspace � of
BUC(R,E), are closely related to the solvability of the operator equation of the
form

AX −X�=−δ0, (1.5)

where � is the differential operator in � and δ0 is the Dirac operator defined by
δ0( f ) := f (0).

Inspired by this rapid development, in this paper, we consider the higher-
order differential equation

u(n)(t)=Au(t) + f (t), (1.6)

where A is a closed linear operator on E and f is a continuous function from R

to E. First, we give a general definition of mild solutions to (1.6). This definition
is an extension of that introduced in [1], where n = 1, n = 2, and A generally
is neither the generator of a C0-semigroup nor of a cosine family, respectively.
Several properties of mild solutions are then shown in Section 2.

In Section 3, we consider the conditions for the solvability of operator equa-
tion AX −XB = C, in particular, when B =�n, where � is the differential oper-
ator on a function space and C =−δ0.

Assume that � is a closed, translation-invariant subspace of BUC(R,E). The
subspace � is said to be regularly admissible with respect to (1.6) if for every
f ∈�, (1.6) has a unique mild solution u ∈�. In Section 4, we characterize
the regular admissibility of � in terms of solvability of the operator equation.
Namely, we show that the subspace � is regularly admissible if and only if the
operator equation of the form

AX −X�n =−δ0 (1.7)
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has a unique bounded solution. As applications, in Section 5 we show that if the
admissible subspace � is the space of 1-periodic functions, then

sup
k∈Z

∥∥∥km((2πki)n−A
)−1
∥∥∥ <∞ (1.8)

is a necessary condition, that each mild solution on � belongs to C(m)(R,E),
where 0≤m≤ n. Finally, we prove that, under some classical condition, if σ(A)
∩ (iR)n is countable, then each bounded mild solution of the higher-order equa-
tion is almost periodic provided f is almost periodic. This result, shown by a
short proof, generalizes [1, Theorem 4.5].

2. Mild solutions of higher-order differential equations

First, we fix some notations. By C(n)(R,E) we denote the space of continuous
functions with continuous derivatives u′,u′′, . . . ,u(n) and by BUC(R,E) the space
of bounded, uniformly continuous functions with values in E. The operator I :
C(R,E)→ C(R,E) is defined by I f (t) := ∫ t0 f (s)ds and In f := I(In−1 f ).

Definition 2.1. (a) We say that u : R→ E is a classical solution of (1.6) if u ∈
D(A), u∈ Cn(R,E), and (1.6) is satisfied.

(b) A continuous function u(t)∈ C(R,E) is called a mild solution of (1.6) if
I(n)u(t)∈D(A) for all t ∈R and there exist n points v0,v1, . . . ,vn−1 in E such that

u(t)=
n−1∑
i=0

ti

i!
vi +AInu(t) + In f (t) (2.1)

for all t ∈R.

Remark 2.2. Using the standard argument, we can prove the following state-
ments:

(i) if a mild solution u is m-times differentiable, 0 ≤ m < n, then vi, i =
0,1, . . . ,m, are the initial values, that is, u(0)=v0, u′(0)=v1, . . . , and u(m)(0)=
vm;

(ii) if n= 1 and A is the generator of a C0-semigroup T(t), then a continuous
function u : R→ E is a mild solution of (1.6) if and only if it has the form

u(t)= T(t− s)u(s) +
∫ t

s
T(t− r) f (r)dr; (2.2)

(iii) similarly, if n= 2 and A is a generator of a cosine family (C(t)) on E, any
continuously differentiable function u on E of the form

u(t)= C(t− s)u(s) + S(t− s)u′(s) +
∫ t

s
S(t− τ) f (τ)dτ, (2.3)

where (S(t)) is the associated sine family, is a mild solution of (1.6);
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(iv) if u is a bounded mild solution of (1.6) corresponding to a bounded
inhomogeneity f and φ ∈ L1(R,E), then u∗φ is a mild solution of (1.6)
corresponding to f ∗φ.

Directly from their definitions, we can collect some properties of mild solutions
of (1.6).

Lemma 2.3. Let u be a mild solution of the higher-order differentiable equation
(1.6). If

(i) u is in C(n)(R,E); or
(ii) u(t)∈D(A) for all t ∈R and Au(·)∈ C(R,E),

then u is a classical solution.

Proof. (i) Since u is a mild solution, we have

AInu(t)= u(t)−
n−1∑

0

ti

i!
vi− In f (t). (2.4)

The right-hand side of (2.4) is n-time differentiable so is the left-hand side.
Hence,

lim
h→0

A
1
h

∫ t+h

t
In−1u(s)ds= lim

h→0

1
h

(
A
∫ t+h

0
In−1u(s)ds−A

∫ t

0
In−1u(s)ds

)

= d

dt

(
AIn(t)

) (2.5)

exists. Since

lim
h→0

1
h

∫ t+h

t
In−1u(s)ds= In−1u(t) (2.6)

and A is closed, we obtain that In−1u(t)∈D(A) and

d

dt

(
AInu(t)

)= AIn−1u(t). (2.7)

By taking the derivative on both sides of (2.4), we obtain

AIn−1(t)= u′(t)−
n−2∑

0

ti

i!
vi+1− In−1 f (t) (2.8)

for all t ∈R. Repeating this procedure (n− 1) times, we obtain that u is n-times
differentiable and u(n)(t)=Au(t) + f (t), that is, u is a classical solution.

(ii) If u(t)∈D(A) for all t ∈R and Au(·)∈ C(R,E), then AInu(t)= InAu(t).
Taking the nth derivative of the right-hand side of

u(t)=
n−1∑

0

ti

i!
vi + InAu(t) + In f (t), (2.9)
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we have that u is n-times continuously differentiable and u(n)(t)= Au(t) + f (t),
that is, u is a classical solution. �

In what follows we consider the spectrum of mild solutions of (1.6). For a
bounded function u∈ L∞(R,E), the Carleman transform û of u is defined by

û(λ)=




∫∞
0
e−λtu(t)dt, Re(λ) > 0,

−
∫ 0

−∞
e−λtu(t)dt, Re(λ) < 0.

(2.10)

It is clear that û is holomorphic on C \ iR. A point µ∈R is called a regular point
if û has a holomorphic extension in a neighborhood of iµ. The spectrum of u is
defined as follows:

sp(u)= {µ∈R : µ is not regular}. (2.11)

The following lemma, whose proof can be found in [7, 15], will be needed later.

Lemma 2.4. Let f , g be in BUC(R,E) and φ ∈ L1(R,E). Then

(i) sp( f ) is closed and sp( f )=∅ if and only if f = 0;
(ii) sp( f + g)⊂ sp( f )∪ sp(g);

(iii) sp( f ∗φ)⊂ sp( f )∩ supp�φ, where �φ is the Fourier transform of φ.

The following lemma is the first result about the spectrum of mild solutions
of (1.6).

Lemma 2.5. Let f be a bounded continuous function and let u be a bounded mild
solution of (1.6). Then

sp(u)⊆ {µ∈R : (iµ)n ∈ σ(A)
}∪ sp( f ). (2.12)

Proof. It is easy to see that Îu(λ)= (1/λ)û(λ), hence Înu(λ)= (1/λn)û(λ). Taking
the Carleman transform on both sides of (2.1), we have

û(λ)=Q(λ) +
1
λn

Aû(λ) +
1
λn

f̂ (λ), (2.13)

where

Q(λ)=
∫∞

0
e−λt


n−1∑

i=0

ti

i!
vi


dt = n−1∑

i=0

ui
λi
. (2.14)

From (2.13) we obtain

(
λn−A

)
û(λ)= λnQ(λ) + f̂ (λ) (2.15)



870 Mild solutions of differential equations

for λ /∈ iR. Hence, for λn ∈ ρ(A) we have

û(λ)= (λn−A
)−1(

λnQ(λ) + f̂ (λ)
)
. (2.16)

Note that λnQ(λ) is a holomorphic function in terms of λ. It implies that if µ∈R

is a regular point of f and (iµ)n ∈ ρ(A), then û has holomorphic extension in a
neighborhood of iµ, that is, µ is a regular point of u. Hence, we have the inclusive
relation. �

From Lemma 2.5, we directly have the following corollary.

Corollary 2.6. If u is a bounded mild solution of (1.6) corresponding to f ≡ 0,
then sp(u)⊆ {µ∈R : (iµ)n ∈ σ(A)}.
Corollary 2.7. If (iR)n ∩ σ(A) =∅, then (1.6) has at most one bounded mild
solution.

3. The equation AX −XDn = C

LetA and B be closed, generally unbounded, linear operators on Banach spaces E
and F with dense domains D(A) and D(B), respectively, and let C be a bounded
linear operator from E to F. A bounded operator X : F → E is called a solution of
the operator equation

AX −XB = C (3.1)

if for every f ∈ D(B) we have X f ∈ D(A) and AX f − XB f = C f . Equation
(3.1) has been considered by many authors. It was first studied intensively for
bounded operators by Dalec’kiı̆ and Kreı̆n [4], Rosenblum [16]. For unbounded
case, (3.1) was studied in [2, 11, 12, 13], when A and B are generators of C0-
semigroups, and in [17, 19] when A and B are closed operators. We cite here
some main results which will be used in the sequel.

Theorem 3.1. (i) Let A and B be generators of C0-semigroups on E and F, one of
which is analytic such that σ(A)∩ σ(B)=∅. Then for every bounded operator C,
(3.1) has a unique bounded solution (see [11, Theorem 15]).

(ii) Let A be a closed operator and let B be a bounded operator such that σ(A)∩
σ(B)=∅. Then for every bounded operatorC, (3.1) has a unique bounded solution
X which has the following integral form:

X = 1
2πi

∫
Γ
(λ−A)−1C(λ−B)−1dλ, (3.2)

where Γ is a closed Cauchy contour around σ(B) and is separated from σ(A) (see
[17, Theorem 3.1]).

(iii) If (3.1) has a unique bounded solution for every bounded operator C, then
σ(A)∩ σ(B)=∅ (see [2, Theorem 2.1]).
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We now consider the situation when F =�, a translation-invariant subspace
of BUC(R,E), and B = �n

�, the restriction of �n to �, where � := d/dt on
BUC(R,E). It is well known that σ(�)= iR and σ(�n)= (σ(�))n.

Let now �k := { f ∈ � : sp( f ) ⊂ [−ik, ik]}, k ≥ 1. Then the following
properties hold (see [5, 19]):

(i) �k are translation-invariant subspaces,
(ii) �k ⊂�k+1,

(iii) ��k is bounded.

We first need the following lemma which was proved in [19].

Lemma 3.2. Let �� and ��k be as above, then

σ
(
��

)=∪∞k=1σ
(
��k

)
. (3.3)

From Lemma 3.2 we obtain the following lemma.

Lemma 3.3. For any positive integer n≥ 1, the following equality holds:

σ
(
�n

�

)=∪∞k=1σ
(
�n

�k

)
. (3.4)

Proof. We show that

σ
(
�n

�

)⊆∪∞k=1σ
(
�n

�k

)
. (3.5)

Note that σ(�n) = (iR)n, hence σ(�n
�) ⊆ (iR)n. Assume that (iλ)n ∈ σ(�n

�),
λ ∈ R. Then there is a sequence of vectors ( fk)k ⊂ � such that fk ∈ D(�n

�),
‖ fk‖ = 1, and

lim
k→∞

∥∥((iλ)n−�n
�

)
fk
∥∥= 0. (3.6)

Let λ1,λ2, . . . ,λn be the n complex roots of the equation xn = (iλ)n. Then we have

(
(iλ)n−�n

�

)
fk =

n∏
j=1

(
λj −��

)
fk. (3.7)

We show that there is at least one λj belonging to the spectrum of ��. Assume
contrarily that all λj belong to ρ(��), then

fk =
n∏
j=1

(
λj −��

)−1(
(iλ)n−�n

�

)
fk −→ 0 as k −→∞, (3.8)

which is contradictory to ‖ fk‖ = 1. Hence, there is a λj which belongs to σ(��).
By Lemma 3.2, there is a number k such that iλj ∈ σ(��k ). Since ��k is
bounded, (iλ)n = (iλj)n ∈ σ(�n

�k
), and hence the inclusion (3.5) follows. Since

the inverse of (3.5) is obvious, the lemma is proved. �
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From Lemmas 3.2 and 3.3 we have the following lemma.

Lemma 3.4. For any positive integer n≥ 1 the following equality holds:

σ
(
�n

�

)= {λn : λ∈ σ
(
��

)}
. (3.9)

We now return to the operator equation

AX −X�n
� = δ�

0 , (3.10)

where δ�
0 is the restriction of the Dirac operator to �. Assume that

σ(A)∩ {λn : λ∈ σ
(
��

)}=∅. (3.11)

Then, by Lemma 3.4, it is equivalent to

σ(A)∩ σ
(
�n

�

)=∅. (3.12)

Therefore, for k = 1,2, . . . , we have

σ(A)∩ σ
(
�n

�k

)=∅. (3.13)

By Theorem 3.1, the operator equation

AX −X�n
�k
= δ�k

0 (3.14)

has a unique bounded solution Xk which is of the form

Xk =− 1
2πi

∫
Γk

(λ−A)−1δ�n
0

(
λ−�n

�k

)−1
dλ, (3.15)

where Γk is a contour around σ(�n
�k

) and is separated from σ(A). Moreover, the
uniqueness of Xk implies

Xk|�l = Xl for l < k. (3.16)

We state a result about the existence and uniqueness of bounded solutions of
(3.10), whose proof is similar to that of [19, Theorem 7] (for n= 2) and is omit-
ted.

Theorem 3.5. Assume that condition (3.11) holds. Then the operator equation
(3.10) has a unique bounded solution if and only if

sup
n≥1

∥∥Xk

∥∥ <∞, (3.17)

where Xk are defined by (3.15).
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4. Admissible subspaces

Let � be a closed translation-invariant subspace of BUC(R,E), which is regu-
larly admissible with respect to (1.6). Define the linear operator G on � such
that for each f ∈�, G f is the unique mild solution of (1.6) in �, we have the
following lemma.

Lemma 4.1. The operator G is a linear, bounded operator on �.

Proof. We define operator G̃ : �→�⊗En by

G̃ f := (u,v0,v1, . . . ,vn−1
)
, (4.1)

where u is the unique mild solution of (1.6) corresponding to f and v0,v1, . . . ,
vn−1 are contained in the mild solution

u(t)=
n−1∑

0

ti

i!
vi +AInu(t) + In f (t). (4.2)

We will show that G̃ is closed. Let ( fk)k∈N ⊆ � with limk fk = f and G̃ fk =
(uk,v0,k, . . . ,vn−1,k) with limk→∞ G̃ fk = (u,v0, . . . ,vn−1), that is, limk→∞uk = u and
limk→∞ vj,k = vk for j = 0,1, . . . ,n− 1. Then we have limk→∞ Inuk(t)= Inu(t) and,
by (4.2),

AInuk(t)= uk(t)−
n−1∑

0

ti

i!
vi,k − In fk(t)

−→ u(t)−
n−1∑

0

ti

i!
vk − In f (t) as k −→∞.

(4.3)

Since A is closed we obtain that Inu(t)∈D(A) and

AInu(t)= u(t)−
n−1∑

0

ti

i!
vi− In f (t). (4.4)

That means that G̃ f = (u,v0,v1, . . . ,vn−1). Hence, G̃ is closed and thus bounded.
Since G= G̃ ◦P, where P : �⊗En →� is the projection on the first coordinate
and thus is a bounded operator, we obtain that G is bounded. �

The operator G is called the solution operator of (1.6) and is commuting with
the translation and hence is commuting with the differential operator, as the
following lemma shows.

Lemma 4.2. Let A be a closed operator on E with nonempty resolvent set and let �
be an admissible subspace of BUC(R,E). Then the following conditions hold:

(i) Sh ·G=G · Sh, where Sh is the translation operator on �;
(ii) �� ·G=G ·��.
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Proof. (i) Let u= G f be the unique mild solution of the higher-order differen-
tial equation (1.6). If u is a classical solution, then (G f )(n)(t + h) = A(G f )(t +
h) + f (t + h), and hence Sh ·G f = G · Sh f . For the case that u is not a classical
solution, let λ∈ ρ(A). Since

R(λ,A)u(t)=
n−1∑

0

ti

i!
R(λ,A)ui +AInR(λ,A)u(t) + InR(λ,A) f (t), (4.5)

it is easy to see that ũ(t)= R(λ,A)u(t) is the unique solution of (1.6) correspond-
ing to f̃ = R(λ,A) f . But ũ(t) ∈ D(A) for all t ∈ R. Hence, by Lemma 2.3(ii), ũ
is a classical solution. From the above result for a classical solution and the fact
that Sh and R(λ,A) commute, we have

R(λ,A)ShG f = ShR(λ,A)G f = ShGR(λ,A) f

=GShR(λ,A) f =GR(λ,A)Sh f = R(λ,A)GSh f ,
(4.6)

from which it follows that ShG f = GSh f for all f ∈�. Part (ii) is a direct con-
sequence of (i), and the lemma is proved. �

Corollary 4.3. Assume that A is a closed operator with nonempty resolvent set.
Let � be a regularly admissible subspace of BUC(R,E) and let u be the unique mild
solution corresponding to f in �. If f ∈ Cn(R,E) such that f ′, f ′′, . . . , f (n) belong
to �, then u is a classical solution.

In what follows, we assume that � satisfies the following additional assump-
tion.

Assumption 4.4. For all C ∈ �(�,E) and f ∈�, the function Φ(t) = CS(t) f
belongs to �.

The regular admissibility of a space is closely related to the solvability of oper-
ator equation (3.1). This relation was shown in [13], when n= 1, and in [19, 20],
when n= 2. The following theorem is a generalization of those results.

Theorem 4.5. Let A be a closed operator on E with nonempty resolvent set and let
� be a translation-invariant subspace in BUC(R,E), which satisfies Assumption
4.4. Then the following statements are equivalent:

(i) � is a regularly admissible subspace;
(ii) the operator equation

AX −X�(n)
� =−δ0 (4.7)

has a unique solution;
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(iii) for every bounded operator C : �→ E, the operator equation

AX −X�(n)
� = C (4.8)

has a unique solution.

Proof. (i)⇒(ii). Let G : � → � be the bounded operator defined by G f = u,
where u is the unique mild solution in �. We define the operator X : � �→ E by

X f := (G f )(0). (4.9)

Then X is a bounded operator. Now let f ∈ �n
�. By Lemma 4.2, u = G f is a

classical solution of (1.6), that is,

(G f )(n)(t)=A(G f )(t) + f (t). (4.10)

Note that, by Lemma 4.2, (G f )(n) = G f (n). Taking t = 0 from (4.10) and using
this fact, we have AX f −X�n f = −δ0 f for f ∈ �n

�, that is, X is a bounded
solution of (4.7).

To show the uniqueness, we assume that X0 is a solution of (4.7). Then for
every f ∈�n

�, the function u ∈�, defined by u(t) = X0S(t) f , is a classical so-
lution of (1.6). Indeed,

u(n)(t)= X0�nS(t) f = (AX0 + δ0
)
S(t) f = Au(t) + f (t) (4.11)

for all t ∈ R. We will show that u(t) = X0S(t) f is a mild solution of (1.6) for
every f ∈ �. To this end, let f ∈ � and ( fk)k∈N ⊆ D(�n

�) with limk fk = f .
Then G f = limk G fk = limk X0S(·) fk = X0S(·) f . Hence, G f = X0S(·) f , that is,
u= X0S(·) f is a mild solution of (1.6).

Assume now that X1 and X2 are two solutions of (4.7). Then, for every f ∈
�, u= (X1−X2)S(·) f is a mild solution of the higher-order equation u(n)(t)=
Au(t). By the uniqueness of the mild solution we have u≡ 0, which implies X1 =
X2.

(ii)⇒(iii). Let X be the unique solution of (4.7). Define the bounded op-
erator Y : � → E by Y f := X f̃ , where f̃ (t) = −CS(t) f . Let f ∈ D(�n

�), then
(�n

� f )̃(t)=−CS(t)�n
� f =�n

� f̃ (t). Hence, we have

AY f = AX f̃ = X�n
� f̃ + δ0 f̃ = X

(
�n

� f
)̃

+C f = Y�n
� f +C f , (4.12)

that is, Y is a bounded solution of (4.8).
The uniqueness of the solution of operator equation AX −X�n

� = C follows
directly from the uniqueness of the solution of AX −X�n

� =−δ0.
(iii)⇒(i). We have shown above that if X is a bounded solution of (4.7), then

u(t) := XS(t) f is a mild solution of the higher-order equation (1.6). It remains
to show that this solution is unique. In order to do it, assume that u is a mild
solution of the homogeneous equation u(n)(t)= Au(t), t ∈R. By Corollary 2.6,
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(isp(u))n ⊆ σ(A). On the other hand, since u ∈�, isp(u) ⊆ σ(��), which im-
plies (isp(u))n ⊆ σ(�n

�). By Theorem 3.1(iii), it follows from (iii) that σ(A)∩
σ(�n

�)=∅. Hence, sp(u)=∅, so u≡ 0 and the theorem is proved. �

5. Applications

In this section, we will apply the results of Section 4 to the space of periodic and
of almost periodic functions. Let P(ω) be the space of periodic functions from
R to E with the period ω. For the sake of simplicity, we assume the period ω = 1.
We begin with the case in which n= 2 and A is the generator of a cosine family
(C(t)). It is well known that

(1) A is the generator of an analytic C0-semigroup given by

eAzx = 1√
(πz)

∫∞
0
e−t

2/4zC(t)xdt, Re(z) > 0; (5.1)

(2) �2 is the generator of a cosine family given by

C(t)= 1
2

(
�(t) + �(−t)) (5.2)

and hence is the generator of an (analytic) C0-semigroup in P(1).

By Theorems 3.1(i) and 4.5, P(1) is regularly admissible if and only if σ(A)∩
σ(�2

P(1)) =∅. On the other hand, σ(�2
P(1)) = {(2kπi)2 : k ∈ Z} = {−k2π2 : k ∈

Z}. Hence, we have the following theorem.

Theorem 5.1. Let A be the generator of a strongly continuous cosine family. Then
P(1) is regularly admissible with respect to u′′(t) = Au(t) + f (t) if and only if
{−4k2π2 : k ∈ Z} ⊂ ρ(A).

In general, however, the condition of the form σ(A)∩ σ(�n
�) =∅ does not

imply the regular admissibility of subspace �. At least the operator A must sat-
isfy some conditions, as the following theorem shows.

Theorem 5.2. Let A be a closed operator on a Banach space E with nonempty re-
solvent set and suppose that P(1) is regularly admissible with respect to the equation

u(n)(t)=Au(t) + f (t), t ∈R. (5.3)

Then

(1) (2πki)n ∈ ρ(A) and supk∈Z
‖((2πki)n−A)−1‖ <∞,

(2) if each mild solution on P(1) belongs to C(m)(R,E), 0≤m≤ n, then (2πki)n

∈ ρ(A) and supk∈Z
‖km((2πki)n−A)−1‖ <∞.

Proof. By assumption, P(1) is a regularly admissible function space, so, by
Theorem 4.5, the equation AX − X�n

P(1) = C has a unique solution for every
bounded operator C. Hence, by Theorem 3.1(iii), σ(A)∩ σ(�n

P(1))=∅. On the
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other hand, it is not hard to see that σ(�n
P(1))= {(2kπi)n : k ∈ Z}. It follows that

σ(A)∩{(2kπi)n : k ∈ Z} =∅ or, in other words, {(2kπi)n : k ∈ Z} ⊂ ρ(A).
To prove (1), let G : P(1) → P(1) be the solution operator and take f (t) =

e2kπitx0, x0 ∈ E, as a 1-periodic function. It is not too hard to check that G f (t)=
e2kπit · ((2kπi)n−A)−1x0 is the (unique) mild solution of (5.3). Hence,

∥∥∥((2kπi)n−A
)−1

x0

∥∥∥= ‖G f ‖ ≤ ‖G‖ · ‖ f ‖ = ‖G‖ ·∥∥x0
∥∥ (5.4)

for all x0 ∈ E and k ∈ Z. Hence, supk∈Z
‖((2kπi)n−A)−1‖ ≤ ‖G‖ <∞.

To prove (2) observe that since each mild solution on P(1) belongs to C(m)(R,
E), the composite operator �m

P(1)G is everywhere defined and closed. Hence, it is
a bounded operator. Thus,

∥∥�m
P(1)G f

∥∥= ∥∥∥(2kπ)m
(
(2kπi)n−A

)−1
x0

∥∥∥≤ ∥∥�m
P(1)G

∥∥ · ‖ f ‖
= ∥∥�m

P(1)G
∥∥ ·∥∥x0

∥∥ (5.5)

for all x0 ∈ E and k ∈ Z. Hence, supk∈Z
‖km((2kπi)n−A)−1‖ ≤ C·‖�m

P(1)G‖ for
a certain constant C, and that completes the proof. �

The converse of Theorem 5.2 generally does not hold (see [6] for a counterex-
ample). However, we have the affirmative answer in certain special cases. If E is
a Hilbert space, n = 1, and A is the generator of a C0-semigroup (T(t))t≥0, we
have the following theorem whose proof of (b)⇒(a) can be found in [14].

Theorem 5.3. Let A be the generator of a C0-semigroup on a Hilbert space E. Then
the following conditions are equivalent:

(a) for each 1-periodic function f , the equation

u′(t)=Au(t) + f (t) (5.6)

has a unique 1-periodic mild solution;
(b) {2πki : k ∈ Z} ⊂ ρ(A) and supk∈Z

‖(2πki−A)−1‖ <∞.

Also, if n = 2, m = 1, and A is the generator of a cosine family (C(t)) on a
Hilbert space E, we have a positive answer. Namely, we have the following theo-
rem whose proof of the converse part (b)⇒(a) can be found in [8].

Theorem 5.4. If A is the generator of a cosine family on a Hilbert space E, then the
following statements are equivalent:

(a) for each 1-periodic function f , the equation

u′′(t)=Au(t) + f (t) (5.7)

has a unique 1-periodic mild solution which belongs to C1(R,E);
(b) {−4π2k2 : k ∈ Z} ⊂ ρ(A) and supk∈Z

‖k(4π2k2 +A)−1‖ <∞.
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We now apply the results of Section 4 to AP(R,E), the space of almost peri-
odic functions from R to E. As a preparation, we recall some basic concepts and
results about almost periodic functions. (For more details, readers are referred
to [1, 9].) A point λ∈R is called a point of almost periodicity of the function u if
there is a neighborhood � of λ such that for every φ ∈ L1(R) with supp�φ ⊂�,
where �φ is the Fourier transform of φ, the function φ∗ u is almost periodic.
The complement in R of the set of points of almost periodicity of u is called the
almost periodic spectrum of f and is denoted by spAP(u).

We say that u∈ BUC(R,E) is totally ergodic if

lim
T→∞

1
2T

∫ T

−T
e−iνsu(s)ds (5.8)

exists for all ν ∈ R. The following theorem can be found in [9] (parts (a) and
(b)) and [17] (part (c)).

Theorem 5.5. Let u∈ BUC(R,E) such that spAP(u) is countable. Assume that

(a) E �⊇ c0; or
(b) the range of u(t) is weakly relatively compact; or
(c) u is totally ergodic.

Then u is almost periodic.

We now return to our higher-order equation. Let Γ be a compact set in R

and let � = X(Γ) be the subspace of BUC(R,E) consisting of all functions f
with sp( f )⊂ Γ. It is easy to see that � satisfies Assumption 4.4. Moreover, �� is
bounded, σ(��)= iΓ, and thus σ(�n

�)= (iΓ)n. Assume now that σ(A)∩ (iΓ)n =
∅; then, by Theorem 3.1(ii), the equation AX −X�n

� = −δ0 has a unique so-
lution. By Theorem 4.5, � is regularly admissible and for any almost periodic
function f , the mild solution u(t)= XS(t) f is also almost periodic. Using these
facts, we have the following theorem.

Theorem 5.6. For the equation

u(n)(t)=Au(t) + f (t), t ∈R, (5.9)

assume that f is almost periodic and σ(A)∩ (iR)n is countable. Let u ∈ BUC(R,
E) be a mild solution of (5.9). Then u is almost periodic if one of the following
conditions is satisfied:

(a) E �⊇ c0; or
(b) the range of u(t) is weakly relatively compact; or
(c) u is totally ergodic.

Proof. In view of Theorem 5.5, we only have to show that spAP(u) is countable.
Since σ(A)∩ (iR)n is countable, it suffices to prove that (ispAP(u))n ⊂ σ(A).
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Let λ be any point in R such that (iλ)n ∈ ρ(A); we will show that λ �∈ spAP(u).
Since ρ(A) is an open set, there exists ε > 0 such that (iΓ)n ⊂ ρ(A), where Γ= [λ−
ε,λ+ ε]. Since Γ is compact and σ(A)∩ (iΓ)n =∅, X(Γ) is regularly admissible
with respect to (5.9).

Let φ be a function in L1(R,E) with supp�φ ⊂ Γ and define ũ := u∗ φ and
f̃ := f ∗ φ. Then ũ and f̃ are in X(Γ) (Lemma 2.4(iii)) and f̃ is an almost pe-
riodic function. Moreover, ũ is the unique mild solution of (5.9) corresponding
to f̃ in X(Γ) (Remark 2.2). By the reasoning preceding this theorem, ũ is also
almost periodic. So, λ is a point of almost periodicity of u, that is, λ �∈ spAP(u),
and the theorem is proved. �
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[17] W. M. Ruess and V. Q. Phóng, Asymptotically almost periodic solutions of evolution
equations in Banach spaces, J. Differential Equations 122 (1995), no. 2, 282–301.
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